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Introduction

Euclidean geometry assumes the basic structures of points, lines
and angles, and relates them by the 5 axioms of Euclid:

1 For every point P and every point Q 6= P, there exists a
unique line L that passes through P and Q.

2 For every segment AB and for every segment CD there exists
a unique point E such that E is between A and B and CD is
congruent to BE ,i.e. their lengths are equal.

3 For all O and A 6= O, there exists a circle centered at O with
radius OA.

4 All right angles are congruent.

5 For every line L and every point P /∈ L, there exists a unique
line M through P such that M‖P where parallelism is
defined by M‖P ↔M∩P = ∅.
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Introduction

Hyperbolic geometry grew out of the negation of Euclid’s fifth
axiom in the early 1800’s by the work of C.F. Gauss, N.
Lobachevskij and J. Bolyai.

This geometry is most easily visualised on certain surfaces of
constant negative curvature. However, by D. Hilbert, such
surfaces cannot in a particular way be considered within the
Euclidean context.

Riemannian geometry in the mid-1800’s gave rise from the
work of B. Riemann to abstract and geometric surfaces.

Geometric surfaces are geometric objects independent of
embedding in any ambient space.

Geometric surfaces are thus essential to the realization of
hyperbolic models, which however have not been formalized
as abstract surfaces.
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Hyperbolic geometry

There are two ways in which the last axiom can be contradicted:

1 For every line L and every point P /∈ L, there exist no lines
M through P such that M‖P

2 For every line L and every point P /∈ L, there exists more
than one line through P that is parallel to P.
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Hyperbolic geometry

Parallelism between lines

Given a line L and a point A off L, let AB be the
perpendicular to L, where B ∈ L. Constructing the line M
through A such that M∩L = ∅ and the angle θ between AB
and L is the least possible angle for which no intersection will
occur defines the asymptotic line M to L.

Since θ can be measured in the clockwise or anticlockwise
direction, thus for any L, there exist at most two asymptotic
lines.

Hyperbolic geometry (from ύπερ ∼, above) : length of a common
perpendicular between two lines increases. Thus two different
asymptotic lines exist.
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Abstract surfaces

An abstract surface is a set S equipped with a countable collection
A of injective functions indexed by a ∈ A called coordinate or
surface patches,

A = {xa|xa : Ua → S; a ∈ A}

such that

1 Ua is an open subset of R2

2 ∪axa(Ua) = S

3 Where a and b are in A and xa(Ua) ∩ xb(Ub) = Vab 6= ∅, then
the composite

x−1
a ◦ xb : x−1

b (Vab)→ x−1
a (Vab)

is a smooth map, the transition map between open sets of R2.
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Surfaces

A surface in R3 is an abstract surface embedded in R3: a
2-dimensional subset S that is locally diffeomorphic to R2.

The ambient space of R3 allows the definition of vectors

∂

∂u
x(u, v) = (fu(u, v), gu(u, v), hu(u, v))

∂

∂v
x(u, v) = (fv (u, v), gv (u, v), hv (u, v))

tangent to the patch x = (f (u, v), g(u, v), h(u, v)).

The tangent plane to S at p = x(u0, v0) is the R-linear span

TpS = span

{
∂

∂u
x(u0, v0),

∂

∂v
x(u0, v0)

}
.

Helen Henninger Hyperbolic Geometry on Geometric Surfaces



The first fundamental form

Using the Euclidean inner product a • b = a1b1 + a2b2 + a3b3,
define

E = ∂
∂u x • ∂

∂u x F = ∂
∂u x • ∂

∂v x G = ∂
∂v x • ∂

∂v x .

Definition

The metric tensor ds2 = Edu2 + 2Fdudv + Gdv 2 is the first
fundamental form on S.

Using E , F and G , we define the Gaussian curvature of x(u, v);

K =

∣∣∣∣∣∣
−1

2 Evv + Fuv − 1
2 Guu

1
2 Eu Fu − 1

2 Ev

Fv − 1
2 Gu E F

1
2 Gv F G

∣∣∣∣∣∣−
∣∣∣∣∣∣

0 1
2 Ev

1
2 Gu

1
2 Ev E F
1
2 Gu F G

∣∣∣∣∣∣
EG − F 2
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Definition

A geodesic is a curve

α(t) = x(f (u(t), v(t)), g(u(t), v(t)), h(u(t), v(t)))

that satisfies the geodesic equations

d

dt
(E u̇ + F v̇) =

1

2
(Euu̇2 + 2Fuu̇v̇ + Gu v̇ 2)

d

dt
(F u̇ + G v̇) =

1

2
(Ev u̇2 + 2Fv u̇v̇ + Gv v̇ 2)

Defintion

A geodesically complete surface S is one such that at every point
p inS, the family of all geodesics at p,

αu(t), u ∈ Tp(S)

are defined for all t ∈ (−∞,∞).
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Necessity of abstract surfaces

The first (Huygens,1639 ) hyperbolic environment discovered was
the pseudosphere

σ(v ,w) =

(
1

w
cos v ,

1

w
sin v ,

√
1− 1

w 2
− cosh−1 w

)
.

This parametrization of the pseudosphere has the first fundamental
form

dv 2 + dw 2

w 2
,

which gives the constant Gaussian curvature K = −1.

All geodesically complete surfaces with constant Gaussian
curvature -1 can be used to represent a model of hyperbolic
geometry.
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Definition

A diffeomorphism of abstract surfaces S1 and S2,

Φ : S1 → S2

is a mapping that is bicontinuous, bijective and such that both Φ
and Φ−1 are differentiable maps.

Definition

The tangent map at a point p ∈ S1 of a diffeomorphism is the
linearization Φ∗(p) of Φ such that

Φ∗(p) : TpS1 → TΦ(p)S2.
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Definition

An immersion of an abstract surface S into R3 is a mapping

Φ : S → R3

such that the tangent map Φ∗(p) : TpS → TΦ(p)(R3) is injective.

Definition

If a metric 〈·, ·〉 is assigned to an abstract surface S, an immersion
Φ into R3 is isometric if the metric is preserved under the map Φ.
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Necessity of abstract surfaces

Hilbert’s theorem

No geodesically complete surface of constant negative curvature
can be isometrically immersed in R3.

Consequences

The only geodesically complete surfaces of constant negative
curvature that exist in three dimensions cannot be discussed
in a Euclidean environment.

This motivates the use of abstract surfaces to express the
models of hyperbolic geometry.
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Tangent planes on S

Definition

A differentiable map α : (−ε, ε)→ S

α(t) = x(t) = x(u(t), v(t))

is a curve on S.

Definition

For an abstract surface S equipped with a set D(S) of functions
differentiable at p ∈ S, the tangent vector to a curve α at
α(0) = p is the function α̇(0) : D → R,

α̇(0)(f ) =
d

dt
f ◦ α|t=0

f ∈ D.
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Tangent planes on S

Definition

Under the parametrization x : U → S, f = f (u, v),

α̇(0)(f ) =
d

dt
f ◦α|t=0 =

d

dt
f (u(t), v(t))|0 =

{
u̇
∂

∂u
|0 + v̇

∂

∂v
|0
}

f .

Thus

TpS = span

{
∂

∂u
|0,

∂

∂v
|0
}
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Geometric surfaces

Definition

The Riemannian metric is the collection of two-forms

ds2 = 〈v,w〉|p = vT G |pw

such that G |p = [gij ] is an n × n symmetric matrix with two
positive eigenvalues assigned to each tangent space TpS.

A geometric surface is an abstract surface S equipped with a
Riemannian metric ds2;

S = (S, ds2).
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The Hemisphere Model
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The hemisphere model as a geometric surface

The upper half-space US = (US, ds2) is the upper halfplane

US =
{

(u, v ,w) ∈ R3|w > 0
}

equipped with the Riemannian metric

ds2 =
du2 + dv 2 + dw 2

w 2
.
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The hemisphere model as a geometric surface

The manifold

HS =
{

(x , y , z) ∈ US|x2 + y 2 + z2 = 1, z > 0
}

equipped with the induced metric

ds2 =
dx2 + dy 2 + dz2

z2

is the hemisphere model HS = (HS, ds2).

Result

The hemisphere model has a constant Gaussian curvature K = −1.

Result

The geodesics of HS are the semicircles{
z2 + (x − K )2 + (y − k)2 = 1

c2 |K , k ∈ Rc 6= 0,K 2 + k2 < 1
}
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Isometries of HS

Definition

For a geometric surface S = (S, ds2), Isom(S) is the group of
invertible maps φ : S → S such that

〈φ∗(s), φ∗(s)〉 = 〈s, s〉

where 〈·, ·〉 is the inner product on S derived from the metric
tensor ds2.

Orientation-preserving isometries preserve the sense of a positively
oriented circle in the plane. Orientation-reversing isometries
reverse this sense.

The symmetry group of a geometric surface S is the subgroup of
all orientation-preserving isometries of S.
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Isometries of HS

Result

The Euclidean rotations about the z-axis are isometries of HS.

Definition

An orthogonal half-plane is a hyperplane of US passing through a
geodesic of HS and its orthogonal projection onto the boundary
z = 0.

Theorem

The isometries of any geometric surface are geodesic-preserving.
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Definition

The quaternion projective plane H̃P1 is the subset H̃ of quaternions

H̃ = {q = x + iy + jz |x , y , z , z > 0 ∈ R}

with an additional point at infinity

H̃P1 = H̃ ∪ {∞}.

To each point (q1, q2, q3) of HS we associate a quaternion

q = q1 + iq2 + jq3.

The projective geometry of H̃P1 includes all the transformations of
H̃ that send preserve the structure of orthogonal half-planes in US.
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The isometry group of HS

Result

Any map Ψ : H̃P1 → H̃P1 acting on US that preserves orthogonal
half-planes is expressible as the map

Ψ(q) =
aq + b

cq + d

for a, b, c , d ∈ R and ad − bc 6= 0.
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Result

The restrictions

Ψ : HS→ HS,Ψ(q) =
aq + b

cq + d

preserve the induced metric tensor

ds2 =
dx2 + dy 2 + dz2

z2
=

dqdq̄

z2

of HS.

Result

The transformations Ψ act transitively on HS.
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The isometry group of HS

For all k ∈ R, aq+b
cq+d = kaq+kb

kcq+kd .

Thus consider only aq+b
cq+d , ad − bc = ±1

Result

The isometries Ψ̃(q) = aq+b
cq+d , ad − bc = −1 are the only

orientation-reversing transformations of HS.

The isometry group Isom(HS) is

Isom(HS) =
{

Ψ : HS→ HS|Ψ(q) = aq+b
cq+d ; ad − bc = ±1

}
.

The symmetry group Sym(HS) is

Sym(HS) =
{

Ψ : HS→ HS|Ψ(q) = aq+b
cq+d ; ad − bc = 1

}
.
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Definition

The projective special linear group is the matrix group

PSL(2,R) =

{(
a b
c d

)
∈ M2×2|ad − cb = 1

}
\{±Id}.

Result

Equipping the matrix group PSL(2,R) with the action ψ(A, q) on
HS,

ψ(A, q) =
aq + b

cq + d
,

then the quotient group PSL(2,R) provides the action of
orientation-preserving transformations on HS.
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The isometry group of HS

Result

The symmetry group of HS is the matrix Lie group PSL(2,R)
under the group action ψ(A, q) on HS.
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The Poincaré disk
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The Poincaré disk model as a geometric surface

The manifold

PD = {(u, v) ∈ R2|u2 + v 2 < 1}

equipped with the Poincaré metric tensor

ds2 =
4du2 + 4dv 2

(1− u2 − v 2)2

is the Poincaré disk model

PD = (PD, ds2).

The Poincaré disk model has a constant Gaussian curvature
K = −1.
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The Poincaré disk can be expressed in terms of complex numbers

u + iv = re iθ

associated to each coordinate pair (u, v).

Result

Expressed in polar coordinates (r , θ), the metric tensor

ds2 = 4du2 + 4dv2
(1− u2 − v 2)2 is

ds2 =
dr 2

(1− r 2)2
+

r 2dθ2

(1− r 2)2

on the disk.

Result

The geodesics of PD are the radial lines z = re iθ, θ = [const] and
the intersections of semicircles perpendicular to ∂PD with PD.
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Distance measures on the Poincaré disk

Polar coordinates give radial distance measure

d(0, z) =
1

2
ln

∣∣∣∣1 + |z |
1− |z |

∣∣∣∣
We consider transformations that preserve this measure.

Radial distances on PD will be preserved by maps

f : PD→ PD that leave
∣∣∣1+|z|

1−|z|

∣∣∣ invariant.
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Distance measures on the Poincaré disk

Results

1 f (z) = 1
z preserves radial distance

2 f̃ (z) = 1
z̄ preserves radial distance.

3 f̃ (z) = 1
z̄ is an isometry of PD.

The first result follows from

2d (0, z) =

∣∣∣∣1 + |z |
1− |z |

∣∣∣∣ =

∣∣∣∣ |z |+ 1

|z | − 1

∣∣∣∣ =

∣∣∣∣∣∣∣∣
1 +

1

|z |

1− 1

|z |

∣∣∣∣∣∣∣∣ = 2d

(
0,

1

z

)

and the second from this and |z | = |z̄ |.

Helen Henninger Hyperbolic Geometry on Geometric Surfaces



Definition

The Complex projective plane CP1 is C with an additional point at
infinity,

CP1 = C ∪ {∞}.

Definition

A circle inversion in the circle C0,1 is the transformation

ρ0,1 : CP1 → CP1

such that given w , ρ0,1(w) = w ′, then w and w ′ are on the same
ray passing through O, and

|w |2 · |w ′|2 = 1

Helen Henninger Hyperbolic Geometry on Geometric Surfaces



Properties of ρ0,1

1 The centre 0 of C0,1 is mapped to ∞ under ρ0,1.

2 A Euclidean line intersecting C0,1 that does not pass through
the origin is transformed to a circle that passes through the
origin.

3 Circles that additionally intersect C0,1 perpendicularly are
mapped to themselves. .

Result

f̃ (z) is a circle inversion in the circle C0,1.
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Isometries of the Poincaré disk

Result

An inversion in any perpendicular semicircle Cα,r is the
transformation

ρα,r (z) =
αz̄ − 1

z̄ + ᾱ

These circle inversions are isometries of PD; the non-Euclidean
reflections.

The radial lines C : z = re iθ for constant θ are considered ”circles
of infinite radius”.

Non-Euclidean reflection in a generalized circle conforms to
properties of Euclidean reflection;

ww ′ is intersected perpendicularly by C
d(w , q) = d(q,w ′) if q = C ∩ ww ′

Helen Henninger Hyperbolic Geometry on Geometric Surfaces



Isometries of the Poincaré disk

Result

The non-Euclidean reflections ρα,r are the only
orientation-reversing isometries of PD.

The product of two non-Euclidean reflections is the transformation

z 7→ az + b

b̄z + ā
.

Result

All isometries of PD can be expressed as products of non-Euclidean
reflections.

Result

All orientation-preserving isometries of PD are expressed as
products of two non-Euclidean reflections.
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Isometries of the Poincaré disk

The isometry group Isom(PD) is{
αz̄ − 1

z̄ + ᾱ
;
αz̄ − 1

z̄ + ᾱ
◦ βz̄ − 1

z̄ + β̄
;α, β ∈ PD

}
.

The symmetry group SymPD is{
az + b

b̄z + ā
; a, b ∈ C, |a|2 − |b|2 = 1

}
.
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Isometries of the Poincaré disk

Definition

The projective special unitary group is the matrix group

PSU(1, 1) =

{(
a b
b̄ ā

)
∈ M2×2||a|2 − |b|2 = 1

}
\{±Id}.

Result

Equipping the matrix group PSU(1, 1) with the action ψ(A, z) on
PD,

ψ(A, z) =
az + b

b̄z + ā
,

then the quotient group PSU(1, 1) provides the action of
orientation-preserving transformations on PD.
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Symmetry group of PD.

Result

The symmetry group of PD is the matrix Lie group PSU(1, 1)
under the group action ψ(A, z) on PD.
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Classification of symmetries of PD

Result

The matrices(
p̄ 0
0 p

)
;

(
s −im

im s

)
;

(
1 + ia n

n 1− ia

)
(p ∈ C, a, n, s,m ∈ R; |p|2 = 1, s −m = 1)

represent conjugacy clases of PSU(1, 1).

The C-norms of the traces of the matrices of these classes are less
than, greater than, or equal to two, respectively.
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The matrices

(
p̄ 0
0 p

)
correspond to products of non-Euclidean

reflections in intersecting arcs. These are rotations.

The matrices

(
s −im

im s

)
correspond to products of

non-Euclidean reflections in disjoint arcs. These are translations.

The matrices

(
1 + ia n

n 1− ia

)
correspond to products of

non-Euclidean reflections in arcs intersecting on the boundary.
These are limit rotations.
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Conclusion

Geometric surfaces provide a generalization of Euclidean
surfaces, where constant negative curvature metrics are
expressible.

The Poincaré disk model and hemisphere model have been
expressed as geometric surfaces.

Three other models of hyperbolic geometry have been
similarly expressed.

Some group theoretic results are more easily obtainable in the
geometric setting.
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