RHODES UNIVERSITY

DEPARTMENT OF MATHEMATICS (Pure & Applied)

EXAMINATION: NOVEMBER 2009

MATHEMATICS III

Examiners : Dr C.C. Remsing
Dr G. Lubczonok
Dr F.A.M. Frescura

AVAILABLE MARKS : 110
FULL MARKS : 100
DURATION : 3 HOURS

AM3.4 - DIFFERENTIAL GEOMETRY

NB : All questions may be attempted. All steps must be clearly motivated. Marks will not be awarded if this is not done.

Question 1. [24 marks]

(a) Let

$$\gamma(t) = (e^{kt}\cos t, e^{kt}\sin t), \quad t \in \mathbb{R}.$$

The arc-length parameter is defined by

$$s(t) = \int_0^t \left\| \frac{d\gamma}{dt} \right\| dt.$$

Find t as a function of s, t = t(s), and then change the parametrisation of the given curve to arc-length parametrisation. What is the *curvature* of γ ?

(b) Suppose $\gamma, \tilde{\gamma}: (a, b) \to \mathbb{R}^2$ are two unit-speed curves with the same signed curvatures for all $s \in (a, b)$. Show that that there is a rigid motion M of \mathbb{R}^2 such that

$$\tilde{\gamma}(s) = M(\gamma(s))$$

for all $s \in (a, b)$.

(c) Compute the curvature κ , the torsion τ and the vectors of the Frenet-Serret frame \mathbf{t}, \mathbf{n} and \mathbf{b} for (the unit-speed curve)

$$\gamma(t) = \left(\frac{4}{5}\cos t, 1 - \sin t, -\frac{3}{5}\cos t\right).$$

Question 2. [20 marks]

(a) Show that

$$\sigma(u, v) = (\operatorname{sech} u \cdot \cos v, \operatorname{sech} u \cdot \sin v, \tanh u)$$

is a regular surface patch for the unit sphere \mathbb{S}^2 .

(b) A loxodrome is a curve on \mathbb{S}^2 that intersects the meridians at a fixed angle, say ϕ . Show that, in the surface patch in (a), a unit-speed loxodrome satisfies

$$\dot{u} = \cos \phi \cdot \cosh u$$

$$\dot{v} = \pm \sin \phi \cdot \cosh u.$$

Deduce that loxodromes correspond under σ to straight lines in the uv-plane.

(c) Explain what is meant by saying that a diffeomorphism $f: \mathcal{S}_1 \to \mathcal{S}_2$ (between two smooth surfaces) is an *isometry*. Then prove that $f: \mathcal{S}_1 \to \mathcal{S}_2$ is an isometry if and only if, for any surface patch σ_1 of \mathcal{S}_1 , the patches σ_1 and $f \circ \sigma_1$ of \mathcal{S}_1 and \mathcal{S}_2 , respectively, have the same first fundamental form.

[4,8,8]

Question 3. [20 marks]

(a) Define the *first* and the *second fundamental forms* of a surface patch. Hence, compute these forms for the elliptic paraboloid

$$\sigma(u, v) = (u, v, u^2 + v^2).$$

- (b) Prove that if the second fundamental form of a surface patch σ is zero everywhere, then σ is part of a plane.
- (c) Define the *normal curvature* of a curve on a surface. Hence, show that the normal curvature of any curve on a sphere of radius r is $\pm \frac{1}{r}$.

[6,8,6]

Question 4. [24 marks]

(a) Calculate the *principal curvatures* for the torus

$$\sigma(u, v) = ((a + b\cos u)\cos v, (a + b\cos u)\sin v, b\sin u).$$

- (b) Define the terms gaussian curvature, mean curvature, flat surface, and umbilical point. Hence, prove that if P is a point on a flat surface, so that P is not an umbilical point, then there is a surface patch containing P that is a ruled surface.
- (c) Calculate the gaussian and mean curvatures of the surface

$$\sigma(u, v) = (u + v, u - v, uv).$$

[6,12,6]

Question 5. [22 marks]

- (a) Define the term *geodesic*, and then write down, without proof, the *geodesic equations*. Explain the connection between geodesics and shortest paths on a arbitrary surface. Make a clear statement but DO NOT prove it.
- (b) Consider a surface of revolution

$$\sigma(u, v) = (f(u)\cos v, f(u)\sin v, g(u)),$$

where we assume that f > 0 and that the profile curve $u \mapsto (f(u), 0, g(u))$ is unit-speed. Write down the geodesic equations, and then prove that every meridian $v = v_0$ is a geodesic.

(c) Determine all the geodesics on the circular cylinder

$$S = \{(x, y, z) \in \mathbb{R}^3 | x^2 + y^2 = 1\}.$$

[6,8,8]

END OF THE EXAMINATION PAPER