On the Equivalence of Control Systems on Lie Groups

Rory Biggs* and Claudiu C. Remsing

Department of Mathematics (Pure and Applied)
Rhodes University

Joint Congress of SAMS and AMS, Port Elizabeth
29 November - 3 December, 2011
On the Equivalence of Control Systems on Lie Groups

Outline

1. Introduction
 - Control systems
 - Equivalence of control systems

2. Invariant systems and equivalence
 - Left-invariant control systems
 - State space equivalence
 - Detached feedback equivalence

3. Conclusion
 - Summary
 - Final remark
Outline

1 Introduction
 - Control systems
 - Equivalence of control systems

2 Invariant systems and equivalence
 - Left-invariant control systems
 - State space equivalence
 - Detached feedback equivalence

3 Conclusion
 - Summary
 - Final remark
(Smooth) control system $\Sigma = (M, \Xi)$

$$\dot{x} = \Xi(x, u), \quad x \in M, \ u \in U.$$
Trajectories and controllability

Admissible controls
\[u(\cdot) : [0, T] \to U \]
- piecewise continuous \(U \)-valued maps.

Trajectory
\[g(\cdot) : [0, T] \to M \]
- absolutely continuous curve satisfying (a.e.)
 \[\dot{x}(t) = \Xi(x(t), u(t)). \]

\(\Sigma \) is controllable
For all \(x_0, x_1 \in M \), there exists a trajectory \(x(\cdot) \) such that
\[x(0) = x_0 \quad \text{and} \quad x(T) = x_1. \]
Equivalence of control systems

<table>
<thead>
<tr>
<th>State space equivalence (S-equivalence)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equivalence up to coordinate changes in the state space.</td>
</tr>
<tr>
<td>One-to-one correspondence between trajectories.</td>
</tr>
<tr>
<td>Well understood.</td>
</tr>
<tr>
<td>Very strong equivalence relation.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Feedback equivalence (F-equivalence)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weaker relation.</td>
</tr>
<tr>
<td>Crucial role in control theory – esp. in feedback linearization.</td>
</tr>
</tbody>
</table>
Outline

1. Introduction
 - Control systems
 - Equivalence of control systems

2. Invariant systems and equivalence
 - Left-invariant control systems
 - State space equivalence
 - Detached feedback equivalence

3. Conclusion
 - Summary
 - Final remark
Left-invariant control systems

Left-invariant control system $\Sigma = (G, \Xi)$

- Evolves on a (real) Lie group G.
- Dynamics is invariant under left translations, i.e.,
 \[\Xi(g, u) = T_1 L_g \cdot \Xi(1, u) = g \Xi(1, u). \]

- Parametrisation map $\Xi(1, \cdot) : U \to g$ is an embedding.
- Trace $\Gamma = \text{im} \Xi(1, \cdot) \subseteq g$.

Remark

- $T_1 G = g$.
- Trivialise tangent bundle: $TG \cong G \times g$.

R. Biggs and C.C. Remsing (Rhodes University) On the Equivalence of Control Systems on Lie Groups
Left-invariant control affine systems

Dynamics affine:

$$\Xi : G \times \mathbb{R}^\ell \to TG$$

$$(g, u) \mapsto g (A + u_1 B_1 + \cdots + u_\ell B_\ell).$$

- Γ is an affine subspace of g.
- Extensively used in many practical control applications.
Category LiCS

- **Object**: left-invariant control system $\Sigma = (G, \Xi)$.
- **Morphism** $\Phi : \Sigma \rightarrow \Sigma'$: smooth map

\[
\Phi = (\phi, \varphi) : G \times U \rightarrow G' \times U'
\]

\[
(g, u) \mapsto (\phi(g), \varphi(g, u))
\]

such that following diagram commutes

\[
\begin{array}{ccc}
G \times U & \xrightarrow{\Phi} & G' \times U' \\
\downarrow \Xi & & \downarrow \Xi' \\
TG & \overset{T\phi}{\longrightarrow} & TG'
\end{array}
\]
A useful restriction

If $\Sigma = (G, \Xi)$ is controllable
- G is connected.
- $\text{Lie}(\Gamma) = g$.

Assumption
Systems are **connected** and have **full rank**.
Local state space equivalence (S_{loc}-equivalence)

$\Sigma = (G, \Xi)$ and $\Sigma' = (G', \Xi')$ are S_{loc}-equivalent if

- they have the same input space U
- exists a (local) diffeomorphism $\phi : N \to N'$ such that

$$T_{g\phi} \cdot \Xi(g, u) = \Xi'(\phi(g), u)$$

for $g \in N$ and $u \in U$.

State space equivalence (S-equivalence)

This happens globally (i.e., $N = G$, $N' = G'$).
May assume N and N' are open neighbourhoods of identity.

- Left translation $L_a : g \mapsto ag$ defines S_{loc}-equivalence.
Characterisation of S_{loc}-equivalence

Theorem

\[
\Sigma \text{ and } \Sigma' \quad S_{loc}\text{-equivalent} \iff \psi : \mathfrak{g} \to \mathfrak{g}' \\
\psi \cdot \Xi (1, u) = \Xi' (1, u)
\]

Proof sketch

Assume $\phi : N \to N', \phi_* \Xi_u = \Xi'_u$.

- $\phi_* [\Xi_u, \Xi_v] = [\phi_* \Xi_u, \phi_* \Xi_v]$.
- $\Gamma = \{\Xi_u \mid u \in U\}$ generates \mathfrak{g}.
- $T_1 \phi$ is the required isomorphism.

Assume $\psi \cdot \Xi (1, u) = \Xi' (1, u)$

- Exists a local isomorphism $\phi : N \to N'$ such that $T_1 \phi = \psi$.
- Simple calculation shows ϕ defines S_{loc}-equivalence.
Characterisation of S-equivalence

Theorem

Σ and Σ' are S-equivalent if and only if there exists a diffeomorphism $\phi : G \to G'$ such that

$$T_1\phi \cdot \Xi (1, u) = \Xi' (1, u)$$

Corollary

If Σ and Σ' are S_{loc}-equivalent and G and G' are simply connected, then Σ and Σ' are S-equivalent.
Local detached feedback equivalence (DF_{loc}-equivalence)

$\Sigma = (G, \Xi)$ and $\Sigma' = (G', \Xi')$ are DF_{loc}-equivalent if

- exists a (local) diffeomorphism

$$\Phi = \phi \times \varphi : N \times U \rightarrow N' \times U'$$

$$(g, u) \mapsto (\phi(g), \varphi(u))$$

such that

$$T_g \Phi \cdot \Xi (g, u) = \Xi' (\phi(g), \varphi(u))$$

for $g \in N$ and $u \in U$.

R. Biggs and C.C. Remsing (Rhodes University) On the Equivalence of Control Systems on Lie Groups
Detached feedback equivalence

Commutative diagram (DF_{loc}-equivalence)

\[
\begin{array}{ccc}
N \times U & \xrightarrow{\phi \times \varphi} & N' \times U' \\
\downarrow \cong & & \downarrow \cong' \\
TN & \xrightarrow{T\phi} & TN'
\end{array}
\]

Detached feedback equivalence (DF-equivalence)

This happens globally (i.e., $N = G$, $N' = G'$).
Characterisation of DF_{loc}-equivalence

Reparametrisations

$\hat{\Sigma} = (G, \hat{\Xi})$ is a reparametrisation of $\Sigma = (G, \Xi)$ if $\hat{\Gamma} = \Gamma$.

Any DF_{loc}-equivalence can be decomposed into

- a reparametrisation
- and a S_{loc}-equivalence.

Theorem

Σ and Σ'

DF_{loc}-equivalent \iff $\psi : g \to g'$

$\psi \cdot \Gamma = \Gamma'$
Characterisation of DF_{loc}-equivalence

Proof sketch

Assume Σ and Σ' are equivalent.

- Exists reparametrisation $\hat{\Sigma}$ (of Σ) S_{loc}-equivalent to Σ'.
- $\psi \cdot \hat{\Xi}(1, u) = \Xi'(1, u)$.
- Now $\hat{\Gamma} = \Gamma$, so $\psi \cdot \Gamma = \Gamma'$.

Assume $\psi \cdot \Gamma = \Gamma'$.

- We construct reparametrisation $\hat{\Sigma}'$ of Σ' such that $\psi \cdot \Xi(1, u) = \hat{\Xi}'(1, u)$.
- Σ and $\hat{\Sigma}'$ are S_{loc}-equivalent.
- Σ and Σ' are DF_{loc}-equivalent.
Characterisation of DF-equivalence

Theorem

Σ and Σ'

DF-equivalent \iff $\phi : G \to G'$

$T_1\phi \cdot \Gamma = \Gamma'$

Corollary

Σ and Σ'

DF_{loc}-equivalent

G and G' simply connected

\Rightarrow Σ and Σ'

DF-equivalent
Outline

1. Introduction
 - Control systems
 - Equivalence of control systems

2. Invariant systems and equivalence
 - Left-invariant control systems
 - State space equivalence
 - Detached feedback equivalence

3. Conclusion
 - Summary
 - Final remark
Characterisation

<table>
<thead>
<tr>
<th>Type</th>
<th>Characterisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-equiv</td>
<td>$T_1 \phi \cdot \Xi (1, \cdot) = \Xi' (1, \cdot)$</td>
</tr>
<tr>
<td>DF-equiv</td>
<td>$T_1 \phi \cdot \Gamma = \Gamma'$</td>
</tr>
<tr>
<td>S_{loc}-equiv</td>
<td>$\psi \cdot \Xi (1, \cdot) = \Xi' (1, \cdot)$</td>
</tr>
<tr>
<td>DF_{loc}-equiv</td>
<td>$\psi \cdot \Gamma = \Gamma'$</td>
</tr>
</tbody>
</table>
Classification of affine systems (under DF_{loc}-equivalence)

Classification of systems reduces to classification of affine subspaces

$\Sigma \sim \Sigma' \iff \Gamma \sim \Gamma'$.

- Classification of subclasses of systems feasible.
- Classified all systems evolving on 3D Lie groups.
References

A.A. Agrachev and Y.L. Sachkov,
Control Theory from the Geometric Viewpoint,

R. Biggs and C.C. Remsing,
A category of control systems,

R. Biggs and C.C. Remsing,
On the equivalence of control systems on Lie groups,

V. Jurdjevic,
Geometric Control Theory,
Example

Heisenberg group

\[H_3 = \left\{ \begin{bmatrix} 1 & y & x \\ 0 & 1 & z \\ 0 & 0 & 1 \end{bmatrix} \Bigg| x, y, z, \in \mathbb{R} \right\} \]

Lie algebra \(h_3 \)

\[E_1 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad E_2 = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad E_3 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \]

\[[E_2, E_3] = E_1, \quad [E_3, E_1] = 0, \quad [E_1, E_2] = 0. \]
Classification of affine subspaces of \mathfrak{h}_3

\begin{align*}
\Gamma_1 &= E_2 + \langle E_3 \rangle \\
\Gamma_3 &= E_1 + \langle E_2, E_3 \rangle \\
\Gamma_2 &= \langle E_2, E_3 \rangle \\
\Gamma_4 &= E_3 + \langle E_1, E_2 \rangle
\end{align*}

Classification of systems $\Sigma = (H_3, \Xi)$, under DF_{loc}-equivalence

\begin{align*}
\Xi_1(g, u) &= g(E_2 + uE_3) \\
\Xi_2(g, u) &= g(u_1 E_2 + u_2 E_3) \\
\Xi_3(g, u) &= g(E_1 + u_1 E_2 + u_2 E_3) \\
\Xi_4(g, u) &= g(E_3 + u_1 E_1 + u_2 E_3)
\end{align*}