$\begin{array}{c} \text{Background} \\ \text{Control systems on } \mathfrak{h}_3^\diamond \\ \text{Conclusion} \end{array}$

Control Systems on the Oscillator Group

Rory Biggs

Mathematical Seminar, 30 March 2011

Rory Biggs Control Systems on the Oscillator Group

Background Control systems on \mathfrak{h}_3^\diamond Conclusion

Outline

Background

- Smooth manifolds
- Lie groups
- Left invariant control systems

2 Control systems on \mathfrak{h}_3^\diamond

- The Oscillator group and its structure
- Automorphisms of the Oscillator group
- Classification of LiCAS systems

Background Control systems on h[♦]₃ Conclusion Smooth manifolds Lie groups Left invariant control systems

Visually in \mathbb{R}^3

- Smooth surfaces in \mathbb{R}^3 .
- Generally not globally diffeomorphic to R².
- Locally diffeomorphic to \mathbb{R}^2 .
- In general: smooth manifolds are "higher dimensional smooth surfaces".

 Background
 Smooth manifolds

 Control systems on h³₃
 Lie groups

 Conclusion
 Left invariant control system

Coordinate chart

Definition

Let M be some set. Given $U \subseteq M$, a injection $\varphi : U \to \mathbb{R}^n$ with open image, the pair (U, φ) is called a chart for M.

$$\varphi: \boldsymbol{U} \to \mathbb{R}^n$$

 Background
 Smooth manifolds

 Control systems on h₃^o
 Lie groups

 Conclusion
 Left invariant control systems

Compatible charts

 $\begin{array}{c} \text{Background} \\ \text{Control systems on } \mathfrak{h}_3^\diamond \\ \text{Conclusion} \end{array}$

Smooth manifolds Lie groups Left invariant control systems

Smooth manifold

Definition

We call M a smooth manifold if the following hold:

- It is covered by a collection of charts.
- M has an atlas; that is: M can be written as a union of compatible charts.
 - Smooth manifolds are locally diffeomorphic to ℝⁿ, (n = dim M).
 - Generalised space on which calculus can be done.

Background	Smooth manifolds
Control systems on \mathfrak{h}_3^\diamond	Lie groups
Conclusion	Left invariant control systems

Tangent vectors

Definition

A tangent vector at a point $m \in M$ is an equivalence class of curves: $t \mapsto c_1(t) \sim t \mapsto c_2(t)$ at m iff $c_1(0) = c_2(0) = m$ and

$$\frac{d}{dt}\left(\varphi\circ c_{1}\right)\left(0\right)=\frac{d}{dt}\left(\varphi\circ c_{2}\right)\left(0\right)$$

- The set of tangent vectors to M at m forms a vector space. It is denoted T_mM and is called the tangent space to M at m ∈ M.
- The tangent bundle of M, denoted by *T*M, is the disjoint union of the tangent spaces to M. That is $TM = \bigcup_{m \in M} T_m M$.

 Background
 Smooth manifolds

 Control systems on h₃^o Conclusion
 Lie groups

 Left invariant control systems

Tangent map

Definition

A map $f : M \to N$ is smooth if it's smooth in local coordinates. The tangent map of f, $Tf : TM \to TN$ is given by

$$T_m f \cdot \dot{c}(0) = \left. \frac{d}{dt} f(c(t)) \right|_{t=0}$$

• Note that $T_m f$ is a linear map.

 $\begin{array}{c|c} & \textbf{Background} \\ \text{Control systems on } \mathfrak{h}_3^{\diamond} \\ \text{Conclusion} \\ \end{array} \begin{array}{c} \textbf{Smooth manifolds} \\ \text{Lie groups} \\ \text{Left invariant control system} \end{array}$

Connected and simply connected

- A manifold M is connected if for any two points m₀, m₁ ∈ M there exists a continuous path connecting m₀ and m₁.
- A manifold M is simply connected if any continuous loop may be (continuously) contracted into a point.

 Background
 Smooth manifolds

 Control systems on h₃^o
 Lie groups

 Conclusion
 Left invariant control systems

Definition

A (real) Lie group is a group G equipped with the structure of a smooth manifold (over \mathbb{R}), such that the group product

$$\mu: \mathsf{G} \times \mathsf{G} \to \mathsf{G}, \ (g_1, g_2) \mapsto g_1 g_2$$

is smooth.

- Group inversion $g \mapsto g^{-1}$ is a diffeomorphism.
- Left translations $L_g : G \to G$, $h \mapsto gh$ are diffeomorphisms.

 Background
 Smooth manifolds

 Control systems on h₃^o
 Lie groups

 Conclusion
 Left invariant control systems

- \mathbb{R}^n with ordinary vector addition as the group operation.
- The group GL(n, ℝ) of invertible matrices of order n over the field ℝ (smooth structure as open subset inherited from ℝ^{n²}).
- Any closed subgroup of a real Lie group.
- The orthogonal group O_n(ℝ), consisting of all n × n orthogonal matrices with real entries.
- The Euclidean group E_n(ℝ) is the Lie group of all Euclidean motions, i.e., isometric affine maps, of n-dimensional Euclidean space ℝⁿ.

 $\begin{array}{c} \text{Background} \\ \text{Control systems on } \mathfrak{h}_3^\diamond \\ \text{Conclusion} \end{array}$

Smooth manifolds Lie groups Left invariant control systems

Lie (or tangent) algebra

Definition

A real Lie algebra \mathfrak{g} is a vector space over \mathbb{R} together with a bilinear skew-symmetric binary operation $[\cdot, \cdot] : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$ called the Lie bracket, satisfying the Jacobi identity

$$[A, [B, C]] + [B, [C, A]] + [C, [A, B]] = 0$$
 for all $A, B, C \in \mathfrak{g}$.

Examples:

- Any real vector space with $[\cdot, \cdot] = 0$;
- \mathbb{R}^3 with $[v, w] = v \times w$ the cross product;
- $\mathbb{R}^{n \times n}$ with [A, B] = AB BA.

 $\begin{array}{c|c} \textbf{Background} & Smooth manifolds \\ \hline Control systems on <math>\mathfrak{h}_3^{\diamond} & \textbf{Lie groups} \\ \hline Conclusion & Left invariant control systems \end{array}$

The Lie functor

• The vector space T_1G , with $[\cdot, \cdot]$ defined by

$$\begin{aligned} [\dot{g}(0), \dot{h}(0)] &= \left. \frac{\partial^2}{\partial t \partial s} (g(t) \, h(s) \, g(t)^{-1} \, h(s)^{-1}) \right|_{t=s=0} \\ g(0) &= h(0) = \mathbf{1} \end{aligned}$$

forms a Lie algebra \mathfrak{g} , also called the tangent algebra of the Lie group G.

 For any Lie group homomorphism *f* : G → H we have that *T*₁*f* : g → h is a Lie algebra homomorphism. That is we have a functor LGrp → LAlg.
 Background
 Smooth manifolds

 Control systems on h₃^o Conclusion
 Lie groups

 Left invariant control system

The universal covering Lie group

- Given any Lie algebra g there exists a simply connected Lie group G with Lie algebra isomorphic to g.
- Any connected Lie group with Lie algebra g is isomorphic to a quotient G/N where N is a discrete central subgroup.
- G is called the universal covering group and is determined up to isomorphism.

Background	Smooth manifolds
Control systems on \mathfrak{h}_3^\diamond	Lie groups
Conclusion	Left invariant control systems

Control systems

• A (smooth) dynamical system on a Lie group G is given by

$$\dot{g} = X(g), \; g \in \mathsf{G}$$

where $X : G \rightarrow TG$ is a (smooth) vector field on G.

• A control system is a family of dynamical systems

$$\dot{g} = X_u(g), \; g \in \mathsf{G}, u \in \mathbb{R}^\ell$$

with vector fields X_u parametrised by $u \in \mathbb{R}^{\ell}$.

- A absolutely continuous curve g(t) is a trajectory of control system if it is a solution of the dynamic equation corresponding to some admissible control u(t).
- A system is controllable if for any two points g₀, g₁ ∈ G there exists a trajectory taking g₀ to g₁.

Background	
Control systems on \mathfrak{h}_3^\diamond	Lie groups
Conclusion	Left invariant control systems

Left invariant systems

 A left invariant vector field X on a Lie group G is one which makes the following diagram commute for every g ∈ G

That is to say: $X(g) = TL_g \cdot X(\mathbf{1})$.

Definition

A left invariant control system is a control system where all the vector fields X_u are left invariant.

Background	
Control systems on \mathfrak{h}_3^\diamond	Lie groups
Conclusion	Left invariant control systems

LiCAS systems

Definition

A left invariant control affine system Σ is a pair (G, Ξ) where

- The state space G is a finite dimensional real Lie group,
- The dynamics $\Xi: G \times \mathbb{R}^{\ell} \to TG$ is of the form

$$\Xi: (g, u) \mapsto TL_g \cdot \left(A_0 + \sum_{i=1}^{\ell} u_i A_i\right)$$

where $\{A_i\}_{i=\overline{1,\ell}}$ is a linearly independent set.

- We define the trace Γ of a system Σ as $\Gamma = \operatorname{im} \Xi(\mathbf{1}, \cdot)$.
- If Σ is controllable then G is connected and Lie Γ = g.
 Such systems are called proper systems.

 Background
 Smooth manifolds

 Control systems on h₃[◊]
 Lie groups

 Conclusion
 Left invariant control systems

Detached feedback equivalence

Definition

Two LiCAS systems Σ and Σ' are detached feedback equivalent if there exists a diffeomorphism $\phi : G \to G'$ and an affine isomorphism $\varphi : \mathbb{R}^{\ell} \to \mathbb{R}^{\ell'}$ such that the diagram

commutes, that is $T_g \phi \cdot \Xi(g, u) = \Xi'(\phi(g), \varphi(u))$.

 If Σ and Σ' are d.f.e. then φ maps trajectories to trajectories and hence if one is controllable so is the other.
 Background
 Smooth manifolds

 Control systems on h³₃
 Lie groups

 Conclusion
 Left invariant control systems

Detached feedback equivalence

Theorem

Two proper LiCAS systems $\Sigma = (G, \Xi)$ and $\Sigma' = (G', \Xi')$ are detached feedback equivalent if and only if there exists a Lie group isomorphism $\phi : G \to G'$ such that $T_1 \phi \cdot \Gamma = \Gamma'$.

- Require that G and G' are isomorphic Lie groups, dim Γ = dim Γ' and 0 ∈ Γ ⇔ 0 ∈ Γ'.
- So for a fixed Lie group G two systems Σ and Σ' are equivalent iff

$$\begin{split} \mathsf{\Gamma} \sim \mathsf{\Gamma}' & \Leftrightarrow \exists \phi \in \operatorname{Aut} \mathsf{G}, \ \mathsf{T}_{\mathsf{1}} \phi \cdot \mathsf{\Gamma} = \mathsf{\Gamma}', \\ & \Leftrightarrow \exists \psi \in \mathsf{d} \operatorname{Aut} \mathsf{G}, \ \psi \cdot \mathsf{\Gamma} = \mathsf{\Gamma}'. \end{split}$$

Background Control systems on b[♦] Conclusion Smooth manifolds Lie groups Left invariant control systems

Classification problem

Problem statement

Classify all proper LiCAS objects with Lie algebra \mathfrak{g} by detached feedback equivalence.

Approach:

- Separate into connected Lie groups with Lie algebra (isomorphic to) g;
- Separate into (ℓ, ε)-affine subspaces of g, i.e., with dimension ℓ and homogeneity ε (ε = 0 ⇔ 0 ∈ Γ);
- Classify such full rank affine subspaces by relation dAut G.

Background Control systems on h₃[♦] Conclusion The Oscillator group and its structure Automorphisms of the Oscillator group Classification of LiCAS systems

The Oscillator group

- We start with simply connected Lie group with given algebra β[◊]₃.
- Have matrix representation of $\widetilde{H}_3^{\diamond}$; typical element $m(x, y, z, \theta)$ with $x, y, z, \theta \in \mathbb{R}$

Typical element of H₃

	[1	$-x\cos\theta + y\sin\theta$	$x\sin\theta + y\cos\theta$	-2 <i>z</i>	0]
	0	$\cos \theta$	$-\sin\theta$	У	0
$m(x, y, z, \theta) =$	0	$\sin \theta$	$\cos \theta$	X	0
	0	0	0	1	0
[c	0	0	0	0	e ^θ

Background Control systems on \mathfrak{h}_3^\diamond Conclusion

The Oscillator group and its structure Automorphisms of the Oscillator group Classification of LiCAS systems

The Oscillator group

- Lie subgroups $H_3 = \{m(x, y, z, 0) \mid x, y, z \in \mathbb{R}\}$ and $\widetilde{SO}(2) = \{m(0, 0, 0, \theta) \mid \theta \in \mathbb{R}\}$ isomorphic to the Heisenberg group and $(\mathbb{R}, +)$ respectively.
- $\widetilde{H}_3^{\diamond}$ decomposes as a semidirect product of Lie subgroups H_3 and $\widetilde{SO}(2)$; $\widetilde{H}_3^{\diamond} = H_3 \rtimes \widetilde{SO}(2)$.
- $\widetilde{H}_3^{\diamond}$ is diffeomorphic to the direct product of H_3 and $\widetilde{SO}(2)$. Thus $\widetilde{H}_3^{\diamond}$ is diffeomorphic to \mathbb{R}^4 .
- Any element $m(x, y, z, \theta) \in \tilde{H}_3^{\diamond}$ may be decomposed as

$$m(x, y, z, \theta) = m(x, y, z, 0) m(0, 0, 0, \theta).$$

 $\begin{array}{c} \text{Background} \\ \text{Control systems on } \mathfrak{h}_3^\diamond \\ \text{Conclusion} \end{array}$

The Oscillator group and its structure Automorphisms of the Oscillator group Classification of LiCAS systems

The Oscillator algebra

The Lie algebra of H̃₃[◦] has typical element *M*(*x*, *y*, *z*, θ) with *x*, *y*, *z*, θ ∈ ℝ.

Typical element of \mathfrak{h}_3^\diamond

• Let $E_1 = M(1, 0, 0, 0), \dots, E_4 = M(0, 0, 0, 1)$. Then $\{E_i\}_{i=\overline{1,4}}$ is basis for \mathfrak{h}_3° . Non-zero commutator relations:

$$[E_1, E_2] = E_3$$
 $[E_1, E_4] = E_2$ $[E_2, E_4] = -E_1$

 $\begin{array}{c} \text{Background} \\ \text{Control systems on } \mathfrak{h}_3^\diamond \\ \text{Conclusion} \end{array}$

The Oscillator group and its structure Automorphisms of the Oscillator group Classification of LiCAS systems

Discrete subgroups of H₃^o

•
$$Z(\widetilde{H}_3^\diamond) = \{m(0,0,z,\theta) \mid z \in \mathbb{R}, \theta \in 2\pi\mathbb{Z}\}.$$

Proposition

There are three types of non trivial discreet central subgroups of \widetilde{H}_3° up to being related by an element of $\operatorname{Aut}\widetilde{H}_3^\circ$, namely

$$n\mathsf{N}_{1} = \{m(0,0,0,2n\pi\theta) \mid \theta \in \mathbb{Z}\}, \quad n \in \mathbb{N}$$
$$\mathsf{N}_{2} = \{m(0,0,z,0) \mid z \in \mathbb{Z}\}$$
$$n\mathsf{N}_{1} \oplus \mathsf{N}_{2} = \{m(0,0,z,2n\pi\theta) \mid \theta, z \in \mathbb{Z}\}, \quad n \in \mathbb{N}$$

The proof involves showing that any central discrete subgroup N is isomorphic to one of the given types by considering the discrete subgroups N ∩ SO (2) and N ∩ H₃ of H₃ and SO (2) respectively.

Background Control systems on h_3^\diamond Conclusion The Oscillator group and its structure Automorphisms of the Oscillator group Classification of LiCAS systems

Connected Lie groups with Lie algebra \mathfrak{h}_3°

 There are four types of connected Lie groups: one simply connected; three correspond to three types of discrete subgroups by quotients H₃^o/N. We have following commutative diagram of covering Lie group morphisms.

Structure of connected Lie groups with Lie algebra \mathfrak{h}_3^\diamond

$$\begin{array}{c} \widetilde{H}_{3}^{\diamond} & \longrightarrow & H_{3}^{\diamond}(n) = \widetilde{H}_{3}^{\diamond}/nN_{1} & \longrightarrow & H_{3}^{\diamond} = \widetilde{H}_{3}^{\diamond}/N_{1} \\ \downarrow & \qquad \qquad \downarrow & \qquad \qquad \downarrow \\ \widetilde{H}_{3}^{\diamond}/N_{2} & \longrightarrow & \widetilde{H}_{3}^{\diamond}/(nN_{1} \oplus N_{2}) & \longrightarrow & \widetilde{H}_{3}^{\diamond}/(N_{1} \oplus N_{2}) \end{array}$$

• $H_3^{\diamond}(n) = H_3 \rtimes SO_n(2)$; $SO_n(2)$ is *n*-fold cover of SO(2).

Background Control systems on b₃ Conclusion The Oscillator group and its structure Automorphisms of the Oscillator group Classification of LiCAS systems

Connected Lie groups with Lie algebra \mathfrak{h}_3^\diamond

- $\widetilde{H}_{3}^{\diamond}$, $H_{3}^{\diamond}(n) = \widetilde{H}_{3}^{\diamond}/nN_{1}$ have linear representation; $\widetilde{H}_{3}^{\diamond}/N_{2}$, $\widetilde{H}_{3}^{\diamond}/(nN_{1} \oplus N_{2})$ have no linear representation.
- We will look at $\widetilde{H}_3^{\diamond}$ and $H_3^{\diamond}(n)$.
- Topologically we have that H₃[◦] ~ ℝ³ × ℝ and H₃[◦](n) ~ ℝ³ × 𝔅. We illustrate the situation.

Background Control systems on h_3^\diamond Conclusion

The Oscillator group and its structure Automorphisms of the Oscillator group Classification of LiCAS systems

Automorphisms of H₃^o

- Universal cover \widetilde{G} : $dAut \widetilde{G} = Aut \mathfrak{g}$.
- Seek linear map $\psi : \psi \cdot [E_i, E_j] = [\psi \cdot E_i, \psi \cdot E_j], i, j = \overline{1, 4}.$

Proposition $\operatorname{Aut}\mathfrak{h}_{3}^{\diamond} = \left\{ \begin{bmatrix} x & y & 0 & u \\ -ky & kx & 0 & v \\ kux - vy & kuy + xv & k(x^{2} + y^{2}) & w \\ 0 & 0 & 0 & k \end{bmatrix} \in \operatorname{GL}(4, \mathbb{R})$ $\left| x, y, u, v, w \in \mathbb{R}, \ k \in \{-1, 1\} \right\}$

Background Control systems on b₃ Conclusion The Oscillator group and its structure Automorphisms of the Oscillator group Classification of LiCAS systems

Automorphisms of $H_3^{\diamond}(n)$

- Connected Lie group $G : dAut G \leq Aut \mathfrak{g}$.
- Seek elements of $\operatorname{Aut}\mathfrak{h}_3^\diamond$ that lift to automorphisms of group.

Proposition

$$d\operatorname{Aut} \mathsf{H}_{3}^{\diamond}(n) = \left\{ \begin{bmatrix} x & y & 0 & u \\ -ky & kx & 0 & v \\ kux - vy & kuy + xv & k(x^{2} + y^{2}) & \frac{1}{2}k(u^{2} + v^{2}) \\ 0 & 0 & 0 & k \end{bmatrix} \\ \in \operatorname{GL}(4, \mathbb{R}) \mid x, y, u, v, w \in \mathbb{R}, \ k \in \{-1, 1\} \right\}$$

 Background
 The Oscillator group and its structul

 Control systems on h₃⁴
 Automorphisms of the Oscillator group

 Conclusion
 Classification of LiCAS systems

Classification of H₃

Proposition

Any (2,0)-trace (i.e., $0 \in \Gamma$, dim $\Gamma = 2$) is related to $\langle E_1, E_4 \rangle$.

Proof sketch. Arbitrary trace Γ of given type:

$$\begin{split} & \Gamma = \left\langle \sum_{i=1}^{4} a_{i} E_{i}, \sum_{i=1}^{4} b_{i} E_{i} \right\rangle. \\ & \text{Full rank implies } a_{4} \neq 0 \text{ or } b_{4} \neq 0. \\ & \Gamma = \left\langle \sum_{i=1}^{3} a_{i}' E_{i} + E_{4}, \sum_{i=1}^{4} b_{i}' E_{i} \right\rangle. \\ & \psi = \begin{bmatrix} 1 & 0 & 0 & -a_{1} \\ 0 & 1 & 0 & -a_{2} \\ -a_{1} & -a_{2} & 1 & -a_{3} + a_{1}^{2} + a_{2}^{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}. \\ & \text{Then } \psi \cdot \Gamma = \left\langle E_{4}, \sum_{i=1}^{3} b_{i}'' E_{i} \right\rangle. \\ & \dots \\ & \Gamma \sim \langle E_{1}, E_{4} \rangle. \end{split}$$

Background Control systems on b[♦] Conclusion The Oscillator group and its structure Automorphisms of the Oscillator group Classification of LiCAS systems

Classification of $H_3^{\diamond}(n)$

Proposition

Any (2,0)-trace (i.e., $0\in\Gamma,\mbox{ dim }\Gamma=2)$ is related to exactly one of

$$\begin{aligned} &\Gamma_1 = \langle E_1, E_3 + E_4 \rangle \\ &\Gamma_2 = \langle E_1, E_4 \rangle \\ &\Gamma_3 = \langle E_1, -E_3 + E_4 \rangle \end{aligned}$$

Proof sketch. We show $\Gamma_1 \approx \Gamma_2$. Suppose $\exists \psi, \psi \cdot \Gamma_2 = \Gamma_1$ $\psi = \begin{bmatrix} x & y & 0 & u \\ -ky & kx & 0 & v \\ kux - vy & kuy + xv & k(x^2 + y^2) & \frac{1}{2}k(u^2 + v^2) \\ 0 & 0 & 0 & k \end{bmatrix}$ Leads to contradiction.

- Using the same approach we have classified all LiCAS systems with algebra \mathfrak{h}_3° .
- Using classification we have been able to characterise controllable systems:
 - $\widetilde{H}_{3}^{\diamond}$: controllable iff full rank and projection of Γ^{0} onto E_{4} not $\{0\}$;
 - $\dot{H}_{3}^{\diamond}(n)$: controllable iff full rank.
- Classification of $\widetilde{H}_3^{\diamond}$ systems also provides local classification.
- Outlook
 - Optimal control problem on H^o₃ systems.