

Cost-Extended Control Systems on Lie Groups

Rory Biggs

Mathematical Seminar, 28 March 2012

Rory Biggs Cost-Extended Control Systems on Lie Groups

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆□ ▶ ◆ ○ ●

Introduction Equivalence Pontryagin lift

Outline

Introduction

- Invariant control systems
- Optimal control problems
- Cost-extended systems

2 Equivalence

- Introduction
- Results
- Examples

3 Pontryagin lift

- Hamilton-Poisson systems
- The Pontryagin lift
- Examples

ヨト イヨト ヨヨ のへの

Introduction	
Equivalence	Optimal control problems
Pontryagin lift	Cost-extended systems

Outline

Introduction

- Invariant control systems
- Optimal control problems
- Cost-extended systems

2 Equivalence

- Introduction
- Results
- Examples

Pontryagin lift

- Hamilton-Poisson systems
- The Pontryagin lift
- Examples

★ E ► ★ E ► E E < 2000</p>

Introduction	Invariant control syster
Equivalence	Optimal control probler
Pontryagin lift	Cost-extended systems

Invariant control affine systems

Left-invariant control affine system $\Sigma = (G, \Xi)$

 $\dot{g} = \Xi \left(g, u
ight) = g \left(A + u_1 B_1 + \dots + u_\ell B_\ell
ight), \qquad g \in \mathsf{G}, \; u \in \mathbb{R}^\ell$

state space G

Lie group

dynamics $\Xi: \mathbf{G} \times \mathbb{R}^{\ell} \to T\mathbf{G}$

- left invariant: $\Xi(g, u) = g \Xi(\mathbf{1}, u)$
- parametrization map is affine and injective:

 $\Xi(\mathbf{1},\cdot):(u_1,\ldots,u_\ell)\mapsto A+u_1B_1+\cdots+u_\ell B_\ell\ \in\mathfrak{g}.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□□ ◇◇◇

Introduction	Invariant control systems
Equivalence	Optimal control problems
Pontryagin lift	Cost-extended systems

Trajectories

Admissible controls $u(\cdot): [0, T] \to \mathbb{R}^{\ell}$

• piecewise continuous \mathbb{R}^{ℓ} -valued maps.

Trajectory $g(\cdot) : [0, T] \rightarrow G$

• absolutely continuous curve satisfying (a.e.)

$$\dot{g}(t) = \Xi(g(t), u(t)).$$

Pair $(g(\cdot), u(\cdot))$ is called a controlled trajectory.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□□ ◇◇◇

Introduction	Invariant control systems
Equivalence	Optimal control problems
Pontryagin lift	Cost-extended systems

Controllability

Σ is controllable

For all $g_0, g_1 \in G$, there exists a trajectory $g(\cdot)$ such that $g(0) = g_0$ and $g(T) = g_1$.

If $\Sigma = (G, \Xi)$ is controllable

• G is connected.

•
$$A, B_1, \ldots, B_\ell$$
 generate \mathfrak{g}

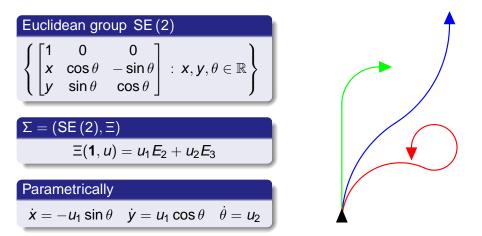
Assumption

Systems are connected and have full rank.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆□ ▶ ◆ ○ ●

Introduction	Invariant control systems
Equivalence	Optimal control problems
Pontryagin lift	Cost-extended systems

Example



 $\mathfrak{se}(2):$ $[E_2, E_3] = E_1$ $[E_3, E_1] = E_2$ $[E_1, E_2] = 0$

Rory Biggs Cost-Extended Control Systems on Lie Groups

<ロ> <()</p>

Introduction	Invariant control systems
Equivalence	Optimal control problems
Pontryagin lift	Cost-extended systems

Equivalence

Detached feedback equivalence (DF-equivalence)

 $\Sigma = (G, \Xi)$ and $\Sigma' = (G', \Xi')$ are $\emph{DF}\text{-equivalent}$ if

there exist diffeomorphisms

$$\phi: \mathbf{G} \to \mathbf{G}', \qquad \qquad \varphi: \mathbb{R}^{\ell} \to \mathbb{R}^{\ell}$$

such that

$$T_{g}\phi\cdot \Xi(g,u)=\Xi'(\phi(g),arphi(u)), \quad g\in\mathsf{G},\ u\in\mathbb{R}^{\ell}.$$

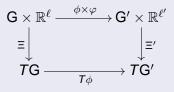
Establishes one-to-one correspondence between trajectories.

<ロ> <同> <同> < 回> < 回> < 回> < 回</p>

Introduction	Invariant control systems
Equivalence	Optimal control problems
Pontryagin lift	Cost-extended systems

Equivalence

Commutative diagram (DF-equivalence)



The trace of Σ is $\Gamma = \operatorname{im} \Xi(\mathbf{1}, \cdot) = \mathbf{A} + \langle \mathbf{B}_1, \dots, \mathbf{B}_\ell \rangle$.

Proposition

 Σ and Σ' DF-equivalent

$$\exists LGrp iso \phi : G \to G' T_1 \phi \cdot \Gamma = \Gamma'$$

Rory Biggs Cost-Extended Control Systems on Lie Groups

Introduction	Invariant control syste
Equivalence	Optimal control proble
ontryagin lift	Cost-extended syster

Problem statement

Now consider invariant optimal control problem on system.

Invariant fixed time problem

() left invariant control system $\Sigma = (G, \Xi)$

- **2** boundary data $\mathcal{B}(g_0, g_1, T)$
 - initial state $g_0 \in G$
 - target state $g_1 \in G$
 - fixed terminal time T > 0
- affine quadratic cost

$$\chi: \boldsymbol{u} \mapsto (\boldsymbol{u}-\mu)^{ op} \ \mathsf{Q} \ (\boldsymbol{u}-\mu), \qquad \boldsymbol{u}, \mu \in \mathbb{R}^{\ell}, \ \mathsf{Q} \ ext{is PD}.$$

◆□▶ ◆冊▶ ★ヨ▶ ★目★ 少々⊙

Introduction	Invariant control systems
Equivalence	Optimal control problem
Pontryagin lift	Cost-extended systems

Problem statement

Explicitly

Minimize $\mathcal{J} = \int_0^T \chi(u(t)) dt$ over controlled trajectories of Σ subject to boundary data.

Formal statement

$$\left\{egin{array}{ll} \dot{g} = g\left(\mathsf{A} + u_1 \mathsf{B}_1 + \dots + u_\ell \mathsf{B}_\ell
ight), & g \in \mathsf{G} \ g(0) = g_0, & g(T) = g_1 \ \mathcal{J} = \int_0^T (u(t) - \mu)^ op \mathsf{Q}\left(u(t) - \mu
ight) \, dt o \min t. \end{array}
ight.$$

Introduction	
Equivalence	Optimal control problems
Pontryagin lift	Cost-extended systems

Example

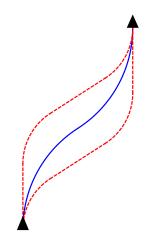
Problem

$$\dot{g} = g(u_1E_2 + u_2E_3), \quad g \in \mathsf{SE}(2)$$

 $g(0) = \mathbf{1}, \quad g(1) = g_1$
 $\int_0^1 (c_1u_1(t)^2 + c_2u_2(t)^2) \, dt o \min$

Parametrically

$$\begin{aligned} \dot{x} &= -u_1 \sin \theta \quad \dot{y} = u_1 \cos \theta \quad \dot{\theta} = u_2 \\ x(0) &= 0, \ x(1) = x_1, \ \dots \\ \int_0^1 \left(c_1 u_1(t)^2 + c_2 u_2(t)^2 \right) \ dt \to \min \end{aligned}$$



うせん 正正 スポッスポッス セッ

Introduction	Invariant control syster
Equivalence	Optimal control probler
Pontryagin lift	Cost-extended system

Pontryagin Maximum Principle

Associate Hamiltonian function on $T^*G = G \times \mathfrak{g}^*$:

$$H^{\lambda}_{u}(\xi) = \lambda \, \chi(u) + p \, (\Xi(\mathbf{1}, u)), \qquad \xi = (g, p) \in T^* \mathsf{G}.$$

Maximum Principle

If $(\bar{g}(\cdot), \bar{u}(\cdot))$ is a solution, then there exists a curve $\xi(\cdot) : [0, T] \to T^*G, \qquad \xi(t) \in T^*_{\bar{g}(t)}G, \ t \in [0, T]$ and $\lambda \leq 0$, such that (for almost every $t \in [0, T]$):

$$\begin{aligned} (\lambda, \xi(t)) &\neq (0, 0) \\ \dot{\xi}(t) &= \vec{H}_{\vec{u}(t)}^{\lambda}(\xi(t)) \\ H_{\vec{u}(t)}^{\lambda}(\xi(t)) &= \max_{u} H_{u}^{\lambda}(\xi(t)) = \text{constant.} \end{aligned}$$

<ロ> < 同> < 同> < 回> < 回> < 回 > 三日

Introduction	Invariant control system
Equivalence	Optimal control proble
Pontryagin lift	Cost-extended system

Cost-extended systems

Aim

Introduce equivalence.

Cost-extended system (Σ, χ)

A pair, consisting of

- a system Σ
- an admissible cost χ .

 (Σ, χ) + boundary data = optimal control problem.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆□ ▶ ◆ ○ ●

Equivalence Re	
Pontryagin lift Ex	amples

Outline

Introduction

- Invariant control systems
- Optimal control problems
- Cost-extended systems

2 Equivalence

- Introduction
- Results
- Examples

B Pontryagin lift

- Hamilton-Poisson systems
- The Pontryagin lift
- Examples

Introduction Equivalence	Introduction Results
Pontryagin lift	Examples

Cost equivalence

Cost equivalence (C-equivalence)

 (Σ,χ) and (Σ',χ') are <code>C-equivalent</code> if there exist

- a Lie group isomorphism $\phi: \mathbf{G} \to \mathbf{G}'$
- an affine isomorphism $\varphi: \mathbb{R}^{\ell} \to \mathbb{R}^{\ell'}$

such that

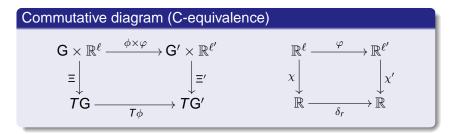
$$T_{g}\phi \cdot \Xi(g, u) = \Xi(\phi(g), \varphi(u))$$

$$\chi' \circ \varphi = r\chi, \quad \text{for some } r > 0.$$

<ロ> <同> <同> < 回> < 回> < 回> < 回</p>

Introduction	Introduction
Equivalence	Results
Pontryagin lift	Examples

Cost equivalence



Remark

• Each cost χ induces a strict partial ordering on \mathbb{R}^{ℓ}

$$u < v \iff \chi(u) < \chi(v).$$

• χ and χ' induce same strict partial ordering $\iff \chi = r\chi'$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□□ ◇◇◇

Introduction	
Equivalence	Results
ontryagin lift	

Characterisation

Proposition

 (Σ, χ) and (Σ', χ') are *C*-equivalent if and only if there exist a Lie group isomorphism $\phi : G \to G'$ and $\varphi \in Aff(\mathbb{R}^{\ell})$ such that $T_{\mathbf{1}}\phi \cdot \Xi(\mathbf{1}, u) = \Xi'(\mathbf{1}', \varphi(u))$ and $\chi' \circ \varphi = r\chi$ for some r > 0.

Corollary

 Σ and Σ' DF-equivalent w.r.t. $\varphi \in \operatorname{Aff}(\mathbb{R}^{\ell})$

$$(\Sigma, \chi \circ \varphi)$$
 and (Σ', χ)
C-equivalent for any χ

Introduction Equivalence	Introduction Results Examples	
, agin inc		

Reduction of cost

Proposition

Any cost-extended system (Σ, χ) is C-equivalent to a system (Σ', χ') , where G' = G, $\ell' = \ell$, $\Gamma' = \Gamma$, and $\chi'(u) = u^{\top}u$.

Proof: Let $\chi(u) = (u - \mu)^{\top} Q(u - \mu)$. As Q is symmetric and positive-definite, there exists (by Sylvester's law of inertia) a non-singular real matrix R such that $R^{\top}QR = I$. Let

$$\begin{array}{c} \varphi: \mathbb{R}^{\ell} \to \mathbb{R}^{\ell}, \quad u \mapsto \mathcal{R}u + \mu \\ \Xi': \mathsf{G} \times \mathbb{R}^{\ell} \to T\mathsf{G}, \quad \Xi'(\mathsf{1}, u) = \Xi(\mathsf{1}, \varphi(u)) \end{array}$$

Then

$$T_{\mathbf{1}} \operatorname{id}_{\mathsf{G}} \cdot \Xi'(\mathbf{1}, u) = \Xi(\mathbf{1}, \varphi(u))$$
$$(\chi \circ \varphi)(u) = u^{\top} R^{\top} Q R u = u^{\top} u.$$

Virtually optimal and extremal trajectories

Controlled trajectory $(g(\cdot), u(\cdot))$ over interval [0, T].

VOCTs and ECTs

- Virtually optimal controlled trajectory (VOCT)
 - solution to associated optimal control problem with $\mathcal{B}(g(0), g(T), T)$.
- (Normal) extremal controlled trajectory (ECT)
 - satisfies conditions of PMP (with $\lambda < 0$).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□□ ◇◇◇

Introduction	
Equivalence	Results
Pontryagin lift	

Virtually optimal and extremal trajectories

Theorem

If (Σ, χ) and (Σ', χ') are *C*-equivalent (w.r.t. $\phi \times \varphi$), then

- $(g(\cdot), u(\cdot))$ is a VOCT $\iff (\phi \circ g(\cdot), \varphi \circ u(\cdot))$ is a VOCT.
- $(g(\cdot), u(\cdot))$ is an ECT $\iff (\phi \circ g(\cdot), \varphi \circ u(\cdot))$ is an ECT.

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨト 三日 のへの

Introduction	Introduction
Equivalence	Results
Pontryagin lift	Examples
(of first point):	

Suppose

Proof

- $(g(\cdot), u(\cdot))$ is a controlled trajectory of (Σ, χ)
- $(\phi \circ g(\cdot), \varphi \circ u(\cdot))$ is a VOCT of (Σ', χ')
- (g(·), u(·)) is not a VOCT of (Σ, χ)
- Exists controlled trajectory $(h(\cdot), v(\cdot))$ such that $h(0) = g(0), h(T) = g(T), \text{ and } \mathcal{J}(v(\cdot)) < \mathcal{J}(u(\cdot)).$
- $(\phi \circ h(\cdot), \varphi \circ v(\cdot))$ is a controlled trajectory of (Σ', χ') .
- A simple calculation shows $\int_0^T \chi'(\varphi(v(t))) dt < \int_0^T \chi'(\varphi(u(t))) dt.$
- Contradicts (φ ∘ g(·), φ ∘ u(·)) is a VOCT of (Σ', χ').
- Thus if $(\phi \circ g(\cdot), \varphi \circ u(\cdot))$ is a VOCT, then so is $(g(\cdot), u(\cdot))$.
- Converse follows likewise: (Σ', χ') and (Σ, χ) are C-equivalent w.r.t. φ⁻¹ × φ⁻¹.

Cost equivalence for fixed system Σ

Feedback transformations leaving $\Sigma = (G, \Xi)$ invariant

$$\mathcal{T}_{\Sigma} = \left\{ \begin{array}{l} \varphi \in \mathsf{Aff}\left(\mathbb{R}^{\ell}\right) : & \exists \psi \in d\mathsf{Aut}\,\mathsf{G}, \ \psi \cdot \mathsf{\Gamma} = \mathsf{\Gamma} \\ \psi \cdot \Xi(\mathsf{1}, u) = \Xi(\mathsf{1}, \varphi(u)) \end{array} \right\}$$

Proposition

 (Σ, χ) and (Σ, χ') are C-equivalent if and only if there exists $\varphi \in \mathcal{T}_{\Sigma}$ such that $\chi' = r\chi \circ \varphi$ for some r > 0.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆□ ▶ ◆ ○ ●

Two-input systems on the Euclidean group SE(2)

Example

Any cost extended system (Σ, χ) on SE (2), where $\Xi(\mathbf{1}, u) = u_1 B_1 + u_2 B_2, \qquad \chi = u^\top Q u$ is C-equivalent to (Σ_1, χ_1) , where $\Xi_1(\mathbf{1}, u) = u_1 E_2 + u_2 E_3, \qquad \chi_1(u) = u_1^2 + u_2^2.$

Proof sketch:

- Find dAut (SE (2)).
- Show Σ is *DF*-equivalent to $\Sigma_1 = (SE(2), \Xi_1)$

• (Σ, χ) is C-equivalent to (Σ_1, χ') , $\chi' : u \mapsto u^\top Q' u$.

- **③** Calculate \mathcal{T}_{Σ_1} .
- Since $\varphi \in \mathcal{T}_{\Sigma_1}$ such that $\chi' \circ \varphi = r\chi_1$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□□ ◇◇◇

Introduction Equivalence Pontryagin lift Introduction Results Examples

Proof 1/4: *d*Aut (SE (2))

Lie algebra automorphisms of $\mathfrak{se}(2)$

$$\operatorname{Aut}\left(\mathfrak{se}\left(2\right)\right) = \left\{ \begin{bmatrix} x & y & v \\ -\varsigma y & \varsigma x & w \\ 0 & 0 & \varsigma \end{bmatrix} : \begin{array}{c} x, y, v, w \in \mathbb{R}, \, \varsigma = \pm 1 \\ x^2 + y^2 \neq 0 \end{array} \right\}.$$

• Aut $(\mathfrak{se}(2)) = dAut (SE(2)).$

Introduction	
Equivalence	
Pontryagin lift	Examples

Proof 2/4: Σ is *DF*-equivalent to Σ_1

•
$$\Gamma = \left\langle \sum_{i=1}^{3} a_i E_i, \sum_{i=1}^{3} b_i E_i \right\rangle.$$

• Full rank implies $a_3 \neq 0$ or $b_3 \neq 0$. We assume $a_3 \neq 0$. Then

$$\Gamma = \left\langle \frac{a_1}{a_3} E_1 + \frac{a_2}{a_3} E_2 + E_3, b_1 E_1 + b_2 E_2 + b_3 E_3 \right\rangle$$

= $\left\langle \frac{a_1}{a_3} E_1 + \frac{a_2}{a_3} E_2 + E_3, (b_1 - \frac{a_1 b_3}{a_3}) E_1 + (b_2 - \frac{a_2 b_3}{a_3}) E_2 \right\rangle.$

•
$$\psi = \begin{bmatrix} b_2 - \frac{a_2b_3}{a_3} & b_1 - \frac{a_1b_3}{a_3} & \frac{a_1}{a_3} \\ -b_1 + \frac{a_1b_3}{a_3} & b_2 - \frac{a_2b_3}{a_3} & \frac{a_2}{a_3} \\ 0 & 0 & 1 \end{bmatrix}$$
 maps Γ_1 to Γ .

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□□ ◇◇◇

Introduction	Introduction
Equivalence	Results
Pontryagin lift	Examples
Proof 3/4: Calculate \mathcal{T}_{Σ_1}	

P

• Let
$$\psi \in dAut (SE (2))$$
 such that $\psi \cdot \Gamma_1 = \Gamma_1$.
• $\psi \cdot \langle E_2, E_3 \rangle = \langle E_2, E_3 \rangle$ implies
 $\psi = \begin{bmatrix} x & 0 & 0 \\ 0 & \varsigma x & w \\ 0 & 0 & \varsigma \end{bmatrix}$.
• Suppose $\varphi : \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \mapsto \begin{bmatrix} a_1 & a_2 \\ b_1 & b_2 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} + \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$ and $\varphi \in \mathcal{T}_{\Sigma_1}$.
• $\psi \cdot \Xi_1(\mathbf{1}, u) = \Xi_1(\mathbf{1}, \varphi(u))$ then implies
 $(\varsigma x u_1 + w u_2) E_2 + (\varsigma u_2) E_3 =$
 $(a_1 u_1 + a_2 u_2 + c_1) E_2 + (b_1 u_1 + b_2 u_2 + c_2) E_3$.
• Equating coefficients yields

$$\mathcal{T}_{\Sigma_1} = \left\{ u \mapsto \begin{bmatrix} \varsigma x & w \\ 0 & \varsigma \end{bmatrix} u : x \neq 0, \ w \in \mathbb{R}, \ \varsigma = \pm 1 \right\}.$$

•

• Let
$$Q' = \begin{bmatrix} a_1 & b \\ b & a_2 \end{bmatrix}$$
.
• Now $\varphi_1 = \begin{bmatrix} 1 & -\frac{b}{a_1} \\ 0 & 1 \end{bmatrix} \in \mathcal{T}_{\Sigma_1}$ and
 $(\chi' \circ \varphi_1)(u) = u^{\top} \begin{bmatrix} a_1 & 0 \\ 0 & a_2 - \frac{b^2}{a_1} \end{bmatrix} u$.
• Let $a'_2 = a_2 - \frac{b^2}{a_1}$ and let $\varphi_2 = \begin{bmatrix} \sqrt{\frac{a'_2}{a_1}} & 0 \\ 0 & 1 \end{bmatrix} \in \mathcal{T}_{\Sigma_1}$.
• Then $(\chi' \circ (\varphi_1 \circ \varphi_2))(u) = a'_2 u^{\top} u = a'_2 \chi_1(u)$.

◆□ > ◆□ > ◆豆 > ◆豆 > 三日 のへぐ

Introduction	
Equivalence	
Pontryagin lift	Examples

Two-input systems on the Heisenberg group H₃

$$\mathfrak{h}_3: \qquad [E_2, E_3] = E_1 \qquad [E_3, E_1] = 0 \qquad [E_1, E_2] = 0$$

A system on H₃ with trace $\Gamma = A + \langle B_1, B_2 \rangle$ is controllable $\iff B_1, B_2$ generates \mathfrak{h}_3 (Sachkov 2009).

Example

Any controllable two-input inhomogeneous cost-extended system on H_3 is *C*-equivalent to

$$(\Sigma_1, \chi_{1,\alpha}) : \begin{cases} \Xi_1(\mathbf{1}, u) = E_1 + u_1 E_2 + u_2 E_3 \\ \chi_{1,\alpha}(u) = (u_1 - \alpha)^2 + u_2^2. \end{cases}$$

Here $\alpha \ge 0$ parametrizes a family of (non-equivalent) class representatives.

・ロン ・ 理 ・ イヨン ・ ヨヨ ・ シタマ

Introduction	Hamilton-Poisson systems
Equivalence	The Pontryagin lift
Pontryagin lift	Examples

Outline

Introduction

- Invariant control systems
- Optimal control problems
- Cost-extended systems

2 Equivalence

- Introduction
- Results
- Examples

3 Pontryagin lift

- Hamilton-Poisson systems
- The Pontryagin lift
- Examples

Introduction	Hamilton-Poisson systems
Equivalence	The Pontryagin lift
Pontryagin lift	

Lie-Poisson structure

(Minus) Lie-Poisson structure \mathfrak{g}_{-}^{*}

Dual space \mathfrak{g}^* , with $\{F, G\}(p) = -p([dF(p), dG(p)]).$ Here $p \in \mathfrak{g}^*, F, G \in C^{\infty}(\mathfrak{g}^*).$

Casimir function $C \in C^{\infty}(\mathfrak{g}^*)$

$$\{C, F\} = 0$$
 for all $F \in C^{\infty}(\mathfrak{g}^*)$.

Linear Poisson morphism

- Linear map $\psi: \mathfrak{g}^* \to \mathfrak{h}^*$ such that
 - $\{F,G\} \circ \psi = \{F \circ \psi, G \circ \psi\}$ for all $F, G \in C^{\infty}(\mathfrak{g}^*)$
- dual maps of Lie algebra morphisms.

Introduction Hamilton-Poisson systems Equivalence The Pontryagin lift Pontryagin lift Examples

Lie-Poisson structure

Hamiltonian vector field \vec{H}

Associated to $H \in C^{\infty}(\mathfrak{g}^*)$, given by $\vec{H}[F] = \{H, F\}$.

Compatible vector fields

 \vec{F} and \vec{G} (on \mathfrak{g}^* and \mathfrak{h}^*) are compatible with $\phi : \mathfrak{g}^* \to \mathfrak{h}^*$ if $T_{\rho}\phi \cdot \vec{F}(\rho) = \vec{G}(\phi(\rho)), \qquad \rho \in \mathfrak{g}^*.$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆□ ▶ ◆ ○ ●

Introduction	Hamilton-Poisson systems
Equivalence	The Pontryagin lift
Pontryagin lift	

Notation

- *n*-dimensional Lie algebra g
- $(E_i)_{1 \le i \le n}$ is ordered basis for \mathfrak{g}
- $(E_i^*)_{1 \le i \le n}$ is dual basis for \mathfrak{g}^*
- for $A \in \mathfrak{g}$: \widehat{A} is column vector (in \mathbb{R}^n) w.r.t. $(E_i)_{1 \le i \le n}$
- for $p \in \mathfrak{g}^*$: \hat{p} is row vector w.r.t. $(E_i^*)_{1 \le i \le n}$.
- for linear map $\psi: \mathfrak{g}^* \to \mathfrak{h}^*: \widehat{\psi}$ is associated matrix.

i.e.

$$p(A) = \widehat{p} \widehat{A}$$

$$\widehat{\psi \cdot \mathbf{A}} = \widehat{\psi} \,\widehat{\mathbf{A}}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ のへの

	Introduction Equivalence Pontryagin lift	Hamilton-Poisson systems The Pontryagin lift Examples
ontrvagin lift		

Let (Σ, χ) be cost-extended system with:

•
$$\equiv$$
 (**1**, u) = $A + u_1 B_1 + \cdots + u_\ell B_\ell$

•
$$\chi(\boldsymbol{u}) = (\boldsymbol{u} - \mu)^\top \boldsymbol{\mathsf{Q}}(\boldsymbol{u} - \mu).$$

Theorem

Any ECT of (Σ, χ) is given by $\dot{g}(t) = \Xi(g(t), u(t)), \qquad u(t) = Q^{-1} \mathbf{B}^{\top} \widehat{p(t)}^{\top}.$ • $\mathbf{B} = \begin{bmatrix} \widehat{B}_1 & \cdots & \widehat{B}_\ell \end{bmatrix}$ is $n \times \ell$ matrix • $p(\cdot) : [0, T] \rightarrow \mathfrak{g}^*$ is integral curve of $H(p) = \widehat{p} (\widehat{A} + \mathbf{B} \mu) + \frac{1}{2} \widehat{p} \mathbf{B} Q^{-1} \mathbf{B}^{\top} \widehat{p}^{\top}.$

▲□ ▶ ▲ ■ ▶ ▲ ■ ▶ ▲□ ● ● ●

Quadratic Hamilton-Poisson system

PSD quadratic Hamilton-Poisson system $(g_{-}^*, H_{A,Q})$

 $H_{A,Q}(p) = \widehat{p} \, \widehat{A} + \widehat{p} \, Q \, \widehat{p}^{\top}$ Q is PSD $n \times n$ matrix.

Linear equivalence (L-equivalence)

 $(\mathfrak{g}_{-}^{*}, G)$ and $(\mathfrak{h}_{-}^{*}, H)$ are *L*-equivalent if

- \exists linear isomorphism $\psi:\mathfrak{g}^*\to\mathfrak{h}^*$
- \vec{G} and \vec{H} compatible with ψ .

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆□ ▶ ◆ ○ ●

Introduction	Hamilton-Poisson systems
Equivalence	The Pontryagin lift
Pontryagin lift	

Quadratic Hamilton-Poisson system

Proposition

Following pairs are L-equivalent:

- *H_{A,Q}* ∘ ψ and *H_{A,Q}*, ψ linear Poisson automorphism (vector fields compatible with ψ);
- $H_{A,Q}$ and $H_{A,rQ}$, r > 0(vector fields compatible with dilation $\delta_{1/r} : p \mapsto \frac{1}{r}p$);
- *H*_{A,Q} and *H*_{A,Q} + *f*(*C*), *C* Casimir, *f* ∈ C[∞](ℝ) (vector fields compatible with identity map).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□□ ◇◇◇

Introduction	Hamilton-Poisson systems
Equivalence	The Pontryagin lift
ontryagin lift	

Relation of equivalences

Theorem

If two cost-extended systems are C-equivalent, then their associated Hamilton-Poisson systems are L-equivalent.

Proof sketch:

• Let
$$\varphi : u \mapsto Ru + \varphi_0$$
. *C*-equivalence implies
 $\widehat{T_1 \phi} \cdot \widehat{A} = \widehat{A'} + \mathbf{B'} \varphi_0$
 $R\mu + \varphi_0 = \mu'$
 $\widehat{T_1 \phi} \cdot \mathbf{B} = \mathbf{B'}R$
 $R \ Q^{-1} R^{\top} = \frac{1}{r} (Q')^{-1}.$
• $(H_{(\Sigma,\chi)} \circ (T_1 \phi)^*)(p) = \widehat{p} (\widehat{A'} + \mathbf{B'} \mu') + \frac{1}{2r} \widehat{p} \ \mathbf{B'} (Q')^{-1} \ \mathbf{B'}^{\top} \ \widehat{p}^{\top}$

- $H_{(\Sigma',\chi')}$ and $H_{(\Sigma,\chi)} \circ (T_1 \phi)^*$ L-equivalent
- $H_{(\Sigma,\chi)} \circ (T_1 \phi)^*$ and $H_{(\Sigma,\chi)}$ *L*-equivalent.

▲□ ▶ ▲ ■ ▶ ▲ ■ ▶ ▲ ■ ■ ● ● ●

Introduction	Hamilton-Poisson systems
Equivalence	The Pontryagin lift
Pontryagin lift	Examples

On the Heisenberg Lie-Poisson space $(\mathfrak{h}_3)^*_{-1}$

Example

Any homogeneous system $((\mathfrak{h}_3)^*_-, H_Q)$ is *L*-equivalent to

 $H_0(p) = 0,$ $H_1(p) = p_3^2,$ or $H_2(p) = p_2^2 + p_3^2.$

Proof:

• Linear Poisson automorphisms of $(\mathfrak{h}_3)^*_-$

$$\left\{ p \mapsto p \begin{bmatrix} y_1 z_2 - y_2 z_1 & x_1 & x_2 \\ 0 & y_1 & y_2 \\ 0 & z_1 & z_2 \end{bmatrix} : \begin{array}{c} x, y, z \in \mathbb{R}^2 \\ y_1 z_2 \neq y_2 z_1 \end{array} \right\}$$

• $C(p) = p_1$ is a Casimir function.

• Let
$$H_Q(p) = p Q p^T$$
, $Q = \begin{bmatrix} a_1 & b_1 & b_2 \\ b_1 & a_2 & b_3 \\ b_2 & b_3 & a_3 \end{bmatrix}$.

Introduction Equivalence	Hamilton-Poisson systems The Pontryagin lift
	The Follin yayin in
Pontryagin lift	Examples

Proof (cont.)

Suppose $a_3 = 0$.

- 2 × 2 principle minors of Q: $a_1a_2 b_1^2$, $-b_2^2$, and $-b_3^2$. Q is PSD; principle minors non-negative; $b_2 = b_3 = 0$.
- Suppose $a_2 = 0$. Then $b_1 = 0$ and so $H_Q(p) = a_1 p_1^2 = H_0(p) + a_1 C(p)^2$.
- Suppose $a_2 \neq 0$. Then

$$\psi_1: \boldsymbol{p} \mapsto \boldsymbol{p} \Psi_1, \quad \Psi_1 = \begin{bmatrix} -\frac{1}{\sqrt{a_2}} & 0 & 0\\ 0 & 0 & 1\\ 0 & \frac{1}{\sqrt{a_2}} & 0 \end{bmatrix} \begin{bmatrix} 1 & -\frac{b_1}{a_2} & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix}$$

is a linear Poisson automorphism such that

$$(H_{\mathsf{Q}} \circ \psi_1)(p) = (\frac{a_1 a_2 - b_1^2}{a_2^2})C(p)^2 + p_3^2 = a_1'C(p)^2 + H_1(p).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□□ ◇◇◇

Introduction	Hamilton-Poisson systems
Equivalence	The Pontryagin lift
Pontryagin lift	Examples

Proof (cont.)

Suppose
$$a_3 \neq 0$$
.
• $\psi_2 : p \mapsto p \Psi_2$, $\Psi_2 = \begin{bmatrix} 1 & 0 & -\frac{b_2}{a_3} \\ 0 & 1 & -\frac{b_3}{a_3} \\ 0 & 0 & 1 \end{bmatrix}$

is a linear Poisson automorphism such that

$$(H_{\mathsf{Q}} \circ \psi_2)(p) = p \begin{bmatrix} a_1 - rac{b_2^2}{a_3} & b_1 - rac{b_2 b_3}{a_3} & 0 \\ b_1 - rac{b_2 b_3}{a_3} & a_2 - rac{b_3^2}{a_3} & 0 \\ 0 & 0 & a_3 \end{bmatrix} p^{\top}.$$

• Similarly, H_Q is *L*-equivalent to H_1 or H_2 .

Image: A matrix

Introduction Hamilton-Poisson systems Equivalence The Pontryagin lift Pontryagin lift Examples

On orthogonal Lie-Poisson space $\mathfrak{so}(3)^*_{-}$

$$\mathfrak{so}(3):$$
 $[E_2, E_3] = E_1$ $[E_3, E_1] = E_2$ $[E_1, E_2] = E_3$

Example

Any homogeneous system $(\mathfrak{so}(3)^*_{-}, H_Q)$ is *L*-equivalent to $H_0(p) = 0$ or $H_{1,\alpha}(p) = p_1^2 + \alpha p_2^2$ $(0 \le \alpha \le 1)$.

Number of 3D systems *L*-equivalent to relaxed free rigid body dynamics (Tudoran, preprint)

$$\left\{ egin{array}{ll} \dot{p}_1 = (
u_3 -
u_2) p_2 p_3 \ \dot{p}_2 = (
u_1 -
u_3) p_1 p_3 \ \dot{p}_3 = (
u_2 -
u_1) p_1 p_2 \end{array}
ight. egin{array}{ll} p \in \mathbb{R}^3, \
u_1,
u_2,
u_3 \in \mathbb{R}. \end{array}
ight.$$

• Correspond to $(\mathfrak{so}(3)^*_{-}, H_{\nu}), \ H_{\nu}(p) = \nu_1 p_1^2 + \nu_2 p_2^2 + \nu_3 p_3^2.$

Conclusion

- Introduced equivalence relation for cost-extended systems.
- Used results in classifying subclasses of systems.

- Outlook:
 - Study of various distinguished subclasses of systems.
 - Relation between cost-extended systems and sub-Riemannian geometry.

▲冊▶▲■▶▲■▶ ■目 ののの