
Hamilton-Poisson Formalism and Geometric Control

Catherine Bartlett

Department of Mathematics (Pure and Applied)
Rhodes University, Grahamstown 6140

Honours Presentation,
29 October 2012

Catherine Bartlett (Rhodes) HP Formalism and Geometric Control Honours Presentation 1 / 22



Outline

1 Introduction

2 Elements of Hamilton-Poisson formalism

3 Optimal control

4 The unicycle

Catherine Bartlett (Rhodes) HP Formalism and Geometric Control Honours Presentation 2 / 22



Outline

1 Introduction

2 Elements of Hamilton-Poisson formalism

3 Optimal control

4 The unicycle

Catherine Bartlett (Rhodes) HP Formalism and Geometric Control Honours Presentation 3 / 22



Introduction

Geometric control

brings together geometry, mechanics and optimal control

treats controllability as geometric properties of the state space

foundation for the extension of the maximum principle to
differentiable manifolds
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Matrix Lie groups and Lie algebras

Matrix Lie groups

G is a matrix Lie group if G is a closed subgroup of GL(n, R)

Lie Algebras

A Lie algebra is a vector space equipped with a bilinear operation
[·, ·] (the Lie bracket) satisfying

[X ,Y ] = −[Y ,X ] (skew symmetry)

[X , [Y ,Z ]] + [Y , [Z ,X ] + [Z , [X ,Y ]] = 0. (Jacobi identity)

The tangent space of a Lie matrix is a Lie algebra.
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Left invariant control systems

Control systems

A control system Σ on a matrix Lie group G is given by

ġ = Ξ(g , u), g ∈ G, u ∈ U.

Ξ : G× U → TG is the dynamics of the system

U = R` is the control set.

Left invariant control systems

Σ is left invariant if the dynamics are such that

g Ξ (h, u) = Ξ (gh, u) for all g , h ∈ G and every u ∈ U.
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Controls and trajectories

Admissible controls

The admissible controls of the system Σ are piecewise continuous maps
u(·) : [0,T ]→ R`.

Trajectories

The trajectory is an absolutely continuous curve g(·) in G defined on an
interval [0,T ] ⊂ R i.e. g(·) : [0,T ]→ G such that

ġ(t) = g(t) Ξ(1, u(t))

for almost all t ∈ [0,T ].

Catherine Bartlett (Rhodes) HP Formalism and Geometric Control Honours Presentation 7 / 22



Outline

1 Introduction

2 Elements of Hamilton-Poisson formalism

3 Optimal control

4 The unicycle

Catherine Bartlett (Rhodes) HP Formalism and Geometric Control Honours Presentation 8 / 22



Elements of Hamilton-Poisson formalism

Poisson structure

A Poisson structure on a vector space V is a bilinear operation {·, ·} on
F(V ) = C∞(V ) such that:

1 (F(V ), {·, ·}) is a Lie algebra

2 {·, ·} is a derivation in each factor, in other words:

{FG ,H} = {F ,H}G + F{G ,H}

for all F ,G ,H ∈ F(V ).

Minus Lie Poisson structure

{F ,G}−(µ) = −
〈
µ,
[
dF (µ), dG (µ)

]〉
for µ ∈ g∗ and F ,G ∈ F(g∗)
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Elements of Hamilton-Poisson formalism

The Hamiltonian vector field

Let V be a Poisson Vector space. If H ∈ F(V ), then the unique vector
field XH on V such that

XH [F ] = {F ,H}

for all F ∈ F(V ) is the Hamiltonian vector field of H.

Equations of motion on (g∗, {·, ·}−)

Integral curves µ of XH satisfy

µ̇i = {µi ,H}− = −
m∑

j ,k=1

ckijµk
∂H

∂µj
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Optimal control

Invariant optimal control problem

Minimize a cost functional J over trajectories of Σ subject to boundary
data.

ġ = gΞ(1, u), g(·) : [0,T ]→ G, u(·) : [0,T ]→ R`

g(0) = g0, g(T ) = g1, g0, g1 ∈ G, T > 0

J(u(·)) =

∫ T

0
L(u(t))dt → min.
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Maximum principle

Extended Hamiltonian

Hλ(ξ, u(t)) = λL(u(t)) + ξ(gΞ(1, u(t)))

Theorem

Suppose (ḡ(·), ū(·)) is an optimal controlled trajectory on the interval
[0,T ]. Then ḡ(·) is the projection of an integral curve ξ̄(·) of the
Hamiltonian vector field Xλ

H(ξ, ū(·)) defined for t ∈ [0,T ] such that:

1 (λ, ξ̄) 6≡ (0, 0)

2 Hλ(ξ̄(t), ū(t)) = max
u∈R`

Hλ(ξ̄(t), u) = constant

for almost every t in [0,T ].

Extremals

Pairs (ξ(·), u(·)) satisfying the above conditions are called extremals. An
extremal pair is called normal if λ = −1
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Left invariant optimal control problems

Left invariant control affine system

ġ = g(A0 + u1A1 + · · ·+ u`A`)

Specialized cost

L(u) =
1

2

(∑̀
i=1

ciu
2
i

)
, ci > 0
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Left invariant optimal control problems

Theorem (Krishnaprasad, 1993)

Every normal extremal pair (ξ(·), u(·)), ξ(·) = (g(·), µ(·)) for an invariant
optimal control problem, is such that

ui (t) =
1

ci
µ(t)(Ai ), i = 1, . . . , `

where µ(·) : [0,T ]→ g∗− is an integral curve of

H(µ) = µ(A0) +
1

2

∑̀
i=1

1

ci
µ(Ai )

2, µ ∈ g∗.

In coordinates

µ̇i = {µi ,H}− = −
m∑

j ,k=1

ckijµk
∂H

∂µj
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The unicycle

Constraint equations

ẋ = u2 cosφ

ẏ = u2 sinφ

φ̇ = u1
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Special Euclidean group SE(2)

Matrix representation

SE(2) =

{[
Rθ v
0 1

]
∈ GL(3,R) | v ∈ R2×1 and Rθ ∈ SO(2)

}

Lie algebra se(2)

se(2) =


0 −a b
a 0 c
0 0 0

 | a, b, c ∈ R


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Special Euclidean group SE(2)

Standard basis of se(2)

E1 =

0 −1 0
1 0 0
0 0 0

 , E2 =

0 0 1
0 0 0
0 0 0

 , E3 =

0 0 0
0 0 1
0 0 0

 .
Commutator relations

[E1,E2] = E3, [E1,E3] = −E2, [E2,E3] = 0.

Structure constants of se(2)

c231 = c312 = 1, c213 = c321 = −1,

and ckij = 0 for all other combinations of i , j , k .
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The unicycle and SE(2)

The unicycle as a control problem on SE(2)

Set

g =

cosφ − sinφ x
sinφ cosφ y

0 0 1

 ∈ SE(2)

The unicycle equations take the form

ġ = g(u1E1 + u2E2).

Associated optimal control problems

ġ = g(u1E1 + u2E2), g(·) : [0,T ]→ SE(2), u(·) : [0,T ]→ R`

g(0) = g0, g(T ) = g1, g0, g1 ∈ SE(2), T > 0

J(u(·)) =
1

2

∫ T

0
(c1u

2
1 + c2u

2
2)dt → min c1, c2 > 0, u = (u1, u2) ∈ R2
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Extremal pairs

Extended Hamiltonian

H = −1

2
(c1u

2
1 + c2u

2
2) + µ1u1 + µ2u2.

From Krishnaprasad’s theorem

ū1 =
1

c1
µ1 and ū2 =

1

c2
µ2

where µ(·) is the integral curve of

H =
1

2c1
µ21 +

1

2c2
µ22.
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Integration

Equations of motion

From

µ̇i = −
3∑

j ,k=1

ckijµk
∂H

∂µj
,

we have

µ̇1 = − 1

c2
µ2µ3

µ̇2 =
1

c1
µ1µ3

µ̇3 =
1

c1
µ1µ2.

These equations can be integrated using Jacobi elliptic functions.

Catherine Bartlett (Rhodes) HP Formalism and Geometric Control Honours Presentation 22 / 22


	Introduction
	Elements of Hamilton-Poisson formalism
	Optimal control
	The unicycle

