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Jacobi elliptic functions

Definition
Let k € (0,1). The Jacobi elliptic functions sn(-, k), cn(-, k) and dn(-, k) are
defined as the solutions of the system of differential equations

X = yz
= ==X
7 = —k’xy

that satisfy the initial conditions
sn(0, k) = x(0) =0, cn(0,k) =y(0) =1, dn(0,k)=2z(0)=1.

The number k is known as the modulus and satisfies 0 < k < 1.
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Jacobi elliptic functions

The derivatives of the Jacobi elliptic functions are then given by

%sn(t, K) = en(t, K)dn(t, &), %cn(t, k) = —dn(t, K)sn(t, k),

dn(t, k) = —k?sn(t, k)en(t, k).

As k — 0 from the right
sn(t, k) — sint, cn(t, k) — cost, du(t, k) — 1,
and as k — 1 from the left

sn(t, k) — tanh t, cn(t, k) — secht, dn(t, k) — secht.
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Jacobi elliptic functions

The following notation is used to express the reciprocals and quotients of the
Jacobi elliptic functions:

1 1 1
ws(t, k) = Sy PR =S MO0 = Gee
and
sn(t, k) sn(t, k) en(t, k)
t, k) = d(t, k d(t, k) =
se(t ) = T sd(e k) = T ed(ek) = S,
_cn(t, k) _dn(t, k) _dn(t, k)
CS(t7 k) e sn(t7 k), dS( 9 ) = m, dC(t, k) = C—n
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Elliptic integrals

Definition

An elliptic integral is any function F which can be expressed as

F(x) = /X R(t, P(t))dt

where R is a rational function and P is the square root of a polynomial of degree
3 or 4 with no repeated roots.

The elliptic integrals of the first, second and third kind, respectively, are given by

o
f \/(Altz-l-Bl) A2t2+32)
f t2dt
\/(AlterBl) A2t2+Bz)

dt
° f (1+Nt2)y /(A1 2+ By ) (A 12+ By) W=
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Elliptic integrals

Jacobi elliptic functions can be used to evaluate any integral of the first kind, that

is any integral of the form [ \‘}—’L, where X is a cubic or quartic. In particular, for
b< a<yx, .
dt 1. _,,x b
/ ey oo Go3)
a J(2—22)(2—-p2) a a a
/°° dt 1 ;. x b
=-ns (=, ).
x J({2—a)(t2—bp2) a a’a
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Hamilton-Poisson formalism

Definition
%
Let (M,{:,-}) be a Poisson space and H € C°>°(M). The vector field H defined
by
H(F) = {H.F}
for all F € C>°(M), is called the Hamiltonian vector field, with Hamiltonian
function H. The triple (M, {-,-}, H) is called a Hamilton-Poisson system.

Definition
A function F € C*°(M) on a Poisson space (M, {-,-}) is a Casimir function if
one of the following equivalent conditions hold

o for every H € C*°(M) we have that {H, F} = 0;

. .
@ F is constant along the flow of all Hamiltonian vector fields, i.e. H(F) = 0.
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Hamilton-Poisson formalism

Definition

If g is a Lie algebra then its dual, g*, is a Poisson space w.r.t the Lie-Poisson
bracket, {-,-}_, defined by

{F,G}_(p) = —pldF(p), dG(p)]
for p € g* and F, G € C>(g*). Here dF(p),dG(p) € (g*)* = g.

Let (g*,{-,- }, H) be a Hamilton-Poisson system. For any p € g* the coordinate
functions satisfy the differential equation

pi:{piﬂH}77 i:17"'7n'
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Control Systems
The class of admissible controls is given by

U=1{u(-):[0, T,] = R" | u(-) piece-wise continuous} .

Definition

A (left-invariant) control affine system is a pair ¥ = (G, =) such that:
e G C GL(n,R) is a matrix Lie group, called the state space.
@ =:G xRl — TG, called the dynamics, is a mapping of the form

(g, u) = =(g,u) = g=(1,u),

where 1 € G is the identity element.
@ The parameterisation map =(1,-) : R — g is an affine embedding, that is

u— A+ wu B +...+wbBp € g,

where we assume the set {Bj,..., By} is linearly independent.
I'=1im(=(1,-)) C g is called the trace of the system.

v
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Control systems

Note that for each fixed u € RY, =, = =(-,u) : G — TG is a left-invariant vector
field on G. Here each left-invariant vector field on G is viewed as an element of
the Lie algebra g,

r={z,|ueR cy.

A trajectory of a control system X, through some gy € G, for some admissible
control u(-) € U, is an absolutely continuous curve g(-) : [0, T] — G, such that
g(0) = go, which satisfies the equation

&(t) = =(g(1), u(1)),

almost everywhere.
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Optimal Control Problem

Given a controllable control affine system = = (G, =), let gy, g1 be arbitrary fixed
points in G, and T > 0 fixed. A left-invariant optimal control problem (LiCP), on

Y, consists of finding a trajectory-control pair (g(-), u(-)) which transfers g to g1
optimally. That is, it minimises the cost

1

i
J:E/ (Q2(t)+ ...+ qud(t))dt, >0
0

and satisfies ,
g=g8=(Lu)=g(A+ > uB),
i=1

subject to the boundary conditions

g(0) = go and g(T) = g1.
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Optimal Control Problem

Let X = (G, =) be a control affine system. For each u(-) € U, the Hamiltonian
of the vector field A + Ele u;B; is given by

V4
Hu(§) = &(g(A+ ) _uiBy)), forall £ € T; G, g €G.
i=1

Under the change of coordinates £ = (T1Lg-1)*-(p), we identify T*G = G x g
Thus
Hu(g:p) = (Talg)" (P)g(A+ iy i)
= P(Talg—1)(8(A+ Xy uiBy))
= ple'g(A+ Y1, uiB))
= p(A+ iy uiB)).

*

H.,
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Optimal Control Problem

Definition

Given a LiCP, the (reduced) cost-extended Hamiltonian on g*, for each u € RY, is

given by
A Aoy -
H;(p) = ) Zciu; +P(A+ZUIBI)7
i=1 i=1

for pe g*. Here A\=0o0r A =1.

Definition
A pair of curves (g(-),p(-), u(:)), on an interval [0, T], is called an extremal pair
if (g(-),p(+)) is an integral curve of H;\(.), for either A =1 or A =0, such that

the conditions of the maximum principle hold. The projection (g(- ), p(-)) of an
extremal pair is called an extremal. Extremals corresponding to A = 1 are called
normal.
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The Euclidean group SE(2)
o SE(2) = {[‘1, ,ge] € GL(3,R) | v e R and R, € 50(2)},

where v = [Vl} and Ry = [
V2

0 O 0
) 52(2) =< A= x1 0 —x3 | X1, X2, X3 € R ;.
X2 X3 0

The standard basis for se(2) is given by

0 0O 0 0O 0 0 O
Et=|1 0 0|,E=|000O0|,EB=(00 —-1]/].
0 00 1 00 01 0

The Lie bracket commutators are given by

cosf) —sind
sinf cosf |’

[E1,E) =0, [EyE]=E and [E, E]=E.

y
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The Euclidean group SE(2)

Each extremal curve p(-), in s¢(2)*, is identified with a curve P(-) in se(2) via
the formula (P(t), X) = p(t)X.

By properties of the Poisson bracket we get the following relations on the
coordinate functions

{P17P2}—:Oa {P27P3}—:_P1, {Pl,P3}_:P2.

Proposition

The function K = P? + P3 is a Casimir function of se(2).
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A control problem on SE(2)

Consider the LiCP on SE(2)
1 T
J= —/ u?(t)dt — min,
2 Jo
g =g(E1 + uE;), g €SE(2),ueR
g(0) = g1 and g(T) = g

Here g1, g» are arbitrary fixed points in SE(2),

0 0O 0 0 O
E;z=|1 0 0| and 3= |0 0 -1
0 0 0 01 0
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A control problem on SE(2)

Theorem

The optimal control corresponding to the normal extremals is given by

u = P3,
where
Py = P3P, (1)
Py = —P3P (2)
Py = —P;. (3)
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A control problem on SE(2)

Proof (sketch)

The family of (reduced) cost extended Hamiltonians is given by

1 1
H,(p) = —§u2 + p(E1 + uEs) = —§u2 + P1 + uPs.
By the maximum principle

OH

a—u":O = —u+P3=0 <= P3=u,
and thus
1 2
H=2Pi+ Py

Using the relation
. 1
P, ={P;,H}_={P;, §P32 + P}

gives us our extremal equations.
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A control problem on SE(2)

Theorem

The (reduced) extremal equations 1, 2, 3 can be integrated by Jacobi elliptic
functions to obtain the results:

o — Bbdc ((a — B)VALAbt, 2)

1— bde((a — B)VALAbt, 2)

o — b ns ((a— \/Mbt,%)

1— bns ((a B)Mbt,%)

Py(t) = £/ K — P2(t)

Ps(t) = £+/2(H — Pi(t)).

where 2°> = 1, b? = z“\éf A = ll'l{\/,._,lj2 , Ag = 2\/,_,12 , Br =
JH2 _ /
I-Izt/H’;l K £, By = 2\/H27 a=H+VH - K f=H-VH —K,
K=P2+P2and H=1P2+ P,

Pl(t) =

and/or Py(t) =
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A control problem on SE(2)

Proof
We have
P; =2(H—P;) and P3=K — P;. (8)

First we square equation 1 and then we substitute in equations 8 to get
Py" = P3P} = (2H — 2Py)(K — P}). 9)

Let S; = K — P?, and S, = 2H — 2P;. We then consider the quadratic expression
51+ AS,. This expression is a perfect square whenever

D(A) = X2+ (K +2H)) =0 (10)
< M +2HA+K=0. (11)
We now solve this expression for A to obtain
AM=—-VH2-—K-H (12)
X =+vVH2—-K-—H. (13)
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A control problem on SE(2)

Substituting A1, A into the equation S; + AS; gives

Si=Ai(P1 — a)? + Bi(Py — )2 and S, = Ay(P1 — a)? + Bo(P1 — B)?  (14)

where
a_ H-VAPK 5 _ _H+ VAP K (15)
T o/ —K N 2
1 1
A= Bp— -~ 16
T o/H K 2T To/H -K (16)
a=H+VH —K B=H—+H —K. (17)

Now having S; and S, in the form above we can now write 9 as

P’ = (Ai(P1 — a)? + Bi(P1 — B)?)(Aa(Pr — a) + Ba(P1 — B)2).
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A control problem on SE(2)

Using the substitution u = %:—g to obtain the following integral equation:

u

1 / d
= : (18)
(a = B)VAIA \/(u2+%)(u2+%)
We require that A;A; > 0 under the square root sign and so we have that
H—-+VH? - K
— >0 (19)
4(H? — K)
which holds true for H > v/H? — K. We choose
B B
2 2 2 1
=———=1land b= ——- 20
a A an A (20)
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A control problem on SE(2)

So comparing equation 18 with the our elliptic integral we get that

oL 1 du (21)
(a = B)VAA \/ 2= @) (w2 — b?)
1 1 1P —a a
Y (bP1 X b)' 22
Rearranging now for P; we get that
Pi(t) = a— fpbde ((a—,@)\/AlAgbt,%). (23)

1— b de ((a — B)VAAbt, 2)

Substituting the values of a and b into the condition a < b < x of equation our
elliptic integral gives

2 _
| AR = VHK7 (24)
H—-+vVH?2 - K

which always holds.

v
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Figure: P(0) = (0,4,2v/5) (a)-(b): MATLAB ODE45 solver, (c)-(d): H=5, K = 16




Figure: H=15, K =16 (a)-(b): dc, (c)-(d): ns

[m] = = =

Ross Adams (RU) Elliptic Functions



	Jacobi elliptic functions
	Elliptic integrals
	Hamilton-Poisson formalism
	Control Systems
	Optimal Control Problem
	The Euclidean group SE(2)
	A control problem on SE(2)

