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Introduction

A wide range of dynamical systems from

classical mechanics

quantum mechanics

elasticity

electrical networks

molecular chemistry

can be modelled by invariant systems on matrix Lie groups.

Invariant control systems were first considered by Brockett (1972) and by

Jurdjevic and Sussmann (1972).
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Optimal control : invariant control systems and controls

Invariant control system

A left-invariant control system (evolving on some matrix Lie group G) is

described by

ġ = g Ξ(1, u), g ∈ G, u ∈ R`.

The parametrisation map Ξ(1, ·) : R` → g is a (smooth) embedding.

Admissible control

An admissible control is a map u(·) : [0,T ]→ R` that is bounded and

measurable. (“Measurable” means “almost everywhere limit of piecewise

constant maps”.)
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Optimal control : trajectories

Trajectory

A trajectory for an admissible control u(·) : [0,T ]→ R` is an absolutely

continuous curve g(·) : [0,T ]→ G such that

ġ(t) = g(t) Ξ(1, u(t))

for almost every t ∈ [0,T ].

Controlled trajectory

A controlled trajectory is a pair (g(·), u(·)), where u(·) is an admissible

control and g(·) is the trajectory corresponding to u(·).
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Optimal control : invariant control problems

A left-invariant optimal control problem consists in minimizing some

(practical) cost functional over the (controlled) trajectories of a given

left-invariant control system, subject to appropriate boundary conditions :

Left-invariant control problem (LiCP)

ġ = g Ξ(1, u), g ∈ G, u ∈ R`

g(0) = g0, g(T ) = g1 (g0, g1 ∈ G)

J =
1

2

∫ T

0
L(u(t)) dt → min.

The terminal time T > 0 can be either fixed or it can be free.
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Optimal control : the left-invariant realization of T ∗G

Cotangent bundle

The cotangent bundle T ∗G can be trivialized (from the left) such that

T ∗G = G× g∗.

Explicitly, ξ ∈ T ∗g G is identified with (g , p) ∈ G× g∗ via p = dL∗g (ξ) :

ξ(gA) = p(A), g ∈ G,A ∈ g.

Each element (matrix) A ∈ g defines a (smooth) function HA on T ∗G :

HA(ξ) = ξ(gA), ξ ∈ T ∗g G.

HA is left-invariant (as a function on G× g∗), which is equivalent to

saying that HA is a function on g∗.
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Optimal control : the symplectic structure of T ∗G

Hamiltonian vector field

The canonical symplectic form ω on T ∗G sets up a correspondence

between (smooth) functions H on T ∗G and vector fields ~H on T ∗G :

ωξ

(
~H(ξ),V

)
= dH(ξ) · V , V ∈ Tξ(T ∗G).

Each left-invariant Hamiltonian on T ∗G is identified with its reduction on

the dual space g∗.

Hamilton’s equations

The equations of motion for the left-invariant Hamiltonian H are

ġ = g dH(p) and ṗ = ad∗dH(p)p.
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Optimal control : the Lie-Poisson bracket on g∗

The minus Lie-Poisson structure

The dual space g∗ has a natural Poisson structure :

{F ,G}− (p) = −p ([dF (p), dG (p)]) , p ∈ g∗, F ,G ∈ C∞(g∗).

If (Ek)1≤k≤m is a basis for g and

[Ei ,Ej ] =
m∑

k=1

ck
ij Ek

then

{F ,G}− (p) = −
m∑

i ,j ,k=1

ck
ij pk

∂F

∂pi

∂G

∂pj
·
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Optimal control : the Maximum Principle

To a LiCP (with fixed terminal time) we associate

Hλ
u (ξ) = λ L(u) + p (Ξ(1, u)) , ξ = (g , p) ∈ T ∗G.

Theorem (Pontryagin’s Maximum Principle)

Suppose the controlled trajectory (ḡ(·), ū(·)) is a solution for the LiCP.

Then, there exists a curve ξ(·) with ξ(t) ∈ T ∗ḡ(t)G and λ ≤ 0 such that

(λ, ξ(t)) 6≡ (0, 0) (nontriviality)

ξ̇(t) = ~Hλ
ū(t)(ξ(t)) (Hamiltonian system)

Hλ
ū(t)(ξ(t)) = max

u
Hλ
u (ξ(t)) = constant. (maximization)

An extremal curve is called normal if λ = −1 (and abnormal if λ = 0).
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Optimal control : control affine dynamics

Theorem (Krishnaprasad, 1993)

For the LiCP (with quadratic cost)

ġ = g (A + u1B1 + · · ·+ u`B`) , g ∈ G, u ∈ R`

g(0) = g0, g(T ) = g1 (g0, g1 ∈ G)

J =
1

2

∫ T

0

(
c1u2

1(t) + · · ·+ c`u
2
` (t)

)
dt → min (T is fixed)

every normal extremal is given by

ūi (t) =
1

ci
p(t)(Bi ), i = 1, . . . , `

where p(·) : [0,T ]→ g∗ is an integral curve of the vector field ~H

corresponding to H(p) = p(A) + 1
2

(
1
c1

p(B1)2 + · · ·+ 1
c`

p(B`)
2
)

.
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An invariant control problem : the Lie algebra so (3)

The rotation group SO (3) =
{

a ∈ GL (3,R) : a>a = 1, det a = 1
}

is a

3D compact connected matrix Lie group with associated Lie algebra

so (3) =


 0 −a3 a2

a3 0 −a1

−a2 a1 0

 : a1, a2, a3 ∈ R

 .

The standard basis

E1 =

0 0 0

0 0 −1

0 1 0

 ,E2 =

 0 0 1

0 0 0

−1 0 0

 ,E3 =

0 −1 0

1 0 0

0 0 0

 .
We identify so (3) with (the cross-product Lie algebra) R3

∧.
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An invariant control problem : the single-input case

A left-invariant control problem on SO (3)

We consider the LiCP

ġ = g (E3 + uE1) , g ∈ SO (3), u ∈ R
g(0) = g0, g(T ) = g1 (g0, g1 ∈ SO (3))

J =
1

2

∫ T

0
u2(t) dt → min.

This problem models a variation of the classical elastic problem of Euler

and Kirchhoff.
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An invariant control problem : the Lie-Poisson bracket

so (3)∗ is identified with so (3) via 〈A,B〉 = −1
2 tr (AB) .

Each extremal curve p(·) is identified with a curve P(·) in so (3) via

〈P(t),A〉 = p(t)(A), A ∈ so (3).

The Lie-Poisson bracket on so (3)∗ is given by

{F ,G}− (p) = −
3∑

i ,j ,k=1

ck
ij pk

∂F

∂pi

∂G

∂pj

= −P̂ • (∇F ×∇G )

( p ∈ so (3)∗ is identified with the vector P̂ = (P1,P2,P3) ∈ R3).
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An invariant control problem : the equations of motion

The equation of motion becomes

Ḟ = {F ,H}−
= ∇F •

(
P̂ ×∇H

)
.

The scalar equations of motion

Ṗ1 =
∂H

∂p3
P2 −

∂H

∂p2
P3

Ṗ2 =
∂H

∂p1
P3 −

∂H

∂p3
P1

Ṗ3 =
∂H

∂p2
P1 −

∂H

∂p1
P2.
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An invariant control problem : the extremal trajectories

Proposition

Given the LiCS, the extremal control is ū = P1, where P1 : [0,T ]→ R
(together with P2 and P3) is a solution of the system of ODEs

Ṗ1 = P2

Ṗ2 = P1P3 − P1

Ṗ3 = −P1P2.

The extremal trajectories are the intersections of

the parabolic cylinders P2
1 + 2P3 = 2H

the spheres P2
1 + P2

2 + P2
3 = C .
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Explicit integration : elliptic functions

Jacobi elliptic functions

The Jacobi elliptic functions sn(·, k), cn(·, k) and dn(·, k) can be defined

as the solution of the system of ODEs

ẋ = yz

ẏ = −zx

ż = −k2 xy

that satisfy the initial conditions : x(0) = 0, y(0) = 1, z(0) = 1.

Nine other elliptic functions are defined by taking reciprocals and

quotients. In particular, we get

ns(·, k) =
1

sn(·, k)
and dc(·, k) =

dn(·, k)

cn(·, k)
·
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Explicit integration : elliptic integrals

An elliptic integral is an integral of the type
∫

R(x , y) dx , where y 2 is a

cubic or quartic polynomial in x and R(·, ·) denotes a rational function.

Simple elliptic integrals can be expressed in terms of inverses of

appropriate Jacobi elliptic functions. Specifically (for b < a ≤ x) :∫ x

a

dt√
(t2 − a2)(t2 − b2)

=
1

a
dc−1

(
x

a
,

b

a

)
∫ ∞
x

dt√
(t2 − a2)(t2 − b2)

=
1

a
ns−1

(
x

a
,

b

a

)
·

C.C. Remsing (Rhodes University) Control and Integrability on SO (3) ICAEM 2010 18 / 20



Explicit integration : statement

Proposition

The reduced Hamilton equations

Ṗ1 = P2, Ṗ2 = P1P3 − P1, Ṗ3 = −P1P2

can be explicitly integrated by Jacobi elliptic functions (for H2 − C > 0) :

P1 = ±
√

2(H − P3)

P2 = ±
√

C − 2(H − P3)− P2
3

P3 =
α− βδΦ((α− β)Mδt, ε/δ)

1− δΦ((α− β)Mδt, ε/δ)
·

α = H +
√

H2 − C , β = H −
√

H2 − C , M = H−
√
H2−C−1

4(H2−C)
, ε2 = 1,

δ2 = 1−
√
H2−C−H

1+
√
H2−C−H , and Φ(·, k) is either dc(·, k) or ns(·, k).
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Final remark

Invariant optimal control problems on matrix Lie groups other than the

rotation group SO (3) (like

the Euclidean groups SE (2) and SE (3)

the Lorentz groups SO0 (1, 2) and SO0 (1, 3)

the Heisenberg groups H (1) and H (2))

can also be considered.

It is to be expected that explicit integration (of the reduced Hamilton

equations) will be possible in all these cases.
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