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Control systems

(Smooth) control system Σ = (G ,Ξ)

Family of (smooth) vector fields parametrised by controls

ġ = Ξ(g , u), Ξ : G × U → TG

G state space

U input space.

State space equivalence

Equivalence up to coordinate change in the state space.

One-to-one correspondence between trajectories.
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LiCA systems

Left-invariant control affine system Σ = (G ,Ξ)

G is a matrix Lie group

the dynamics
Ξ : G× R` → TG

is left invariant
(g , u) 7→ Ξ(g , u) = gΞ(1, u)

the parametrisation map

Ξ(1, · ) : R` → g

is affine
u 7→ A + u1B1 + . . .+ u`B` ∈ g.
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Trace

The trace Γ of the system Σ is

Γ = im(Ξ(1, · )) ⊂ g

= A + Γ0

= A + 〈B1, . . . ,B`〉 .

Σ is called

homogeneous if A ∈ Γ0

inhomogeneous if A 6∈ Γ0.

Σ has full rank provided the Lie algebra generated by Γ equals the
whole Lie algebra g

Lie(Γ) = g.
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Trajectories

Admissible controls

Piecewise continuous mappings

u(· ) : [0,T ]→ R`.

Trajectory

Absolutely continuous curve

g( · ) : [0,T ]→ G

satisfying a.e.
ġ(t) = Ξ(g(t), u(t)).
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State space equivalence

State space equivalence

Σ = (G ,Ξ) and Σ′ = (G ,Ξ′) are (locally) state space equivalent if

they have the same input space

exists a (local) diffeomorphism φ : N → N ′ s.t.

Tgφ·Ξ(g , u) = Ξ′(φ(g), u)

for g ∈ N and u ∈ R`.

Remark

Σ and Σ′ are equivalent at any two points ⇐⇒ they are equivalent at
1 ∈ G .
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Equivalence results

State space equivalence

The following diagram commutes

N × R`
φ×id R` //

Ξ

��

N ′ × R`

Ξ′

��

TN
Tφ

// TN ′

Proposition (Biggs/Remsing, 2012)

Σ and Σ′

are equivalent
⇐⇒

∃ψ ∈ Aut ( g) s.t.
ψ · Ξ (1, u) = Ξ′ (1, u)

for all u ∈ R`.
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The Euclidean group SE(2)

Euclidean group

SE(2) =

{[
1 0
v Rθ

]
∈ GL(3,R) | v ∈ R2×1 and Rθ ∈ SO(2)

}
v =

[
v1

v2

]
and Rθ =

[
cos θ − sin θ
sin θ cos θ

]
.

Lie algebra

se(2) =


 0 0 0

x1 0 −x3

x2 x3 0

 | x1, x2, x3 ∈ R

 .
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The Lie algebra se(2)

Standard basis for se(2) is

E1 =

 0 0 0
1 0 0
0 0 0

 , E2 =

 0 0 0
0 0 0
1 0 0

 , E3 =

 0 0 0
0 0 −1
0 1 0

 .
[E2,E3] = E1, [E3,E1] = E2, [E1,E2] = 0.

With respect to this basis, Aut (se (2)) is
 x y v
−ςy ςx w

0 0 ς

 | x , y , v ,w ∈ R, x2 + y 2 6= 0, ς = ±1

 .
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Matrix representation

Notation

A system Σ = (SE(2),Ξ) specified by

Ξ(1, u) =
3∑

i=1

aiEi + u1

3∑
i=1

biEi + u2

3∑
i=1

ciEi + u3

3∑
i=1

diEi

will be represented as  a1 b1 c1 d1

a2 b2 c2 d2

a3 b3 c3 d3

 .
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Classification of systems: general approach

Procedure

Make classifying conditions
(depends on commutator relations and Aut(g)).

Apply successive automorphisms
(simplify an arbitrary system).

Verify distinct classes
(check equivalence representatives are indeed distinct).
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Single-input systems

Proposition

Every single-input (inhomogeneous) system is equivalent to exactly one
of the following systems

Σ
(1,1)
1,α : αE3 + uE2

Σ
(1,1)
2,αγ : E2 + γ1E3 + u(αE3).

Here α > 0 and γ1 ∈ R, with different values of these parameters
yielding distinct (non-equivalent) class representatives.
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Single-input systems: proof sketch

Proof sketch (1/4)

Consider arbitrary Σ  a1 b1

a2 b2

a3 b3

 .
Case 1 : b3 = 0 and a3 6= 0 .1 0 − a1

a3

0 1 − a2

a3

0 0 1

 a1 b1

a2 b2

a3 0

 =

 0 b1

0 b2

a3 0

 .
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Single-input systems: proof sketch, cont.

Proof sketch (2/4)

For α = sgn(a3)a3 > 0 b2 −b1 0
sgn(a3)b1 sgn(a3)b2 0

0 0 sgn(a3)

 0 b1

0 b2

a3 0


=

 0 0
0 sgn(a3)(b2

1 + b2
2)

α 0




sgn(a3)
b2

1+b2
2

0 0

0 sgn(a3)
b2

1+b2
2

0

0 0 1


 0 0

0 sgn(a3)(b2
1 + b2

2)
α 0

 =

 0 0
0 1
α 0

 ·
Thus Σ (b3 = 0) is equivalent to Σ

(1,1)
1,α : αE3 + uE2.
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Single-input systems: proof sketch, cont.

Proof sketch (3/4)

Case 2 : b3 6= 0.

Similarly applying successive automorphisms shows any such Σ is
equivalent to  0 0

1 0
γ1 α


γ1 ∈ R and α > 0.
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Single-input systems: proof sketch, cont.

Proof sketch (4/4)

Assume Σ
(1,1)
1,α and Σ

(1,1)
1,α′ are equivalent x y v

−ςy ςx w
0 0 ς

 0 0
0 1
α 0

 =

 vα y
wα ςx
ςα 0

 =

 0 0
0 1
α′ 0


=⇒ α = α′.

Similarly, Σ
(1,1)
2,αγ and Σ

(1,1)
2,α′γ′ are equivalent only if α = α′ and

γ = γ′.

uE2 ∈ 〈E1,E2〉 and u(αE3) /∈ 〈E1,E2〉 =⇒ Σ
(1,1)
1,α and Σ

(1,1)
2,α′γ′

cannot be equivalent.
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Two-input systems

Proposition

Every two-input homogeneous system is equivalent to exactly one of the
following systems

Σ
(2,0)
1,αγ : γ1E2 + γ2E3 + u1(αE3) + u2E2

Σ
(2,0)
2,αγ : γ1E2 + γ2E3 + u1(E2 + γ3E3) + u2(αE3).

Here α > 0 and γ1, γ2, γ3 ∈ R, with different values of these parameters
yielding distinct (non-equivalent) class representatives.
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Two-input systems: proof sketch

Proof sketch (1/4)

Consider arbitrary Σ  a1 b1 c1

a2 b2 c2

a3 b3 c3

 .
Case 1 : c3 6= 01 0 − c1

c3

0 1 − c2

c3

0 0 1

 a1 b1 c1

a2 b2 c2

a3 b3 c3

 =

 a′1 b′1 0
a′2 b′2 0
a3 b3 c3

 .
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Two-input systems: proof sketch, cont.

Proof sketch (2/4)

For α = sgn(c3)c3 > 0 and γ1, γ2, γ3 ∈ R
sgn(c3)b′

2

b′2
1 +b′2

2
− sgn(c3)b′

1

b′2
1 +b′2

2
0

− b′
1

b′2
1 +b′2

2

b′
2

b′2
1 +b′2

2
0

0 0 sgn(c3)


 a′1 b′1 0

a′2 b′2 0
a3 b3 c3



=

 a′1b
′
2−a

′
2b

′
1

b′2
1 +b′2

2
0 0

γ1 1 0
γ2 γ3 α


Thus Σ is equivalent to Σ

(2,0)
2,αγ .
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Two-input systems: proof sketch, cont.

Proof sketch (3/4)

Case 2 : c3 = 0 and b3 6= 0

Similarly application of successive automorphisms shows any such Σ
is equivalent to  0 0 0

γ1 0 1
γ2 α 0


γ1, γ2 ∈ R and α > 0.
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Two-input systems: proof sketch, cont.

Proof sketch (4/4)

Assume Σ
(2,0)
1,αγ and Σ

(2,0)
1,α′γ′ are equivalent. x y v

−ςy ςx w
0 0 ς

 0 0 0
γ1 0 1
γ2 α 0

 =

 yγ1 + vγ2 vα y
ςxγ1 + wγ2 wα ςx

ςγ2 ςα 0


=

 0 0 0
γ′1 0 1
γ′2 α′ 0


=⇒ α = α′ and γ = γ′.

Similarly, Σ
(2,0)
2,αγ and Σ

(2,0)
2,α′γ′ are equivalent only if α = α′ and

γ = γ′.

u2E2 ∈ 〈E1,E2〉 and u2(αE3) /∈ 〈E1,E2〉 =⇒ Σ
(2,0)
1,αγ cannot be

equivalent to Σ
(2,0)
2,α′γ′ .
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Two-input systems

Proposition

Every two-input inhomogeneous system is equivalent to exactly one of
the following systems

Σ
(2,1)
1,αβγ : αE3 + u1(E1 + γ1E2) + u2(βE2)

Σ
(2,1)
2,αβγ : βE1 + γ1E2 + γ2E3 + u1(αE3) + u2E2

Σ
(2,1)
3,αβγ : βE1 + γ1E2 + γ2E3 + u1(E2 + γ3E3) + u2(αE3).

Here α > 0, β 6= 0 and γ1, γ2, γ3 ∈ R, with different values of these
parameters yielding distinct (non-equivalent) class representatives.
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Three-input systems

Proposition

Every three-input (homogeneous) system is equivalent to exactly one of
the following systems

Σ
(3,0)
1,αβγ : γ1E1 + γ2E2 + γ3E3

+ u1(αE3) + u2(E1 + γ4E2) + u3(βE2)

Σ
(3,0)
2,αβγ : γ1E1 + γ2E2 + γ3E3

+ u1(E1 + γ4E2 + γ5E3) + u2(αE3) + u3(βE2)

Σ
(3,0)
3,αβγ : γ1E1 + γ2E2 + γ3E3

+ u1(E1 + γ4E2 + γ5E3) + u2(βE2 + γ6E3) + u3(αE3).

Here α > 0, β 6= 0 and γ1, γ2, γ3, γ4, γ5, γ6 ∈ R, with different values of
these parameters yielding distinct (non-equivalent) class representatives.
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Remarks

Classification

Number of parameters large.

Classification feasible on lower-dimensional Lie groups.

Alternative equivalences

Global state space equivalence.

Detached feedback equivalence.

SE(2): local classification is the same as a global one.
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