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(Curves)

(proposition 1.1.6; p.5): If the tangent vector of a parametrized curve
is constant, the image of the curve is (part of ) a straight line. | 1]

(proposition 1.2.4; p.11): Let n(t) be a unit vector that is a smooth
function of a parameter t. Then, the dot product n(t) e n(t) =0 for
all t, i.e., n(t) is zero or perpendicular to n(t) for all t. In particular,
if v is a unit-speed curve, then 4 is zero or perpendicular to . [ 2]

(proposition 1.3.4; p.14): Any reparametrization of a reqular curve is
reqular. | 3 |

(proposition 1.3.5; p.14): If ~(t) is a reqular curve, its arc-length
s(t) = ftz |7 (w)|| du, starting at any point of -, is a smooth function
of t. (NO PROOF)

(proposition 1.3.6; p.15): A parametrized curve has a unit-speed
reparametrization if and only if it is reqular. | 4 |

(corollary 1.3.7; p.16): Let ~ be a reqular curve and let 7 be a unit-
speed reparametrization of vy : F(u(t)) = y(t) for all t, where u is a
smooth function of t. Then, if s is the arc-length of ~ (starting at
any point), we have uw = £+ s + ¢, where ¢ is a constant. Conversely,
if u is given by u = £ s+ c for some value of ¢ and with either sign,
then 7 is a unit-speed reparametrization of . [ 5 ]



e (theorem 1.5.1; p.23): Let f(x,y) be a smooth function of two vari-
ables. Asume that, at every point of the level curve C = {(z,y) €
R?| f(z,y) =0}, 0f/0x and Of /Dy are not both zero. If p is a point
of C, with coordinates (xo,%0), say, there is a reqular parametrized
curve (t), defined on an open interval containing 0, such that ~y
passes through p when t = 0 and ~(t) is contained in C for all
t. (NO PROOF)

e (theorem 1.5.2; p.26): Let v be a regular parametrized plane curve,
and let ~(tg) = (zo,y0) be a point in the image of . Then, there is
a smooth real-valued function f(x,y), defined for x and y in open
intervals containing xo and g, respectively, and satisfying the condi-
tions in Theorem 1.5.1, such that ~y(t) is contained in the level curve
f(z,y) = 0 for all values of t in some open interval containing tg.

(NO PROOF)

e (proposition 2.1.2; p.31): Let ~(t) be a reqular curve in R®. Then, its
_ x4l (6]
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e (proposition 2.2.1; p.36): Let v : (a, B) — R? be a unit-speed curve, let
so € (a, B) and let @y be such that ¥(sg) = (cos o, sin pg). Then there
exists a unique function ¢ : (a, 3) — R such that p(so) = po and that
o(t) = (cos(s),sin(s)) holds for all s € (a, ). (NO PROOF)

e (proposition 2.2.3; p.38) Let v(s) be a unit-speed plane curve, and let

©(s) be the turning angle for ~. Then rs = . [ 7]

e (theorem 2.2.6; p.39); Let k : (a, ) — R be any smooth function.
Then, there is a unit-speed curve 7 : (o, 3) — R?* whose signed cur-
vature is k. Further, if 7 : (a, B) — R? is any other unit-speed curve
whose signed curvature is k, there is a direct isometry M of R? such

that ¥(s) = M(~(s)) for all s € (a, ). [ 8]

e (proposition 2.3.1; p.48): Let ~(t) be a regular curve in R3 with
nowhere vanishing curvature. Then, its torsion is given by T = (y)e T

[RESIR

[9]



(proposition 2.3.3; p.49): Let v be a regqular curve in R® with nowhere
vanishing curvature. Then, the image of v s contained in a plane
if and only if T is zero at every point of the curve. [ 10 ]

(theorem 2.3.4; p.50): Let vy be a unit-speed curve in R? with nowhere
vanishing curvature. Then, t = kn, n=—xkt+7b and b= —7n.

[11]

(proposition 2.3.5; p.51): Let v be a unit-speed curve in R® with con-
stant curvature and zero torsion. Then, v is a parametrization of (part
of ) a circle. | 12 ]

(theorem 2.3.6; p.52): Let ~(s) and 7(s) be two unit-speed curves in
R?® with the same curvature k(s) > 0 and the same torsion 7(s) for all
s. Then, there is a direct isometry M of R such that 5(s) = M(~(s))
for all s. Further, if k and T are smooth functions with £ > 0
everywhere, there is a unit-speed curve in R3 whose curvature is K
and whose torsion is T. [ 13 ]

(Surfaces)

(proposition 4.2.6; p.78): The transition maps of a smooth surface are
smooth. (NO PROOF)

(proposition 4.2.7; p.78): Let U and U be open subsets of R3 and
let o : U — R3 be a reqular surface pach. Let ® : U — U be a
bijective smooth map with smooth inverse map 1 : U — U. Then,
ocg=00®:U — R? is a reqular surface patch. | 14 |

(proposition 4.3.1; p.83): Let f:S; — Sy be a diffeomorphism. If o4
1s an allowable surface patch on Sy, then fooy is an allowable surface
patch on Sy. [ 15 ]

(proposition 4.4.2; p.85): Let o : U — R3 be a patch of a surface S
containing a point p, and let (u,v) be coordinates in U. The tangent
space to S at p is the vector subspace of R3 spanned by the vectors

ou and o, (the derivatives are evaluated at the point (ug,vo) € U such
that o(ug,vo) =p). [ 16 |



(proposition 4.4.4; p.87): If f : S — S is a smooth map between

surfaces and p € S, the derivative Dypf : 1,8 — Tf(p)g s a linear
map. [ 17 |

(proposition 4.4.5; p.88): (i) If S is a surface and p € S, the derivative
at p of the identity map S — S is the identity map T,S — 1,S.
(i1) If S1,Ss and Ss are surfaces and f; : S — Sy and fo: Sy — S3
are smooth maps, then for all p € Si, Dp(fa0 fi) = Dy p)f2 0 Dpfi.
(i5i) If f:S1 — S is a diffeomorphism, then for all p € S; the linear
map Dpf : TpS1 — TipySa is invertible. [ 18 ]

(proposition 4.4.6; p.88): Let S and S be surfaces and let f:S — S
be a smooth map. Then, f is a local diffeomorphism if and only if, for

all p € S, the linear map Dpf : Tp,S — Tf(p)g is invertible. (NO
PROOF)

(proposition 4.5.2; p.90): Let S be an orientable surface equipped with
an atlas A as in Definition 4.5.1. Then, there is a smooth choice of
unit normal at any point of S: take the standard unit normal of any
surface patch in A. [ 19 |

(theorem 5.1.1; p.95): Let S be a subset of R® with the following
property: for each point p € S, there is an open subset W of R?
containing p and a smooth function f: W — R such that

(1) SNW ={(z,y,2) e W|f(z,y,2) =0}

(i1) The gradient NV f = (fs, fy, f-) of f does not vanish at p.

Then, S is a smooth surface. (NO PROOF)

(theorem 5.2.2; p.97): By applying a direct isometry of R3, every non-
empty quadric v Av+b'v 4+ c =0 in which the coefficients are not
all zero can be transformed into one whose Cartesian equation is one
of the following: ,

(i) Ellipsoid: ;—; + 5+ j_; =1.
(ii) Hyperboloid of one sheet: ;‘;—;
(111) Hyperboloid of two sheets: - Z—Q — 4 =1
(iv) Elliptic paraboloid: g—; +5
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(v) Hyperbolic paraboloid: ;% —

y y . CC2 y2 —
(vi) Quadric cone: 5 + & — % =0.



(vii) Elliptic cylinder: f,—j + 4 =1.
(viit) Hyperbolic cylinder: % — % = 1.
$2

(iz) Parabolic cylinder: %5 =y.
(z) Plane: x = 0.
zi) Two parallel planes: x* = p?.
p p p
1) Two intersecting planes: I—; — % =0.
g p " q
(ziii) Straight line: Z—z + Z—z = 0.
(ziv) Single point: f}—j + Z—j + j—i =0.
In each case, p,q, and r are non-zero constants. (NO PROOF)

(theorem 5.4.4; p.119: For any integer g > 0, T, has an atlas making
it a smooth surface. Moreover, every compact surface is diffeomorphic
to one of the T,. (NO PROOF)

(corollary 5.4.5; p.119): Fvery compact surface is orientable. | 20 |

(theorem 6.2.2; p.127): A smooth map [ : S — Ss is a local isome-
try if and only if the symmetric bilinear forms (-,-)p and f*(-,-)p on
1,81 are equal for all p € S;. [ 21 ]

(corollary 6.2.3; p.128): A local diffeomorphism f: Sy — Sy is a local
wsometry if and only if, for any patch o1 of &1, the patches o1 and

foor of 81 and Sy, respectively, have the same first fundamental
form. [ 22 ]

(proposition 6.2.5; p.130): Any tangent developable is locally isometric
to a plane. [ 23]

(theorem 6.3.3; p.134): A local diffeomorphism f;S1 — Ss is confor-
mal if and only if there is a function X\ : Sy — R such that f*(v,w), =
Ap)(v,w)p forall p € S and v,w € T,S8;. (1t is not hard to see that
the function X, if it exists, is necessarily smooth). [ 24 ]

(corollary 6.3.4; p.136): A local diffeomorphism f :S; — Sy is confor-
mal if and only if, for any surface patch o of Sy, the first fundamental
forms of the patches o of S and foo of Sy are proportional. [ 25 |

(theorem 6.3.6; p.138): Every surface has an atlas consisting of confor-
mal surface patches. (NO PROOF)



(Curvature)

e (proposition 7.2.2; p.164): Let p be a point of a surface S, let o(u,v)
be a surface patch of S with p in its image, and let L du®+2M dudv+
N dv? be the second fundamental form of o. Then, for any v,w €
158,

({v,w)) = Ldu(v)du(w)+M (du(v)dv(w)+du(w)dv(v))+N dv(v)dv(w).
[26 ]

e (lemma 7.2.3; p.164): Let o(u,v) be a surface patch with standard unit
normal N(u,v). Then,

N,eo,=—-L, N,eo,=N,e0,=—-M, N,eo,=-—N
where L =0, ¢ N, M =0,, ¢ N and N =o0,,eN. [ 27 |

e (corollary 7.2.4; p.165): The second fundamental form is a symmetric
bilinear form. Equivalently, the Weingarten map is self-adjoint. | 28 |

e (proposition 7.3.2; p.166): With the above notation, we have

Kn=50N, k,=%e(NXx7%), m2:mi+m§

Kp = K COSY), Ky = EK siney

where Kk 1s the curvature of v and ¥ is the angle between N and the
principal normal n of . [ 29 ]

e (proposition 7.3.3; p.167): If ~ is a unil-speed curve on an oriented
surface S, its normal curvature is given by k, = ((¥,7)). If o is a
surface patch of S and () = o(u(t),v(t)) is a curve in o, Kk, =
L2+ 2M wo + No?. [ 30 ]

e (corollary 7.3.5; p.169): The curvature k, the normal curvature k,
and geodesic curvature kg of a normal section of a surface are related
by Ky =%k, K, =0. [31]

e (propositionn 7.4.3; p.171): A tangent vector field v is parallel along a
curve v on a surface S if and only if v is perpendicular to the tangent
plane of S at all points of . | 32 ]
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e (proposition 7.4.4 (Gauss Equations); p.172): Let o(u,v) be a sur-
face patch with first and second fundamental forms E du® + 2F dudv +
G dv? and Ldu®+ 2M dudv + ndv?®. Then,

Ows = I'po,+THo,+ LN
Ouw = Doy +T50,+MN
Ow = D40, +T50, + NN

where
o _ GE,—2FF, + FE, 2 _ 2EF, - EE, — FE,
1 2(EG — F2) " 2(EG — F?)
m _ GE,—FG, 2 _ BG. - FE,
27 9(EG - F?) 2 9(EG - F?)
r _ 2GF, - GG, — FG, r2 _ EG,—2FF, + FG,
22 2(EG — F?) 22 2(E — F2)

(The siz T coefficients in these formulas are called Christoffel symbols.)
[33]

e (proposition 7.4.5; p.173): Let ~(t) = o(u(t),v(t)) be a curve on a
surface patch o, and let v(t) = a(t) o, + f(t) o, be a tangent vector
field along ~, where o and (B ar smooth functions of t. Then, v is
parallel along v if and only if the following equations are satisfied:

d+ (Mo + o) o+ T+ Do) = 0

B+ (Mhu+Ti0)a+ (M +T50)8 = 0.
[34]
e (corollary 7.4.6; p.174): Let v be a curve on a surface S and let vy
be a tangent vector of S at the point ~(ty). Then, there is exactly

one tangent vector field v that is parallel along ~ and is such that
V(to) = Vp. [ 35 ]

e (proposition 7.4.9; p.175): With the notation in Definition 7.4.8,
(i) TIP9 is a linear map.
(ii) TIPY is an isometry, i.e., it preserves lengths and angles. [ 36 |

7



(proposition 8.1.2; p.180): Let o be a surface patch of an oriented
surface S. Then, with the above notation, the matriz of Wy s with
respect to the basis {0, 0,} of TS is Fy ' Fir. [ 37]

(corollary 8.1.3; p.181): We have

LG —-2MF + NE

a2
H = and K—LN M

2(EG — F?) " EG-F?

[38]

(proposition 8.2.1; p.187): Let p be a point of a surface S. There are
scalars Ky, ky and a basis {t1,ta} of the tangent plane T,S such that
W(t1) = k1ty, W(ta) = ko ta. Moreover, if k1 # ko, then (ti,t2) = 0.

[39]

(corollary 8.2.2; p.187): If p is a point of a surface S, there is an
orthonormall basis of the tangent plane T,S consisting of principal
vectors. [ 40 |

(proposition 8.2.3; p.188): If k1 and ko are the principal curvature of a
surface, the mean and Gaussian curvatures are given by H = %(lil +Ko)
and K = Kkiky. [ 41 ]

(proposition 8.2.4 (Euler’s Theorem); p.188): Let v be a curve on
an oriented surface S, and let k1 and ko be the principal curvatures
of o, with non-zero principal vectors t, and to. Then, the normal
curvature of v is Kp = K1 cos>0 + ko sin? 6@, where 0 is the oriented
angle t15. [ 42 ]

(corollary 8.2.5; p.189): The principal curvatures at a point of a surface
are the maximum and minimum values of the normal curvature of all
curves on the surface that pass through the point. Moreover, the princi-
pal vectors are the tangent vectors of the curves giving these maximum
and minimum values. | 43 |

(proposition 8.2.6; p.190): The principal curvatures are the roots of the
equation

L—-rkE M-ksF| 0
M—-kf N-kG

8



and the principal vectors corresponding to the principal curvature k
are the tangent vectors t = £ o, +no, such that

(e v oie) ()= 6)

(proposition 8.2.9; p.191): Let S be a (connected) surface of which
every point is an umbilic. Then, S is an open subset of a plane or a
sphere. | 45 |

[ 44 ]

(proposition 8.4.1; p.201): Let p be a point of a surface S, and sup-
pose that p is not an umbilic. Then, there is a surface patch o(u,v)
of & containing p whose first and second fundamental forms are
Edu®+ G dv* and Ldu®+ N dv?, respectively, for some smooth func-
tions E,G,L and N. (NO PROOF)

(proposition 8.4.2; p.201): Let p be a point of a flat surface S, and as-
sume that p is not an umbilic. Then, there is a patch of S containing
p that is a ruled surface. [ 46 |

(proposition 8.5.2; p.207): Let k1 and ks be the principal curvatures
of an oriented surface S, let X € R and let S* be the corresponding
parallel surface of S. Assume that neither k1 nor ks is equal to 1/\
at any point of S. Then,
(i) 8* is (smooth) oriented surface, the unit normal of S* at p+ANp
being equal to €Ny, where € is the sign of (1 — Ak1)(1 — Aka).
(ii) The principal curvatures of S* are eki/(1 — Mky) and € rof(1 —
Akg), and the corresponding principal vectors are the same as those of
S for the principal curvatures k1 and ks, respectively.
(iii) The Gaussian and mean curvatures of S* are

K p e(H — \K)
1—20H + K " T—2X\H + 22K

respectively, where K and H and the Gaussian and mean curvatures

of S. [47]

(corollary 8.5.3; p.209): If S has constant Gaussian curvature 1/R?,
the parallel surfaces S have constant mean curvature 1/2R. Con-
versely, if S has constant mean curvature Fe/(2R), the parallel sur-
face S® has constant Gaussian curvature 1/R?. [ 48 |

9



(proposition 8.6.1; p.212): If S is a compact surface, there is a point
of 8§ at which its Gaussian curvature K is >0 . [ 49 |

(Geodesics)

(proposition 9.1.2; p.216): Any geodesic has constant speed. | 50 |

(proposition 9.1.3; p.216): A unit-speed curve on a surface is a geodesic

if and only if its geodesic curvature is zero everywhere. | 51 |

(proposition 9.1.4; p.217): Any (part of a) straight line on a surface is
a geodesic. [ 52 |

(proposition 9.1.5; p.216): All straight lines in the plane are geodesics,
as are the rulings of any ruled surface, such as those of a (generalized)
cylinder or a (generalized) cone, or the straight lines on a hyperboloid
of one sheet. [ 53 ]

(proposition 9.1.6; p.218): Any normal section of a surface is a geodesic.

[54]

(theorem 9.2.1; p.220): A curve 7y on a surface S is a geodesic

if and only if, for any part v(t) = o(u(t),v(t)) of v contained in a

surface patch o of S, the following two equations are satisfied:

d 1
T (Ea+Fi) = o (B 0? +2F, 4o + G, %)

d 1
T (Fa+Go) = 5 (B, 0 + 2F, 00 + G, %)
where E du® + 2F dudv + G dv? is the first fundamental form of o.

[55]

(proposition 9.2.3; p.223): A curve v on a surface S is a geodesic
if and only if, for any part v(t) = o(u(t),v(t)) of v contained in a
surface patch o of S, the following two equations are satisfied:

i+ Tha? + 20,00 + Tht? = 0

b4 T20°% 4 2300 + T'20° = 0.
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(proposition 9.2.4; p.223): Let p be a point of a surface S, and let t
be a unit tangent vector to S at p. Then, there exists a unique unit-
speed geodesic v on S which passes through p and has tangent vector
t there. [ 57 |

(corollary 9.2.7; p.224): Any local isometry between two surfaces takes
the geodesics of one surface to the geodesics of the other. | 58 |

(proposition 9.3.1; p.227): On the surface of revolution o(u,v) =
(f (u) cosv, f(u) sinv, g(u)),

(i) Every meridian is a geodesic.

(i A parallel uw = ug is a geodesic if and only if df /du = 0 when
u = ug, i.e., ug is a stationary point of f. [ 59 |

(proposition 9.3.2 (Clairaut’s Theorem); p.228): Let v be a unit-
speed curve on a surface of revolution S, let p: S — R be the distance
of a point of S from the axis of rotation, and let i) be the angle between
4 and the meridians of S. If v is a geodesic, then psini is constant
along . Conversely, if psini s constant allong ~v, and if no part of
v is part of some parallel of S, then ~y is a geodesic. | 60 |

(theorem 9.4.1; p.237): With the above notation, the unit-speed curve
v is a geodesic if and only if LL(T) =0 when 7 =0 for all families
of curves ¥* with 4° = ~. (NO PROOF)
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