RHODES UNIVERSITY DEPARTMENT of MATHEMATICS (Pure & Applied) CLASS TEST No. 1 : AUGUST 2014

MAT314 (DIFFERENTIAL GEOMETRY)

AVAILABLE MARKS : 54 FULL MARKS : 50 DURATION : 1 HOUR

NB : All questions may be attempted.

Question 1.

- (a) Let $\gamma: (\alpha, \beta) \to \mathbb{R}^3$ be a parametrized curve (in \mathbb{R}^3). Explain what is meant by saying that
 - i. γ is regular;
 - ii. $\tilde{\gamma}$ is a reparametrization of γ ;
 - iii. $s(\cdot)$ is the *arc-length* of γ (starting at the point $\gamma(t_0)$).
- (b) Find the *arc-length* of the parametrized curve

$$\gamma(t) = \left(e^{3t}\cos t, e^{3t}\sin t\right), \quad t \in \mathbb{R}$$

starting at the point (1,0).

(c) Let **p** and **q** be two points in \mathbb{R}^3 , and let $\gamma : (\alpha, \beta) \to \mathbb{R}^3$ be a parametrized curve such that $\gamma(a) = \mathbf{p}$ and $\gamma(b) = \mathbf{q}$, where $\alpha < a < b < \beta$. Show that, if **u** is any unit vector, then

$$(\mathbf{q} - \mathbf{p}) \bullet \mathbf{u} \le \int_a^b \|\dot{\gamma}(u)\| \, du.$$

Hence deduce that the length of the part of γ between **p** and **q** is at least $\|\mathbf{q} - \mathbf{p}\|$.

[4,5,18]

Question 2.

(a) Define the terms *curvature* and *torsion* for a regular (not necessarily unit-speed) space curve. Hence find the curvature and torsion of the parametrized curve

$$\gamma(t) = (2\cos t, 2\sin t, 3t).$$

(b) Let γ be a regular curve in \mathbb{R}^2 and let $\lambda \in \mathbb{R}$. The *parallel curve* γ^{λ} of γ is defined by

$$\gamma^{\lambda}(t) = \gamma(t) + \lambda \,\mathbf{n}_s(t).$$

Show that, if $|\lambda \kappa_s(t)| < 1$ for all values of t, then γ^{λ} is a regular curve and its signed curvature is $\frac{\kappa_s}{1 - \lambda \kappa_s}$.

[10, 17]