RHODES UNIVERSITY DEPARTMENT OF MATHEMATICS (Pure & Applied)

EXAMINATION : JUNE 2011

MATHEMATICS III

Examiners : Dr C.C. Remsing Prof B. Makamba AVAILABLE MARKS : 106 FULL MARKS : 100 DURATION : 3 HOURS

AM3.4 - DIFFERENTIAL GEOMETRY

NB : All questions may be attempted. All steps must be clearly motivated. Marks will not be awarded if this is not done.

Question 1. [26 marks]

(a) Explain what is meant by a reparametrisation of a parametrised curve γ : (α, β) → ℝ³. Is it true that any parametrised curve has a unit-speed reparametrisation ? Make a clear statement (but DO NOT prove it). Hence, find a unit-speed reparametrisation of the circle

 $\gamma(t) = (a + R\cos t, b + R\sin t, 0).$

(b) Compute the *curvature* of the parametrised (plane) curve

 $\gamma(t) = (t, \cosh t) \,.$

(CAUTION: The curve is <u>not</u> unit-speed.)

(c) Let $\gamma, \tilde{\gamma} : (\alpha, \beta) \to \mathbb{R}^3$ be two unit-speed curves with the same curvature $\kappa(s) > 0$ and the same torsion $\tau(s)$ for all $s \in (\alpha, \beta)$. Prove that there is a rigid motion M of \mathbb{R}^3 such that

$$\widetilde{\gamma}(s) = M(\gamma(s)), \quad s \in (\alpha, \beta).$$

[7, 5, 14]

Page 1 of 3

Question 2. [20 marks]

(a) Define the *first fundamental form* of a surface patch. Hence, compute this form for

$$\sigma(u, v) = (\cosh u, \sinh u, v) \,.$$

- (b) Explain what is meant by saying that a diffeomorphism $f: S_1 \to S_2$ (between surfaces) is an *isometry*. Hence, prove that if (the diffeomorphism) f is an isometry, then for any surface patch σ_1 on S_1 , the patches σ_1 and $f \circ \sigma_1$ of S_1 and S_2 , respectively, have the same first fundamental form.
- (c) Prove that any (generalised) cylinder is isometric to (part of) a plane.

[6, 8, 6]

Question 3. [20 marks]

- (a) Define the *normal curvature* and the *geodesic curvature* of a unitspeed curve. Hence, show that the normal curvature of any curve on a sphere of radius r is $\pm \frac{1}{r}$.
- (b) Let $\gamma(t) = \sigma(u(t), v(t))$ be a unit-speed curve on a surface path σ . Show that its *normal curvature* is given by

$$\kappa_n = L \, \dot{u}^2 + 2M \, \dot{u} \dot{v} + N \, \dot{v}^2$$

where $L du^2 + 2M du dv + N dv^2$ is the second fundamental form of σ .

(c) State (but DO NOT PROVE) *Euler's Theorem* (expressing the normal curvature of a curve on a surface patch in terms of the principal curvatures). Hence, derive the fact that the principal curvatures at a point of a surface are the maximum and minimum values of the normal curvature of all curves on the surface that pass through the point.

[8, 6, 6]

Page 2 of 3

Question 4. [20 marks]

(a) Define the terms gaussian curvature and mean curvature. Hence, calculate the gaussian curvature for the surface

$$\mathcal{S} = \left\{ (x, y, z) \in \mathbb{R}^3 \,|\, z = f(x, y) \right\}$$

where $f: W \to \mathbb{R}$ is a smooth function.

(b) Show that the gaussian curvature of a ruled surface

$$\sigma(u, v) = \gamma(u) + v\,\delta(u)$$

is negative or zero.

(c) Prove that for any compact surface S, there is a point $P \in S$ at which the gaussian curvature K is positive.

[6, 6, 8]

Question 5. [20 marks]

(a) Define the term *geodesic*, and then write down, without proof, the *geodesic equations*. Hence, prove that on the surface of revolution

$$\sigma(u, v) = (f(u)\cos v, f(u)\sin v, g(u))$$

every meridian is a geodesic.

- (b) A surface of revolution has the property that *every* parallel is a geodesic. What kind of surface is it ? Justify your answer.
- (c) Determine all the geodesics on the circular cylinder

$$S = \{(x, y, z) \in \mathbb{R}^3 | x^2 + y^2 = 1\}.$$

 $[6,\!6,\!8]$

END OF THE EXAMINATION PAPER

Page 3 of 3