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Control systems

(Smooth) control system Σ = (M,Ξ)

ẋ = Ξ (x , u), x ∈ M, u ∈ U.

state space M

input space U

smooth manifolds

dynamics
Ξ : M × U → T M

family of smooth vector fields
on M, parametrised smoothly
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Trajectories and controllability

Admissible controls u(·) : [0,T ] → U

piecewise continuous U-valued maps.

Trajectory g(·) : [0,T ] → M

absolutely continuous curve satisfying (a.e.)

ẋ(t) = Ξ (x(t), u(t)).

Σ is controllable

For all x0, x1 ∈ M, there exists a trajectory x(·) such that
x(0) = x0 and x(T ) = x1.
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Equivalence of control systems

State space equivalence (S-equivalence)

Equivalence up to coordinate changes in the state space.

One-to-one correspondence between trajectories.

Well understood.

Very strong equivalence relation.

Feedback equivalence (F -equivalence)

Weaker relation.

Crucial role in control theory – esp. in feedback
linearization.
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Left-invariant control systems

Left-invariant control system Σ = (G,Ξ)

Evolves on a (real) Lie group G.

Dynamics is invariant under left translations, i.e.,

Ξ(g, u) = T1Lg · Ξ(1, u) = g Ξ (1, u).

Parametrisation map Ξ (1, ·) : U → g is an embedding.

Trace Γ = imΞ (1, ·) ⊆ g.

Remark

T1G = g.

Trivialise tangent bundle: T G ∼= G × g.
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Left-invariant control affine systems

Left-invariant control affine systems

Dynamics affine:

Ξ : G × R
ℓ → T G

(g, u) 7→ g (A + u1B1 + · · ·+ uℓBℓ) .

Γ is an affine subspace of g.

Extensively used in many practical control applications.
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Category of left-invariant control systems

Category LiCS

Object: left-invariant control system Σ = (G,Ξ).

Morphism Φ : Σ → Σ′: smooth map

Φ = (φ, ϕ) : G × U → G′ × U ′

(g, u) 7→ (φ(g), ϕ(g, u))

such that following diagram commutes

G × U Φ
//

Ξ

��

G′ × U ′

Ξ
′

��

T G
Tφ

// T G′
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A useful restriction

If Σ = (G,Ξ) is controllable

G is connected.

Lie (Γ) = g.

Assumption

Systems are connected and have full rank.

R. Biggs and C.C. Remsing (Rhodes University) On the Equivalence of Control Systems on Lie Groups



Introduction
Invariant systems and equivalence

Conclusion

Left-invariant control systems
State space equivalence
Detached feedback equivalence

State space equivalence

Local state space equivalence (Sloc-equivalence)

Σ = (G,Ξ) and Σ′ = (G′,Ξ′) are Sloc-equivalent if

they have the same input space U

exists a (local) diffeomorphism φ : N → N ′ such that

Tgφ · Ξ (g, u) = Ξ′ (φ(g), u)

for g ∈ N and u ∈ U.

State space equivalence (S-equivalence)

This happens globally (i.e., N = G, N ′ = G′).

R. Biggs and C.C. Remsing (Rhodes University) On the Equivalence of Control Systems on Lie Groups



Introduction
Invariant systems and equivalence

Conclusion

Left-invariant control systems
State space equivalence
Detached feedback equivalence

State space equivalence

Commutative diagram (Sloc-equivalence)

N × U
φ×idU

//

Ξ

��

N ′ × U

Ξ
′

��

TN
Tφ

// TN ′

May assume N and N ′ are open neighbourhoods of identity.

Left translation La : g 7→ ag defines Sloc-equivalence.
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Characterisation of Sloc-equivalence

Theorem

Σ and Σ′

Sloc-equivalent
⇐⇒

ψ : g → g′

ψ · Ξ (1, u) = Ξ′ (1, u)

Proof sketch

Assume φ : N → N ′ , φ∗Ξu = Ξ′

u.

φ∗[Ξu,Ξv ] = [φ∗Ξu, φ∗Ξv ].

Γ = {Ξu | u ∈ U} generates g.

T1φ is the required isomorphism.

Assume ψ · Ξ (1, u) = Ξ′ (1, u)

Exists a local isomorphism φ : N → N ′ such that T1φ = ψ.

Simple calculation shows φ defines Sloc-equivalence.
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Characterisation of S-equivalence

Theorem

Σ and Σ′

S-equivalent
⇐⇒

φ : G → G′

T1φ · Ξ (1, u) = Ξ′ (1, u)

Corollary

Σ and Σ′ Sloc-equivalent

G and G′ simply connected

}
⇒

Σ and Σ′

S-equivalent
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Detached feedback equivalence

Local detached feedback equivalence (DFloc-equivalence)

Σ = (G,Ξ) and Σ′ = (G′,Ξ′) are DFloc-equivalent if

exists a (local) diffeomorphism

Φ = φ× ϕ : N × U → N ′ × U ′

(g, u) 7→ (φ(g), ϕ(u))

such that
Tgφ · Ξ (g, u) = Ξ′ (φ(g), ϕ(u))

for g ∈ N and u ∈ U.
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Detached feedback equivalence

Commutative diagram (DFloc-equivalence)

N × U
φ×ϕ

//

Ξ

��

N ′ × U ′

Ξ
′

��

TN
Tφ

// TN ′

Detached feedback equivalence (DF -equivalence)

This happens globally (i.e., N = G, N ′ = G′).
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Characterisation of DFloc-equivalence

Reparametrisations

Σ̂ = (G, Ξ̂) is a reparametrisation of Σ = (G,Ξ) if Γ̂ = Γ.

Any DFloc-equivalence can be decomposed into

a reparametrisation

and a Sloc-equivalence.

Theorem

Σ and Σ′

DFloc-equivalent
⇐⇒

ψ : g → g′

ψ · Γ = Γ′
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Characterisation of DFloc-equivalence

Proof sketch

Assume Σ and Σ′ are equivalent.

Exists reparametrisation Σ̂ (of Σ) Sloc-equivalent to Σ′.

ψ · Ξ̂(1, u) = Ξ′(1, u).

Now Γ̂ = Γ, so ψ · Γ = Γ′.

Assume ψ · Γ = Γ′.

We construct reparametrisation Σ̂′ of Σ′ such that

ψ · Ξ(1, u) = Ξ̂′(1, u).

Σ and Σ̂′ are Sloc-equivalent.

Σ and Σ′ are DFloc-equivalent.
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Characterisation of DF -equivalence

Theorem

Σ and Σ′

DF -equivalent
⇐⇒

φ : G → G′

T1φ · Γ = Γ′

Corollary

Σ and Σ′ DFloc-equivalent

G and G′ simply connected

}
⇒

Σ and Σ′

DF -equivalent
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Summary

Tabulation of results

Characterisation

S-equiv T1φ · Ξ (1, ·) = Ξ′ (1, ·)
φ : G → G′

DF -equiv T1φ · Γ = Γ′

Sloc-equiv ψ · Ξ (1, ·) = Ξ′ (1, ·)
ψ : g → g′

DFloc-equiv ψ · Γ = Γ′
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Final remark

Classification of affine systems (under DFloc-equivalence)

Classification of systems
reduces to

classification of affine subspaces

Σ ∼ Σ′ ⇐⇒ Γ ∼ Γ′.

Classification of subclasses of systems feasible.

Classified all systems evolving on 3D Lie groups.
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Example

Heisenberg group

H3 =








1 y x
0 1 z
0 0 1




∣∣∣ x , y , z,∈ R





Lie algebra h3

E1 =




0 0 1
0 0 0
0 0 0


 , E2 =




0 1 0
0 0 0
0 0 0


 , E3 =




0 0 0
0 0 1
0 0 0




[E2,E3] = E1, [E3,E1] = 0, [E1,E2] = 0.
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Example

Classification of affine subspaces of h3

Γ1 = E2 + 〈E3〉

Γ3 = E1 + 〈E2,E3〉

Γ2 = 〈E2,E3〉

Γ4 = E3 + 〈E1,E2〉

Classification of systems Σ = (H3,Ξ), under DFloc-equivalence

Ξ1(g, u) = g(E2 + uE3)

Ξ2(g, u) = g(u1E2 + u2E3)

Ξ3(g, u) = g(E1 + u1E2 + u2E3)

Ξ4(g, u) = g(E3 + u1E1 + u2E3)
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