SVD and Control Systems on SO(4)

Ross M. Adams

Department of Mathematics (Pure and Applied) Rhodes University, Grahamstown 6140

Postgraduate Seminar in Mathematics NMMU, Port Elizabeth, 5-6 October 2012

3 Equivalence

∃ >

- 2 The orthogonal group SO(4)
- 3 Equivalence
- Concluding remarks

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Problem

 Study the local geometry of control systems by introducing a natural equivalence relation

Objects

Left-invariant control affine systems on matrix Lie groups

Equivalence relation

• Classify, under *L*-equivalence, all control affine systems on SO (4)

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Control systems

Left-invariant control affine system Σ

$$\dot{g} = g(u_1B_1 + \cdots + u_\ell B_\ell), \quad 1 \leq \ell \leq 6$$

• $B_1, \ldots, B_\ell \in \mathfrak{g}$ are linearly independent

The trace Γ of the system Σ is

$$\Gamma = \langle B_1, \ldots, B_\ell \rangle \subset \mathfrak{g}.$$

£-equivalence

 Σ and Σ' are \mathfrak{L} -equivalent if $\exists \psi \in \mathsf{Aut}(\mathfrak{g})$ such that

$$\psi \cdot \Gamma = \Gamma'.$$

R.M. Adams (Rhodes)

э

< 日 > < 同 > < 回 > < 回 > < □ > <

1 Introduction

3 Equivalence

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

The orthogonal group

$$\mathsf{SO}\left(\mathsf{4}
ight)=\left\{ g\in\mathsf{GL}\left(\mathsf{4},\mathbb{R}
ight)\,:\,g^{ op}g=\mathsf{1},\;\mathsf{det}\,g=\mathsf{1}
ight\}$$

- six-dimensional matrix Lie group
- connected, compact
- semisimple
- group of rotations of \mathbb{R}^4

< 17 ▶

Tangent space at identity

- Let $g(\cdot)$ be a curve in SO(4).
- T_1 SO(4) = { $\dot{g}(0) : g(t) \in$ SO(4), g(0) = 1}.
- Then differentiating the condition $g(t)^{\top}g(t) = 1$, at t = 0, gives

$$\dot{g}(0)^{ op}g(0) + g(0)^{ op}\dot{g}(0) = \dot{g}(0) + \dot{g}(0)^{ op} = 0$$

The Lie algebra

$$\mathfrak{so}\left(4
ight)=\left\{A\in\mathbb{R}^{4 imes 4}\,:\,A^{ op}+A=\mathbf{0}
ight\}$$

- six-dimensional Lie algebra
- Lie bracket [A, B] = AB BA
- decomposes as direct sum $\mathfrak{so}(4) \cong \mathfrak{so}(3) \oplus \mathfrak{so}(3)$

The Lie algebra $\mathfrak{so}(3)$

The Lie algebra

$$\mathfrak{so}\left(3
ight)=\left\{oldsymbol{A}\in\mathbb{R}^{3 imes3}\,:\,oldsymbol{A}^{ op}+oldsymbol{A}=oldsymbol{0}
ight\}$$

has as a basis

$$E_1 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}, \quad E_2 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{bmatrix}, \quad E_3 = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

This basis satisfies the commutator relations

$$[E_1, E_2] = E_3, \quad [E_2, E_3] = E_1, \quad [E_3, E_1] = E_2.$$

• As Lie algebras
$$\mathfrak{so}(3) \cong (\mathbb{R}^3, \times)$$

Aut(so (3)) = SO(3)

R.M. Adams (Rhodes)

э

イロト 不得 トイヨト イヨト

Decomposition $\mathfrak{so}(4) \cong \mathfrak{so}(3) \oplus \mathfrak{so}(3)$

Natural basis

• Isomorphism $\varsigma : \mathfrak{so}(3) \oplus \mathfrak{so}(3) \rightarrow \mathfrak{so}(4)$

• Induces a natural basis for $\mathfrak{so}(4)$

	E ₁	E ₂	E ₃	E_4	E_5	E ₆
E ₁	0	E ₃	$-E_2$	0	0	0
E ₂	- <i>E</i> ₃	0	E ₁	0	0	0
E ₃	E ₂	$-E_1$	0	0	0	0
E ₄	0	0	0	0	E ₆	$-E_5$
E ₅	0	0	0	$-E_6$	0	E ₄
E ₆	0	0	0	E_5	$-E_4$	0

R.M. Adams (Rhodes)

э

10/21

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Lemma

Group of inner automorphisms

$$\mathsf{nt}\,(\mathfrak{so}\,(4)) = \left\{ \begin{bmatrix} \psi_1 & 0 \\ 0 & \psi_2 \end{bmatrix} : \, \psi_1, \, \psi_2 \in \mathsf{SO}\,(3) \right\}$$

Proposition

Aut
$$(\mathfrak{so}(4)) = \operatorname{Int}(\mathfrak{so}(4)) \times \{\mathbf{1},\varsigma\}$$
, where $\varsigma = \begin{bmatrix} 0 & I_3 \\ I_3 & 0 \end{bmatrix}$

Thus automorphisms take the form, for some $R_1, R_2 \in SO(3)$

$$\begin{bmatrix} R_1 & 0 \\ 0 & R_2 \end{bmatrix} \quad \text{or} \quad \begin{bmatrix} 0 & R_1 \\ R_2 & 0 \end{bmatrix}$$

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Introduction

2 The orthogonal group SO(4)

3 Equivalence

Concluding remarks

R.M. Adams (Rhodes)

(4) (5) (4) (5)

Preliminaries

Representation

$$\Sigma : u_1 \sum_{i=1}^6 a_i^1 E_i + \dots + u_\ell \sum_{i=1}^6 a_i^\ell E_i \leftrightarrow$$

$$\Sigma : \begin{bmatrix} A_1 \\ A_2 \end{bmatrix} = \begin{bmatrix} a_1^1 & \dots & a_1^\ell \\ \vdots & \ddots & \vdots \\ a_6^1 & \dots & a_6^\ell \end{bmatrix}, \quad A_1, A_2 \in \mathbb{R}^{3 \times \ell}$$

$$\Sigma : \begin{bmatrix} A_1 \\ A_2 \end{bmatrix} \text{ and } \Sigma' : \begin{bmatrix} A'_1 \\ A'_2 \end{bmatrix} \text{ are } \mathfrak{L}\text{-equivalent}$$
$$\iff \exists \psi \in \operatorname{Aut}(\mathfrak{so}(4)), \ K \in \operatorname{GL}(\ell, \mathbb{R}) \text{ such that}$$
$$\psi \cdot \begin{bmatrix} A_1 \\ A_2 \end{bmatrix} = \begin{bmatrix} A'_1 \\ A'_2 \end{bmatrix} K$$

э.

イロト イヨト イヨト イヨト

SVD

For any $A \in \mathbb{R}^{m \times n}$ of rank *r*, there exist $U \in O(m)$, $V \in O(n)$ and a diagonal matrix $D = \text{diag}(\sigma_1, \ldots, \sigma_r)$ such that

$$A = U \begin{bmatrix} D & 0 \\ 0 & 0 \end{bmatrix} V^{\top}$$
 with $\sigma_1 \ge \ldots \ge \sigma_r > 0.$

Lemma

For $A \in \mathbb{R}^{3 \times 3}$, $\exists R_1, R_2 \in SO(3)$ such that, for $\alpha_1 \ge \alpha_2 \ge |\alpha_3| \ge 0$,

$$R_1AR_2 = \operatorname{diag}(\alpha_1, \alpha_2, \alpha_3)$$

Also, $R_1 \operatorname{diag}(\alpha_1, \alpha_2, \alpha_3) R_2 = \operatorname{diag}(\alpha'_1, \alpha'_2, \alpha'_3) \implies \alpha_i = \alpha'_i, i = 1, 2, 3.$

Theorem

Any three-input system is \mathfrak{L} -equivalent to exactly one of the systems

$$\Xi_{1,\beta}^{(3,0)}(\mathbf{1},u) = u_1(E_1 + \beta E_4) + u_2 E_2 + u_3 E_6$$

$$\Xi_{2,\alpha}^{(3,0)}(\mathbf{1},u) = u_1(E_1 + \alpha_1 E_4) + u_2(E_2 + \alpha_2 E_5) + u_3(E_3 + \alpha_3 E_6)$$

for some
$$0 \le \beta \le 1$$
 and $\alpha_1 \ge \alpha_2 \ge |\alpha_3| \ge 0$.

To ensure all our equivalence representatives are distinct and nonequivalent it follows that $\alpha_1 \ge \alpha_2 \ge |\alpha_3| \ge 0$, where

$$(\alpha_3 \leq \mathbf{0} \land \alpha_2 > \mathbf{0}) \lor ((\mathbf{0} < \alpha_3 \leq \alpha_2 < \mathbf{1}) \land (\alpha_2 \leq \alpha_1))$$

$$\vee ((\alpha_2 = 1) \land (1 \leq \frac{1}{\alpha_3} \leq \alpha_1))$$

э

Proof

- Consider a system $\Sigma : \begin{bmatrix} A_1 \\ A_2 \end{bmatrix}$, $A_1, A_2 \in \mathbb{R}^{3 \times 3}$.
- Assume $rank(A_1) = 3$.

Clearly

$$\begin{bmatrix} A_1 \\ A_2 \end{bmatrix} = \begin{bmatrix} I_3 \\ A_2 A_1 \end{bmatrix} A_1^{-1}.$$

- Thus consider systems of the form $\Sigma : \begin{bmatrix} I_3 \\ A_2 \end{bmatrix}$.
- Two systems Σ, Σ' are equivalent if there exists R₁, R₂ ∈ SO(3) and K ∈ GL(3, ℝ) such that

$$\begin{bmatrix} R_1 \\ R_2 A_2 \end{bmatrix} = \begin{bmatrix} K \\ A'_2 K \end{bmatrix}$$

A D M A A A M M

Proof (cont.)

• Choosing $K = R_1$ implies

$$R_2 A_2 R_1^{-1} = A_2'.$$

• By the SVD theorem $\exists R_1, R_2 \in SO(3)$ such that

$$A'_2 = diag(\alpha_1, \alpha_2, \alpha_3)$$

where $\alpha_1 \ge \alpha_2 \ge |\alpha_3| \ge 0$. • Also, if $\exists R_1, R_2 \in SO(3)$ such that

$$R_1$$
diag $(\alpha_1, \alpha_2, \alpha_3)R_2$ = diag $(\alpha'_1, \alpha'_2, \alpha'_3)$

(satisfying the above assumptions) it follows that $\alpha_i = \alpha'_i$, i = 1, 2, 3.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Two systems

$$\boldsymbol{\Sigma} : \begin{bmatrix} \boldsymbol{I}_3 \\ \mathsf{diag}(\alpha_1, \alpha_2, \alpha_3) \end{bmatrix} \quad \text{and} \quad \boldsymbol{\Sigma}' : \begin{bmatrix} \boldsymbol{I}_3 \\ \mathsf{diag}(\alpha_1', \alpha_2', \alpha_3') \end{bmatrix}$$

are also equivalent if there $\exists R_1, R_2 \in SO(3)$ and $K \in GL(3, \mathbb{R})$ such that

$$\begin{bmatrix} R_{1} \operatorname{diag}(\alpha_{1}, \alpha_{2}, \alpha_{3}) \\ R_{2} \end{bmatrix} = \begin{bmatrix} K \\ \operatorname{diag}(\alpha'_{1}, \alpha'_{2}, \alpha'_{3}) K \end{bmatrix}$$

This leads to the equation

$$\operatorname{diag}(\frac{1}{\alpha_1},\frac{1}{\alpha_2},\frac{1}{\alpha_3}) = R_2^{-1}\operatorname{diag}(\alpha'_1,\alpha'_2,\alpha'_3)R_1$$

• This leads to further restrictions on the coefficients $\alpha_1, \alpha_2, \alpha_3$.

R.M. Adams (Rhodes)

SVD and Control Systems on SO (4)

PG Sem, Math, 2012

э

19/21

Introduction

2 The orthogonal group SO(4)

3 Equivalence

- Obtained a list of equivalence representatives for three-input systems on SO(4).
- Attempt to extend to a global classification of systems.
- Under certain restrictions obtain a classification of controllable systems on SO(4).