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Visually in R
3

Smooth surfaces in R
3.

Generally not globally diffeomorphic
to R

2.

Locally diffeomorphic to R
2.

In general: smooth manifolds are
“higher dimensional smooth
surfaces”.
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Coordinate chart

Definition

Let M be some set. Given U ⊆ M, a injection ϕ : U → R
n with

open image, the pair (U, ϕ) is called a chart for M.

ϕ : U → R
n
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Compatible charts

ϕ : U → R
n

φ : V → R
n
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Smooth manifold

Definition

We call M a smooth manifold if the following hold:
1 It is covered by a collection of charts.
2 M has an atlas; that is: M can be written as a union of

compatible charts.

Smooth manifolds are locally diffeomorphic to R
n,

(n = dim M).

Generalised space on which calculus can be done.
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Tangent vectors

Definition

A tangent vector at a point m ∈ M is an equivalence class of
curves: t 7→ c1(t) ∼ t 7→ c2(t) at m iff c1(0) = c2(0) = m and

d
dt

(ϕ ◦ c1) (0) =
d
dt

(ϕ ◦ c2) (0)

The set of tangent vectors to M at m
forms a vector space. It is denoted
TmM and is called the tangent space to
M at m ∈ M.

The tangent bundle of M, denoted by
TM, is the disjoint union of the tangent
spaces to M. That is TM = ∪m∈MTmM.

Rory Biggs Control Systems on the Oscillator Group



Background
Control systems on h⋄3

Conclusion

Smooth manifolds
Lie groups
Left invariant control systems

Tangent map

Definition

A map f : M → N is smooth if it’s smooth in local coordinates.
The tangent map of f , T f : TM → TN is given by

Tmf · ċ(0) =
d
dt

f (c(t))

∣∣∣∣
t=0

ϕ−1

→
f
→

φ
→

Note that Tmf is a linear map.
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Connected and simply connected

A manifold M is connected if for any two points
m0,m1 ∈ M there exists a continuous path connecting m0

and m1.

A manifold M is simply connected if any continuous loop
may be (continuously) contracted into a point.
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Lie groups

Definition

A (real) Lie group is a group G equipped with the structure of a
smooth manifold (over R), such that the group product

µ : G × G → G, (g1, g2) 7→ g1 g2

is smooth.

Group inversion g 7→ g−1 is a diffeomorphism.

Left translations Lg : G → G, h 7→ g h are diffeomorphisms.
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Examples

R
n with ordinary vector addition as the group operation.

The group GL(n,R) of invertible matrices of order n over
the field R (smooth structure as open subset inherited
from R

n2
).

Any closed subgroup of a real Lie group.

The orthogonal group On(R) , consisting of all n × n
orthogonal matrices with real entries.

The Euclidean group En(R) is the Lie group of all
Euclidean motions, i.e., isometric affine maps, of
n-dimensional Euclidean space R

n.

Rory Biggs Control Systems on the Oscillator Group



Background
Control systems on h⋄3

Conclusion

Smooth manifolds
Lie groups
Left invariant control systems

Lie (or tangent) algebra

Definition

A real Lie algebra g is a vector space over R together with a
bilinear skew-symmetric binary operation [·, ·] : g× g → g

called the Lie bracket, satisfying the Jacobi identity

[A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0 for all A,B,C ∈ g.

Examples:

Any real vector space with [·, ·] = 0;

R
3 with [v ,w ] = v × w the cross product;

R
n×n with [A,B] = AB − BA.
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The Lie functor

The vector space T1G , with [·, ·] defined by

[ġ(0), ḣ(0)] =
∂2

∂t∂s
(g(t) h(s) g(t)−1 h(s)−1)

∣∣∣∣
t=s=0

g(0) = h(0) = 1

forms a Lie algebra g, also called the tangent algebra of
the Lie group G.

For any Lie group homomorphism f : G → H we have that
T1f : g → h is a Lie algebra homomorphism. That is we
have a functor LGrp → LAlg.
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The universal covering Lie group

Given any Lie algebra g there exists a simply connected
Lie group G̃ with Lie algebra isomorphic to g .
Any connected Lie group with Lie algebra g is isomorphic
to a quotient G̃/N where N is a discrete central subgroup.
G̃ is called the universal covering group and is determined
up to isomorphism.
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Control systems

A (smooth) dynamical system on a Lie group G is given by

ġ = X (g), g ∈ G

where X : G → TG is a (smooth) vector field on G.

A control system is a family of dynamical systems

ġ = Xu(g), g ∈ G, u ∈ R
ℓ

with vector fields Xu parametrised by u ∈ R
ℓ.

A absolutely continuous curve g(t) is a trajectory of
control system if it is a solution of the dynamic equation
corresponding to some admissible control u(t).

A system is controllable if for any two points g0, g1 ∈ G
there exists a trajectory taking g0 to g1 .
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Left invariant systems

A left invariant vector field X on a Lie group G is one
which makes the following diagram commute for every
g ∈ G

G

X
��

Lg
// G

X
��

TG
TLg

// G

That is to say: X (g) = TLg · X (1).

Definition

A left invariant control system is a control system where all the
vector fields Xu are left invariant.
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LiCAS systems

Definition

A left invariant control affine system Σ is a pair (G,Ξ) where

The state space G is a finite dimensional real Lie group,

The dynamics Ξ : G × R
ℓ → TG is of the form

Ξ : (g, u) 7→ TLg ·

(
A0 +

ℓ∑

i=1

uiAi

)

where {Ai}i=1,ℓ is a linearly independent set.

We define the trace Γ of a system Σ as Γ = imΞ(1, ·).
If Σ is controllable then G is connected and Lie Γ = g.
Such systems are called proper systems.
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Detached feedback equivalence

Definition

Two LiCAS systems Σ and Σ′ are detached feedback
equivalent if there exists a diffeomorphism φ : G → G′ and an
affine isomorphism ϕ : Rℓ → R

ℓ′ such that the diagram

G × R
ℓ

Ξ

��

φ×ϕ
// G′ × R

ℓ′

Ξ
′

��

TG
Tφ

// TG′

commutes, that is Tgφ · Ξ(g, u) = Ξ′(φ(g), ϕ(u)).

If Σ and Σ′ are d.f.e. then φ maps trajectories to
trajectories and hence if one is controllable so is the other.
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Detached feedback equivalence

Theorem

Two proper LiCAS systems Σ = (G,Ξ) and Σ′ = (G′,Ξ′) are
detached feedback equivalent if and only if there exists a Lie
group isomorphism φ : G → G′ such that T1φ · Γ = Γ′.

Require that G and G′ are isomorphic Lie groups,
dim Γ = dim Γ′ and 0 ∈ Γ ⇔ 0 ∈ Γ′.

So for a fixed Lie group G two systems Σ and Σ′ are
equivalent iff

Γ ∼ Γ′ ⇔ ∃φ ∈ Aut G, T1φ · Γ = Γ′,

⇔ ∃ψ ∈ dAut G, ψ · Γ = Γ′.
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Classification problem

Problem statement

Classify all proper LiCAS objects with Lie algebra g by
detached feedback equivalence.

Approach:

Separate into connected Lie groups with Lie algebra
(isomorphic to) g;

Separate into (ℓ, ε)-affine subspaces of g, i.e., with
dimension ℓ and homogeneity ε (ε = 0 ⇔ 0 ∈ Γ);

Classify such full rank affine subspaces by relation dAut G.

Rory Biggs Control Systems on the Oscillator Group



Background
Control systems on h⋄3

Conclusion

The Oscillator group and its structure
Automorphisms of the Oscillator group
Classification of LiCAS systems

The Oscillator group

We start with simply connected Lie group with given
algebra h⋄3.

Have matrix representation of H̃⋄

3; typical element
m(x , y , z, θ) with x , y , z, θ ∈ R

Typical element of H̃⋄

3

m(x , y , z, θ) =




1 −x cos θ + y sin θ x sin θ + y cos θ −2z 0
0 cos θ − sin θ y 0
0 sin θ cos θ x 0
0 0 0 1 0
0 0 0 0 eθ
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The Oscillator group

Lie subgroups H3 = {m(x , y , z, 0) | x , y , z ∈ R} and
S̃O (2) = {m(0, 0, 0, θ) | θ ∈ R} isomorphic to the
Heisenberg group and (R,+) respectively.

H̃⋄

3 decomposes as a semidirect product of Lie subgroups

H3 and S̃O (2); H̃⋄

3 = H3 ⋊ S̃O(2).

H̃⋄

3 is diffeomorphic to the direct product of H3 and

S̃O (2). Thus H̃⋄

3 is diffeomorphic to R
4.

Any element m(x , y , z, θ) ∈ H̃⋄

3 may be decomposed as

m(x , y , z, θ) = m(x , y , z, 0) m(0, 0, 0, θ).
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The Oscillator algebra

The Lie algebra of H̃⋄

3 has typical element M(x , y , z, θ) with
x , y , z, θ ∈ R.

Typical element of h⋄3

M(x , y , z, θ) =




0 −x y −2z 0
0 0 −θ y 0
0 θ 0 x 0
0 0 0 0 0
0 0 0 0 θ




Let E1 = M(1, 0, 0, 0), . . . ,E4 = M(0, 0, 0, 1). Then
{Ei}i=1,4 is basis for h⋄3. Non-zero commutator relations:

[E1,E2] = E3 [E1,E4] = E2 [E2,E4] = −E1
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Discrete subgroups of H̃⋄
3

Z(H̃⋄

3) = {m(0, 0, z, θ) | z ∈ R, θ ∈ 2πZ}.

Proposition

There are three types of non trivial discreet central subgroups
of H̃⋄

3 up to being related by an element of Aut H̃⋄

3, namely

nN1 = {m(0, 0, 0, 2nπθ) | θ ∈ Z} , n ∈ N

N2 = {m(0, 0, z, 0) | z ∈ Z}

nN1 ⊕ N2 = {m(0, 0, z, 2nπθ) | θ, z ∈ Z} , n ∈ N.

The proof involves showing that any central discrete
subgroup N is isomorphic to one of the given types by
considering the discrete subgroups N ∩ S̃O (2) and
N ∩ H3 of H3 and S̃O (2) respectively.
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Connected Lie groups with Lie algebra h⋄3

There are four types of connected Lie groups: one simply
connected; three correspond to three types of discrete
subgroups by quotients H̃⋄

3/N. We have following
commutative diagram of covering Lie group morphisms.

Structure of connected Lie groups with Lie algebra h⋄3

H̃⋄

3
//

��

H⋄

3(n) = H̃⋄

3/nN1

��

// H⋄

3 = H̃⋄

3/N1

��

H̃⋄

3/N2 // H̃⋄

3/(nN1 ⊕ N2) // H̃⋄

3/(N1 ⊕ N2)

H⋄

3(n) = H3 ⋊ SOn(2); SOn(2) is n-fold cover of SO (2).
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Connected Lie groups with Lie algebra h⋄3

H̃⋄

3, H⋄

3(n) = H̃⋄

3/nN1 have linear representation; H̃⋄

3/N2,
H̃⋄

3/(nN1 ⊕ N2) have no linear representation.
We will look at H̃⋄

3 and H⋄

3(n).
Topologically we have that H̃⋄

3 ∼ R
3 × R and

H⋄

3(n) ∼ R
3 × T. We illustrate the situation.

H
⋄

3
(n) H

⋄

3
(1)H̃

⋄

3
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Automorphisms of H̃⋄
3

Universal cover G̃: dAut G̃ = Aut g.

Seek linear map ψ : ψ · [Ei ,Ej ] = [ψ · Ei , ψ · Ej ], i , j = 1, 4.

Proposition

Aut h⋄3 =








x y 0 u
−ky kx 0 v

kux − vy kuy + xv k(x2 + y2) w
0 0 0 k


 ∈ GL(4,R)

∣∣∣∣∣ x , y ,u, v ,w ∈ R, k ∈ {−1,1}
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Automorphisms of H⋄
3(n)

Connected Lie group G : dAut G ≤ Aut g.
Seek elements of Aut h⋄3 that lift to automorphisms of
group.

Proposition

dAut H⋄

3(n) =








x y 0 u
−ky kx 0 v

kux − vy kuy + xv k(x2 + y2) 1
2 k(u2 + v2)

0 0 0 k




∈ GL(4,R)

∣∣∣∣∣ x , y ,u, v ,w ∈ R, k ∈ {−1,1}
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Classification of H̃⋄
3

Proposition

Any (2, 0)-trace (i.e., 0 ∈ Γ, dim Γ = 2) is related to 〈E1,E4〉.

Proof sketch. Arbitrary trace Γ of given type:

Γ =
〈∑4

i=1 aiEi ,
∑4

i=1 biEi

〉
.

Full rank implies a4 6= 0 or b4 6= 0.

Γ =
〈∑3

i=1 a′

i Ei + E4,
∑4

i=1 b′

i Ei

〉
.

ψ =




1 0 0 −a′

1
0 1 0 −a2

−a1 −a2 1 −a3 + a2
1 + a2

2
0 0 0 1


.

Then ψ · Γ =
〈

E4,
∑3

i=1 b′′

i Ei

〉
.

. . .
Γ ∼ 〈E1,E4〉.
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Classification of H⋄
3(n)

Proposition

Any (2, 0)-trace (i.e., 0 ∈ Γ, dim Γ = 2) is related to exactly one
of

Γ1 = 〈E1,E3 + E4〉

Γ2 = 〈E1,E4〉

Γ3 = 〈E1,−E3 + E4〉

Proof sketch. We show Γ1 ≁ Γ2. Suppose ∃ψ, ψ · Γ2 = Γ1

ψ =




x y 0 u
−ky kx 0 v

kux − vy kuy + xv k(x2 + y2) 1
2 k(u2 + v2)

0 0 0 k


.

Leads to contradiction.
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Conclusion

Using the same approach we have classified all LiCAS
systems with algebra h⋄3.
Using classification we have been able to characterise
controllable systems:

H̃⋄

3: controllable iff full rank and projection of Γ0 onto E4 not
{0};
H⋄

3(n): controllable iff full rank.

Classification of H̃⋄

3 systems also provides local
classification.

Outlook
Optimal control problem on H⋄

3 systems.
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