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Control systems

(Smooth) control system Σ = (G ,Ξ)

Family of (smooth) vector fields parametrised by controls

ġ = Ξ(g , u), Ξ : G × U → TG

G state space

U input space.

State space equivalence

Equivalence up to coordinate change in the state space.

One-to-one correspondence between trajectories.
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LiCA systems

Left-invariant control affine system Σ = (G ,Ξ)

G is a matrix Lie group

the dynamics
Ξ : G× R` → TG

is left invariant
(g , u) 7→ Ξ(g , u) = gΞ(1, u)

the parametrisation map

Ξ(1, · ) : R` → g

is affine
u 7→ A + u1B1 + . . .+ u`B` ∈ g.
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Trace

The trace Γ of the system Σ is

Γ = im(Ξ(1, · )) ⊂ g

= A + Γ0

= A + 〈B1, . . . ,B`〉 .

Σ is called

homogeneous if A ∈ Γ0

inhomogeneous if A 6∈ Γ0.

Σ has full rank provided the Lie algebra generated by Γ equals the
whole Lie algebra g

Lie(Γ) = g.
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Trajectories

Admissible controls

Piecewise continuous mappings

u(· ) : [0,T ]→ R`.

Trajectory

Absolutely continuous curve

g( · ) : [0,T ]→ G

satisfying a.e.
ġ(t) = Ξ(g(t), u(t)).
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State space equivalence

State space equivalence

Σ = (G ,Ξ) and Σ′ = (G ,Ξ′) are (locally) state space equivalent if

they have the same input space

exists a (local) diffeomorphism φ : N → N ′ s.t.

Tgφ·Ξ(g , u) = Ξ′(φ(g), u)

for g ∈ N and u ∈ R`.

Remark

Σ and Σ′ are equivalent at any two points ⇐⇒ they are equivalent at
1 ∈ G .
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Equivalence results

State space equivalence

The following diagram commutes

N × R`
φ×id R` //

Ξ

��

N ′ × R`

Ξ′

��

TN
Tφ

// TN ′

Proposition (Biggs/Remsing, 2012)

Σ and Σ′

are equivalent
⇐⇒

∃ψ ∈ Aut ( g) s.t.
ψ · Ξ (1, u) = Ξ′ (1, u)

for all u ∈ R`.
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The Euclidean group SE(2)

Euclidean group

SE(2) =

{[
1 0
v Rθ

]
∈ GL(3,R) | v ∈ R2×1 and Rθ ∈ SO(2)

}
v =

[
v1

v2

]
and Rθ =

[
cos θ − sin θ
sin θ cos θ

]
.

Lie algebra

se(2) =


 0 0 0

x1 0 −x3

x2 x3 0

 | x1, x2, x3 ∈ R

 .
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The Lie algebra se(2)

Standard basis for se(2) is

E1 =

 0 0 0
1 0 0
0 0 0

 , E2 =

 0 0 0
0 0 0
1 0 0

 , E3 =

 0 0 0
0 0 −1
0 1 0

 .
[E2,E3] = E1, [E3,E1] = E2, [E1,E2] = 0.

With respect to this basis, Aut (se (2)) is
 x y v
−ςy ςx w

0 0 ς

 | x , y , v ,w ∈ R, x2 + y 2 6= 0, ς = ±1

 .
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Matrix representation

Notation

A system Σ = (SE(2),Ξ) specified by

Ξ(1, u) =
3∑

i=1

aiEi + u1

3∑
i=1

biEi + u2

3∑
i=1

ciEi + u3

3∑
i=1

diEi

will be represented as  a1 b1 c1 d1

a2 b2 c2 d2

a3 b3 c3 d3

 .
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Classification of systems: general approach

Procedure

Make classifying conditions
(depends on commutator relations and Aut(g)).

Apply successive automorphisms
(simplify an arbitrary system).

Verify distinct classes
(check equivalence representatives are indeed distinct).
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Single-input systems

Proposition

Every single-input (inhomogeneous) system is equivalent to exactly one
of the following systems

Σ
(1,1)
1,α : αE3 + uE2

Σ
(1,1)
2,αγ : E2 + γ1E3 + u(αE3).

Here α > 0 and γ1 ∈ R, with different values of these parameters
yielding distinct (non-equivalent) class representatives.
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Single-input systems: proof sketch

Proof sketch (1/4)

Consider arbitrary Σ  a1 b1

a2 b2

a3 b3

 .
Case 1 : b3 = 0 and a3 6= 0 .1 0 − a1

a3

0 1 − a2

a3

0 0 1

 a1 b1

a2 b2

a3 0

 =

 0 b1

0 b2

a3 0

 .
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Single-input systems: proof sketch, cont.

Proof sketch (2/4)

For α = sgn(a3)a3 > 0 b2 −b1 0
sgn(a3)b1 sgn(a3)b2 0

0 0 sgn(a3)

 0 b1

0 b2

a3 0


=

 0 0
0 sgn(a3)(b2

1 + b2
2)

α 0




sgn(a3)
b2

1+b2
2

0 0

0 sgn(a3)
b2

1+b2
2

0

0 0 1


 0 0

0 sgn(a3)(b2
1 + b2

2)
α 0

 =

 0 0
0 1
α 0

 ·
Thus Σ (b3 = 0) is equivalent to Σ

(1,1)
1,α : αE3 + uE2.
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Single-input systems: proof sketch, cont.

Proof sketch (3/4)

Case 2 : b3 6= 0.

Similarly applying successive automorphisms shows any such Σ is
equivalent to  0 0

1 0
γ1 α


γ1 ∈ R and α > 0.
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Single-input systems: proof sketch, cont.

Proof sketch (4/4)

Assume Σ
(1,1)
1,α and Σ

(1,1)
1,α′ are equivalent x y v

−ςy ςx w
0 0 ς

 0 0
0 1
α 0

 =

 vα y
wα ςx
ςα 0

 =

 0 0
0 1
α′ 0


=⇒ α = α′.

Similarly, Σ
(1,1)
2,αγ and Σ

(1,1)
2,α′γ′ are equivalent only if α = α′ and

γ = γ′.

uE2 ∈ 〈E1,E2〉 and u(αE3) /∈ 〈E1,E2〉 =⇒ Σ
(1,1)
1,α and Σ

(1,1)
2,α′γ′

cannot be equivalent.
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Two-input systems

Proposition

Every two-input homogeneous system is equivalent to exactly one of the
following systems

Σ
(2,0)
1,αγ : γ1E2 + γ2E3 + u1(αE3) + u2E2

Σ
(2,0)
2,αγ : γ1E2 + γ2E3 + u1(E2 + γ3E3) + u2(αE3).

Here α > 0 and γ1, γ2, γ3 ∈ R, with different values of these parameters
yielding distinct (non-equivalent) class representatives.

R.M. Adams, R. Biggs and C.C. Remsing (Rhodes University) Equivalence of Control Systems on the Euclidean Group SE (2)



Introduction
Systems on SE(2)

Conclusion

The Euclidean group
Equivalence of systems

Two-input systems: proof sketch

Proof sketch (1/4)

Consider arbitrary Σ  a1 b1 c1

a2 b2 c2

a3 b3 c3

 .
Case 1 : c3 6= 01 0 − c1

c3

0 1 − c2

c3

0 0 1

 a1 b1 c1

a2 b2 c2

a3 b3 c3

 =

 a′1 b′1 0
a′2 b′2 0
a3 b3 c3

 .
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Two-input systems: proof sketch, cont.

Proof sketch (2/4)

For α = sgn(c3)c3 > 0 and γ1, γ2, γ3 ∈ R
sgn(c3)b′

2

b′2
1 +b′2

2
− sgn(c3)b′

1

b′2
1 +b′2

2
0

− b′
1

b′2
1 +b′2

2

b′
2

b′2
1 +b′2

2
0

0 0 sgn(c3)


 a′1 b′1 0

a′2 b′2 0
a3 b3 c3



=

 a′1b
′
2−a

′
2b

′
1

b′2
1 +b′2

2
0 0

γ1 1 0
γ2 γ3 α


Thus Σ is equivalent to Σ

(2,0)
2,αγ .
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Two-input systems: proof sketch, cont.

Proof sketch (3/4)

Case 2 : c3 = 0 and b3 6= 0

Similarly application of successive automorphisms shows any such Σ
is equivalent to  0 0 0

γ1 0 1
γ2 α 0


γ1, γ2 ∈ R and α > 0.
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Two-input systems: proof sketch, cont.

Proof sketch (4/4)

Assume Σ
(2,0)
1,αγ and Σ

(2,0)
1,α′γ′ are equivalent. x y v

−ςy ςx w
0 0 ς

 0 0 0
γ1 0 1
γ2 α 0

 =

 yγ1 + vγ2 vα y
ςxγ1 + wγ2 wα ςx

ςγ2 ςα 0


=

 0 0 0
γ′1 0 1
γ′2 α′ 0


=⇒ α = α′ and γ = γ′.

Similarly, Σ
(2,0)
2,αγ and Σ

(2,0)
2,α′γ′ are equivalent only if α = α′ and

γ = γ′.

u2E2 ∈ 〈E1,E2〉 and u2(αE3) /∈ 〈E1,E2〉 =⇒ Σ
(2,0)
1,αγ cannot be

equivalent to Σ
(2,0)
2,α′γ′ .
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Two-input systems

Proposition

Every two-input inhomogeneous system is equivalent to exactly one of
the following systems

Σ
(2,1)
1,αβγ : αE3 + u1(E1 + γ1E2) + u2(βE2)

Σ
(2,1)
2,αβγ : βE1 + γ1E2 + γ2E3 + u1(αE3) + u2E2

Σ
(2,1)
3,αβγ : βE1 + γ1E2 + γ2E3 + u1(E2 + γ3E3) + u2(αE3).

Here α > 0, β 6= 0 and γ1, γ2, γ3 ∈ R, with different values of these
parameters yielding distinct (non-equivalent) class representatives.
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Three-input systems

Proposition

Every three-input (homogeneous) system is equivalent to exactly one of
the following systems

Σ
(3,0)
1,αβγ : γ1E1 + γ2E2 + γ3E3

+ u1(αE3) + u2(E1 + γ4E2) + u3(βE2)

Σ
(3,0)
2,αβγ : γ1E1 + γ2E2 + γ3E3

+ u1(E1 + γ4E2 + γ5E3) + u2(αE3) + u3(βE2)

Σ
(3,0)
3,αβγ : γ1E1 + γ2E2 + γ3E3

+ u1(E1 + γ4E2 + γ5E3) + u2(βE2 + γ6E3) + u3(αE3).

Here α > 0, β 6= 0 and γ1, γ2, γ3, γ4, γ5, γ6 ∈ R, with different values of
these parameters yielding distinct (non-equivalent) class representatives.
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Remarks

Classification

Number of parameters large.

Classification feasible on lower-dimensional Lie groups.

Alternative equivalences

Global state space equivalence.

Detached feedback equivalence.

SE(2): local classification is the same as a global one.
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