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(Curves)

• (proposition 1.1.6; p.5): If the tangent vector of a parametrized curve
is constant, the image of the curve is (part of) a straight line. [ 1 ]

• (proposition 1.2.4; p.11): Let n(t) be a unit vector that is a smooth
function of a parameter t. Then, the dot product ṅ(t) • n(t) = 0 for
all t, i.e., ṅ(t) is zero or perpendicular to n(t) for all t. In particular,
if γ is a unit-speed curve, then γ̈ is zero or perpendicular to γ̇. [ 2 ]

• (proposition 1.3.4; p.14): Any reparametrization of a regular curve is
regular. [ 3 ]

• (proposition 1.3.5; p.14): If γ(t) is a regular curve, its arc-length
s(t) =

∫ t
t0
‖γ̇(u)‖ du , starting at any point of γ, is a smooth function

of t. (NO PROOF)

• (proposition 1.3.6; p.15): A parametrized curve has a unit-speed
reparametrization if and only if it is regular. [ 4 ]

• (corollary 1.3.7; p.16): Let γ be a regular curve and let γ̃ be a unit-
speed reparametrization of γ : γ̃(u(t)) = γ(t) for all t, where u is a
smooth function of t. Then, if s is the arc-length of γ (starting at
any point), we have u = ± s + c, where c is a constant. Conversely,
if u is given by u = ± s+ c for some value of c and with either sign,
then γ̃ is a unit-speed reparametrization of γ. [ 5 ]
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• (theorem 1.5.1; p.23): Let f(x, y) be a smooth function of two vari-
ables. Asume that, at every point of the level curve C = {(x, y) ∈
R2 | f(x, y) = 0}, ∂f/∂x and ∂f/∂y are not both zero. If p is a point
of C, with coordinates (x0, y0), say, there is a regular parametrized
curve γ(t), defined on an open interval containing 0, such that γ
passes through p when t = 0 and γ(t) is contained in C for all
t. (NO PROOF)

• (theorem 1.5.2; p.26): Let γ be a regular parametrized plane curve,
and let γ(t0) = (x0, y0) be a point in the image of γ. Then, there is
a smooth real-valued function f(x, y), defined for x and y in open
intervals containing x0 and y0, respectively, and satisfying the condi-
tions in Theorem 1.5.1, such that γ(t) is contained in the level curve
f(x, y) = 0 for all values of t in some open interval containing t0.
(NO PROOF)

• (proposition 2.1.2; p.31): Let γ(t) be a regular curve in R3. Then, its

curvature is κ = ‖γ̈×γ̇‖
‖ ˙γ‖3
· [ 6 ]

• (proposition 2.2.1; p.36): Let γ : (α, β)→ R2 be a unit-speed curve, let
s0 ∈ (α, β) and let ϕ0 be such that γ̇(s0) = (cosϕ0, sinϕ0). Then there
exists a unique function ϕ : (α, β)→ R such that ϕ(s0) = ϕ0 and that
ϕ̇(t) = (cosϕ(s), sinϕ(s)) holds for all s ∈ (α, β). (NO PROOF)

• (proposition 2.2.3; p.38) Let γ(s) be a unit-speed plane curve, and let
ϕ(s) be the turning angle for γ. Then κs = dϕ

ds
· [ 7 ]

• (theorem 2.2.6; p.39); Let κ : (α, β) → R be any smooth function.
Then, there is a unit-speed curve γ : (α, β) → R2 whose signed cur-
vature is κ. Further, if γ̃ : (α, β) → R2 is any other unit-speed curve
whose signed curvature is κ, there is a direct isometry M of R2 such
that γ̃(s) = M(γ(s)) for all s ∈ (α, β). [ 8 ]

• (proposition 2.3.1; p.48): Let γ(t) be a regular curve in R3 with

nowhere vanishing curvature. Then, its torsion is given by τ = (γ̇×γ̈)•
...
γ

‖γ̇×γ̈‖2 ·

[ 9 ]
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• (proposition 2.3.3; p.49): Let γ be a regular curve in R3 with nowhere
vanishing curvature. Then, the image of γ is contained in a plane
if and only if τ is zero at every point of the curve. [ 10 ]

• (theorem 2.3.4; p.50): Let γ be a unit-speed curve in R3 with nowhere
vanishing curvature. Then, ṫ = κn, ṅ = −κ t + τ b and ḃ = −τ n.

[ 11 ]

• (proposition 2.3.5; p.51): Let γ be a unit-speed curve in R3 with con-
stant curvature and zero torsion. Then, γ is a parametrization of (part
of) a circle. [ 12 ]

• (theorem 2.3.6; p.52): Let γ(s) and γ̃(s) be two unit-speed curves in
R3 with the same curvature κ(s) > 0 and the same torsion τ(s) for all
s. Then, there is a direct isometry M of R3 such that γ̃(s) = M(γ(s))
for all s. Further, if κ and τ are smooth functions with κ > 0
everywhere, there is a unit-speed curve in R3 whose curvature is κ
and whose torsion is τ . [ 13 ]

(Surfaces)

• (proposition 4.2.6; p.78): The transition maps of a smooth surface are
smooth. (NO PROOF)

• (proposition 4.2.7; p.78): Let U and Ũ be open subsets of R3 and

let σ : U → R3 be a regular surface pach. Let Φ : Ũ → U be a
bijective smooth map with smooth inverse map Φ−1 : U → Ũ . Then,
σ̃ = σ ◦ Φ : Ũ → R3 is a regular surface patch. [ 14 ]

• (proposition 4.3.1; p.83): Let f : S1 → S2 be a diffeomorphism. If σ1
is an allowable surface patch on S1, then f ◦σ1 is an allowable surface
patch on S2. [ 15 ]

• (proposition 4.4.2; p.85): Let σ : U → R3 be a patch of a surface S
containing a point p, and let (u, v) be coordinates in U . The tangent
space to S at p is the vector subspace of R3 spanned by the vectors
σu and σv (the derivatives are evaluated at the point (u0, v0) ∈ U such
that σ(u0, v0) = p). [ 16 ]
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• (proposition 4.4.4; p.87): If f : S → S̃ is a smooth map between

surfaces and p ∈ S, the derivative Dpf : TpS → Tf(p)S̃ is a linear
map. [ 17 ]

• (proposition 4.4.5; p.88): (i) If S is a surface and p ∈ S, the derivative
at p of the identity map S → S is the identity map TpS → TpS.
(ii) If S1,S2 and S3 are surfaces and f1 : S1 → S2 and f2 : S2 → S3
are smooth maps, then for all p ∈ S1, Dp(f2 ◦ f1) = Df1(p)f2 ◦Dpf1.
(iii) If f : S1 → S2 is a diffeomorphism, then for all p ∈ S1 the linear
map Dpf : TpS1 → Tf(p)S2 is invertible. [ 18 ]

• (proposition 4.4.6; p.88): Let S and S̃ be surfaces and let f : S → S̃
be a smooth map. Then, f is a local diffeomorphism if and only if, for

all p ∈ S, the linear map Dpf : TpS → Tf(p)S̃ is invertible. (NO
PROOF)

• (proposition 4.5.2; p.90): Let S be an orientable surface equipped with
an atlas A as in Definition 4.5.1. Then, there is a smooth choice of
unit normal at any point of S: take the standard unit normal of any
surface patch in A. [ 19 ]

• (theorem 5.1.1; p.95): Let S be a subset of R3 with the following
property: for each point p ∈ S, there is an open subset W of R3

containing p and a smooth function f : W → R such that
(i) S ∩W = {(x, y, z) ∈ W | f(x, y, z) = 0};
(ii) The gradient ∇f = (fx, fy, fz) of f does not vanish at p.
Then, S is a smooth surface. (NO PROOF)

• (theorem 5.2.2; p.97): By applying a direct isometry of R3, every non-
empty quadric v>Av + b>v + c = 0 in which the coefficients are not
all zero can be transformed into one whose Cartesian equation is one
of the following:
(i) Ellipsoid: x2

p2
+ y2

q2
+ z2

r2
= 1.

(ii) Hyperboloid of one sheet: x2

p2
+ y2

q2
− z2

r2
= 1.

(iii) Hyperboloid of two sheets: x2

p2
− y2

q2
− z2

r2
= 1.

(iv) Elliptic paraboloid: x2

p2
+ y2

q2
= z.

(v) Hyperbolic paraboloid: x2

p2
− y2

q2
= z.

(vi) Quadric cone: x2

p2
+ y2

q2
− z2

r2
= 0.
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(vii) Elliptic cylinder: x2

p2
+ y2

q2
= 1.

(viii) Hyperbolic cylinder: x2

p2
− y2

q2
= 1.

(ix) Parabolic cylinder: x2

p2
= y.

(x) Plane: x = 0.
(xi) Two parallel planes: x2 = p2.

(xii) Two intersecting planes: x2

p2
− y2

q2
= 0.

(xiii) Straight line: x2

p2
+ y2

q2
= 0.

(xiv) Single point: x2

p2
+ y2

q2
+ z2

r2
= 0.

In each case, p, q, and r are non-zero constants. (NO PROOF)

• (theorem 5.4.4; p.119: For any integer g ≥ 0, Tg has an atlas making
it a smooth surface. Moreover, every compact surface is diffeomorphic
to one of the Tg. (NO PROOF)

• (corollary 5.4.5; p.119): Every compact surface is orientable. [ 20 ]

• (theorem 6.2.2; p.127): A smooth map f : S1 → S2 is a local isome-
try if and only if the symmetric bilinear forms 〈·, ·〉p and f ∗〈·, ·〉p on
TpS1 are equal for all p ∈ S1. [ 21 ]

• (corollary 6.2.3; p.128): A local diffeomorphism f : S1 → S2 is a local
isometry if and only if, for any patch σ1 of S1, the patches σ1 and
f ◦ σ1 of S1 and S2, respectively, have the same first fundamental
form. [ 22 ]

• (proposition 6.2.5; p.130): Any tangent developable is locally isometric
to a plane. [ 23 ]

• (theorem 6.3.3; p.134): A local diffeomorphism f ;S1 → S2 is confor-
mal if and only if there is a function λ : S1 → R such that f ∗〈v,w〉p =
λ(p)〈v,w〉p for all p ∈ S1 and v,w ∈ TpS1.(It is not hard to see that
the function λ, if it exists, is necessarily smooth). [ 24 ]

• (corollary 6.3.4; p.136): A local diffeomorphism f : S1 → S2 is confor-
mal if and only if, for any surface patch σ of S1, the first fundamental
forms of the patches σ of S1 and f ◦ σ of S2 are proportional. [ 25 ]

• (theorem 6.3.6; p.138): Every surface has an atlas consisting of confor-
mal surface patches. (NO PROOF)
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(Curvature)

• (proposition 7.2.2; p.164): Let p be a point of a surface S, let σ(u, v)
be a surface patch of S with p in its image, and let Ldu2+2M dudv+
N dv2 be the second fundamental form of σ. Then, for any v,w ∈
TpS,

〈〈v,w〉〉 = Ldu(v)du(w)+M (du(v)dv(w)+du(w)dv(v))+N dv(v)dv(w).

[ 26 ]

• (lemma 7.2.3; p.164): Let σ(u, v) be a surface patch with standard unit
normal N(u, v). Then,

Nu • σu = −L, Nu • σv = Nv • σu = −M, Nv • σv = −N

where L = σuu •N, M = σuv •N and N = σvv •N. [ 27 ]

• (corollary 7.2.4; p.165): The second fundamental form is a symmetric
bilinear form. Equivalently, the Weingarten map is self-adjoint. [ 28 ]

• (proposition 7.3.2; p.166): With the above notation, we have

κn = γ̈ •N, κg = γ̈ • (N× γ̇), κ2 = κ2n + κ2g

κn = κ cosψ, κg = ±κ sinψ

where κ is the curvature of γ and ψ is the angle between N and the
principal normal n of γ. [ 29 ]

• (proposition 7.3.3; p.167): If γ is a unit-speed curve on an oriented
surface S, its normal curvature is given by κn = 〈〈γ̇, γ̇〉〉. If σ is a
surface patch of S and γ(t) = σ(u(t), v(t)) is a curve in σ, κn =
L u̇2 + 2M u̇v̇ +N v̇2. [ 30 ]

• (corollary 7.3.5; p.169): The curvature κ, the normal curvature κn
and geodesic curvature κg of a normal section of a surface are related
by κn = ±κ, κg = 0. [ 31 ]

• (propositionn 7.4.3; p.171): A tangent vector field v is parallel along a
curve γ on a surface S if and only if v̇ is perpendicular to the tangent
plane of S at all points of γ. [ 32 ]
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• (proposition 7.4.4 (Gauss Equations); p.172): Let σ(u, v) be a sur-
face patch with first and second fundamental forms E du2 + 2F dudv+
Gdv2 and Ldu2 + 2M dudv + n dv2. Then,

σuu = Γ1
11σu + Γ2

11σv + LN

σuv = Γ1
12σu + Γ2

12σv +M N

σvv = Γ1
22σu + Γ2

22σv +N N

where

Γ1
11 =

GEu − 2FFu + FEv
2(EG− F 2)

Γ2
11 =

2EFu − EEv − FEu
2(EG− F 2)

Γ1
12 =

GEv − FGu

2(EG− F 2)
Γ2
12 =

EGu − FEv
2(EG− F 2)

Γ1
22 =

2GFv −GGu − FGv

2(EG− F 2)
Γ2
22 =

EGv − 2FFv + FGu

2(E − F 2)
·

(The six Γ coefficients in these formulas are called Christoffel symbols.)

[ 33 ]

• (proposition 7.4.5; p.173): Let γ(t) = σ(u(t), v(t)) be a curve on a
surface patch σ, and let v(t) = α(t)σu + β(t)σv be a tangent vector
field along γ, where α and β ar smooth functions of t. Then, v is
parallel along γ if and only if the following equations are satisfied:

α̇ + (Γ1
11u̇+ Γ1

12v̇)α + (Γ1
12u̇+ Γ1

22v̇) β = 0

β̇ + (Γ2
11u̇+ Γ2

12v̇)α + (Γ2
12u̇+ Γ2

22v̇) β = 0.

[ 34 ]

• (corollary 7.4.6; p.174): Let γ be a curve on a surface S and let v0

be a tangent vector of S at the point γ(t0). Then, there is exactly
one tangent vector field v that is parallel along γ and is such that
v(t0) = v0. [ 35 ]

• (proposition 7.4.9; p.175): With the notation in Definition 7.4.8,
(i) Πpq

γ is a linear map.
(ii) Πpq

γ is an isometry, i.e., it preserves lengths and angles. [ 36 ]
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• (proposition 8.1.2; p.180): Let σ be a surface patch of an oriented
surface S. Then, with the above notation, the matrix of Wp,S with
respect to the basis {σu, σv} of TpS is F−1I FII . [ 37 ]

• (corollary 8.1.3; p.181): We have

H =
LG− 2MF +NE

2(EG− F 2)
and K =

LN −M2

EG− F 2
·

[ 38 ]

• (proposition 8.2.1; p.187): Let p be a point of a surface S. There are
scalars κ1, κ2 and a basis {t1, t2} of the tangent plane TpS such that
W(t1) = κ1 t1, W(t2) = κ2 t2. Moreover, if κ1 6= κ2, then 〈t1, t2〉 = 0.

[ 39 ]

• (corollary 8.2.2; p.187): If p is a point of a surface S, there is an
orthonormall basis of the tangent plane TpS consisting of principal
vectors. [ 40 ]

• (proposition 8.2.3; p.188): If κ1 and κ2 are the principal curvature of a
surface, the mean and Gaussian curvatures are given by H = 1

2
(κ1+κ2)

and K = κ1κ2. [ 41 ]

• (proposition 8.2.4 (Euler’s Theorem); p.188): Let γ be a curve on
an oriented surface S, and let κ1 and κ2 be the principal curvatures
of σ, with non-zero principal vectors t1 and t2. Then, the normal
curvature of γ is κn = κ1 cos2 θ + κ2 sin2 θ, where θ is the oriented
angle t̂1γ̇. [ 42 ]

• (corollary 8.2.5; p.189): The principal curvatures at a point of a surface
are the maximum and minimum values of the normal curvature of all
curves on the surface that pass through the point. Moreover, the princi-
pal vectors are the tangent vectors of the curves giving these maximum
and minimum values. [ 43 ]

• (proposition 8.2.6; p.190): The principal curvatures are the roots of the
equation ∣∣∣∣L− κE M − κF

M − κ f N − κG

∣∣∣∣ = 0
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and the principal vectors corresponding to the principal curvature κ
are the tangent vectors t = ξ σu + η σv such that(

L− κE M − κF
M − κF N − κG

)(
ξ
η

)
=

(
0
0

)
.

[ 44 ]

• (proposition 8.2.9; p.191): Let S be a (connected) surface of which
every point is an umbilic. Then, S is an open subset of a plane or a
sphere. [ 45 ]

• (proposition 8.4.1; p.201): Let p be a point of a surface S, and sup-
pose that p is not an umbilic. Then, there is a surface patch σ(u, v)
of S containing p whose first and second fundamental forms are
E du2 +Gdv2 and Ldu2 +N dv2, respectively, for some smooth func-
tions E,G,L and N . (NO PROOF)

• (proposition 8.4.2; p.201): Let p be a point of a flat surface S, and as-
sume that p is not an umbilic. Then, there is a patch of S containing
p that is a ruled surface. [ 46 ]

• (proposition 8.5.2; p.207): Let κ1 and κ2 be the principal curvatures
of an oriented surface S, let λ ∈ R and let Sλ be the corresponding
parallel surface of S. Assume that neither κ1 nor κ2 is equal to 1/λ
at any point of S. Then,
(i) Sλ is (smooth) oriented surface, the unit normal of Sλ at p+λNp

being equal to εNp, where ε is the sign of (1− λκ1)(1− λκ2).
(ii) The principal curvatures of Sλ are ε κ1/(1 − λκ1) and ε κ2/(1 −
λκ2), and the corresponding principal vectors are the same as those of
S for the principal curvatures κ1 and κ2, respectively.
(iii) The Gaussian and mean curvatures of Sλ are

K

1− 2λH + λ2K
and

ε (H − λK)

1− 2λH + λ2K

respectively, where K and H and the Gaussian and mean curvatures
of S. [ 47 ]

• (corollary 8.5.3; p.209): If S has constant Gaussian curvature 1/R2,
the parallel surfaces S±R have constant mean curvature 1/2R. Con-
versely, if S has constant mean curvature ∓ε/(2R), the parallel sur-
face SR has constant Gaussian curvature 1/R2. [ 48 ]
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• (proposition 8.6.1; p.212): If S is a compact surface, there is a point
of S at which its Gaussian curvature K is > 0 . [ 49 ]

(Geodesics)

• (proposition 9.1.2; p.216): Any geodesic has constant speed. [ 50 ]

• (proposition 9.1.3; p.216): A unit-speed curve on a surface is a geodesic
if and only if its geodesic curvature is zero everywhere. [ 51 ]

• (proposition 9.1.4; p.217): Any (part of a) straight line on a surface is
a geodesic. [ 52 ]

• (proposition 9.1.5; p.216): All straight lines in the plane are geodesics,
as are the rulings of any ruled surface, such as those of a (generalized)
cylinder or a (generalized) cone, or the straight lines on a hyperboloid
of one sheet. [ 53 ]

• (proposition 9.1.6; p.218): Any normal section of a surface is a geodesic.

[ 54 ]

• (theorem 9.2.1; p.220): A curve γ on a surface S is a geodesic
if and only if, for any part γ(t) = σ(u(t), v(t)) of γ contained in a
surface patch σ of S, the following two equations are satisfied:

d

dt
(E u̇+ F v̇) =

1

2

(
Eu u̇

2 + 2Fu u̇v̇ +Gu v̇
2
)

d

dt
(F u̇+G v̇) =

1

2

(
Ev u̇

2 + 2Fv u̇v̇ +Gv v̇
2
)

where E du2 + 2F dudv +Gdv2 is the first fundamental form of σ.

[ 55 ]

• (proposition 9.2.3; p.223): A curve γ on a surface S is a geodesic
if and only if, for any part γ(t) = σ(u(t), v(t)) of γ contained in a
surface patch σ of S, the following two equations are satisfied:

ü+ Γ1
11u̇

2 + 2Γ1
12u̇v̇ + Γ1

22v̇
2 = 0

v̈ + Γ2
11u̇

2 + 2Γ2
12u̇v̇ + Γ2

22v̇
2 = 0.

[ 56 ]

10



• (proposition 9.2.4; p.223): Let p be a point of a surface S, and let t
be a unit tangent vector to S at p. Then, there exists a unique unit-
speed geodesic γ on S which passes through p and has tangent vector
t there. [ 57 ]

• (corollary 9.2.7; p.224): Any local isometry between two surfaces takes
the geodesics of one surface to the geodesics of the other. [ 58 ]

• (proposition 9.3.1; p.227): On the surface of revolution σ(u, v) =
(f(u) cos v, f(u) sin v, g(u)),
(i) Every meridian is a geodesic.
(ii A parallel u = u0 is a geodesic if and only if df/du = 0 when
u = u0, i.e., u0 is a stationary point of f . [ 59 ]

• (proposition 9.3.2 (Clairaut’s Theorem); p.228): Let γ be a unit-
speed curve on a surface of revolution S, let ρ : S → R be the distance
of a point of S from the axis of rotation, and let ψ be the angle between
γ̇ and the meridians of S. If γ is a geodesic, then ρ sinψ is constant
along γ. Conversely, if ρ sinψ is constant allong γ , and if no part of
γ is part of some parallel of S, then γ is a geodesic. [ 60 ]

• (theorem 9.4.1; p.237): With the above notation, the unit-speed curve
γ is a geodesic if and only if d

dτ
L(τ) = 0 when τ = 0 for all families

of curves γτ with γ0 = γ. (NO PROOF)
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