Geometric control on Lie groups

Rory Biggs

Department of Mathematics (Pure and Applied) Rhodes University, Grahamstown 6140, South Africa

March 29, 2013

- Invariant control systems
 - Introduction
 - Equivalences
- Optimal control and Pontryagin Maximum Principle
 - Invariant optimal control problems
 - Cost-extended systems
- Quadratic Hamilton-Poisson systems
 - Lie-Poisson structure
 - Examples
- Outlook

- Invariant control systems
 - Introduction
 - Equivalences
- Optimal control and Pontryagin Maximum Principle
 - Invariant optimal control problems
 - Cost-extended systems
- Quadratic Hamilton-Poisson systems
 - Lie-Poisson structure
 - Examples
- 4 Outlook

Geometric control theory

Overview

- Began in the late 1960s
- study (nonlinear) control systems using concepts and methods from differential geometry [Sussmann 1983; Jurdjevic 1997]
- crossroads for differential geometry, mechanics, optimal control

Smooth control systems

- Family of vector fields, parametrized by controls
- state space, input space, control (function), trajectories
- characterize set of reachable points: controllability problem
- reach in best way: optimal control problem

Invariant control systems

Overview

- Brockett [1972], Jurdjevic and Sussmann [1972]
- Important class of interesting problems (particularly in engineering and in physics, e.g., controlling the orientation of a rigid body)
- Natural geometric setting for a variety of problems in mathematical physics, mechanics, elasticity, and differential geometry.
- Last few decades: invariant control affine systems evolving on matrix Lie groups of low dimension have drawn attention

Left-invariant control affine systems

System $\Sigma = (G, \Xi)$

$$\dot{g} = \Xi(g,u) = g(A + u_1B_1 + \cdots + u_\ell B_\ell), \qquad g \in G, \ u \in \mathbb{R}^\ell$$

state space G

(real, finite-dimensional) Lie group with Lie algebra g

dynamics Ξ

family of smooth left-invariant vector fields

$$\Xi:\mathsf{G} imes\mathbb{R}^\ell o T\mathsf{G}, \qquad (g,u)\mapsto g\,\Xi(\mathbf{1},u)\in T_g\mathsf{G}$$

• parametrization map $\Xi(\mathbf{1},\cdot)$ is affine and injective

$$\Xi(\textbf{1},\cdot):(u_1,\ldots,u_\ell)\mapsto \textbf{A}+u_1\textbf{B}_1+\cdots+u_\ell\textbf{B}_\ell\ \in\mathfrak{g}.$$

Trajectories

Admissible controls $u(\cdot): [0, T] \to \mathbb{R}^{\ell}$

ullet piecewise continuous \mathbb{R}^ℓ -valued maps.

Trajectory $g(\cdot):[0,T]\to G$

absolutely continuous curve satisfying (a.e.)

$$\dot{g}(t) = \Xi(g(t), u(t)).$$

Pair $(g(\cdot), u(\cdot))$ is called a controlled trajectory.

Controllability

Σ is controllable

For all $g_0, g_1 \in G$, there exists a trajectory $g(\cdot)$ such that $g(0) = g_0$ and $g(T) = g_1$.

Controllability implies

- State space G is connected
- A, B_1, \ldots, B_ℓ generate \mathfrak{g} , we say Σ has full rank.

Known results

- Homogeneous system or compact state space: full rank ←⇒ controllable [Jurdjevic and Sussmann 1972]
- Completely solvable and simply connected: B_1, \ldots, B_ℓ generate $\mathfrak{g} \iff$ controllable [Sachkov 2009]

Example

Euclidean group SE(2)

$$\left\{ \begin{bmatrix} 1 & 0 & 0 \\ x & \cos\theta & -\sin\theta \\ y & \sin\theta & \cos\theta \end{bmatrix} : x, y, \theta \in \mathbb{R} \right\}$$

$\Sigma = (SE(2), \Xi)$

$$\Xi(\mathbf{1},u)=u_1E_2+u_2E_3$$

Parametrically

$$\dot{x} = -u_1 \sin \theta$$
 $\dot{y} = u_1 \cos \theta$ $\dot{\theta} = u_2$

$$[E_2,E_3]=E_1$$

$$[E_2, E_3] = E_1$$
 $[E_3, E_1] = E_2$ $[E_1, E_2] = 0$

$$[E_1,E_2]=0$$

- Invariant control systems
 - Introduction
 - Equivalences
- Optimal control and Pontryagin Maximum Principle
 - Invariant optimal control problems
 - Cost-extended systems
- Quadratic Hamilton-Poisson systems
 - Lie-Poisson structure
 - Examples
- 4 Outlook

Equivalence

State space equivalence (S-equivalence)

$$\Sigma = (G, \Xi)$$
 and $\Sigma' = (G, \Xi')$
S-equivalent

$$\exists \phi : \mathsf{G} \to \mathsf{G} \text{ such that } T_g \phi \cdot \Xi(g,u) = \Xi'(\phi(g),u)$$

- Equivalence up to coordinate changes in the state space
- One-to-one correspondence between trajectories
- Very strong equivalence relation

Characterization

$$\Sigma$$
 and Σ' S-equivalent

$$\exists \, \psi \in d \, \mathsf{Aut} \, (\mathsf{G})$$

 $\psi \cdot \Xi(\mathbf{1}, \cdot) = \Xi'(\mathbf{1}, \cdot)$

Example (S-equivalence)

On the Euclidean group SE (2), any full-rank system

$$\Sigma: A + uB, A, B \in \mathfrak{g}$$

is S-equivalent to exactly one of the following systems

$$\begin{split} \Sigma_{1,\alpha}: & \alpha E_3 + u E_2, & \alpha > 0 \\ \Sigma_{2,\alpha\gamma}: & E_2 + \gamma E_3 + u(\alpha E_3), & \alpha > 0, \gamma \in \mathbb{R}. \end{split}$$

d Aut (SE (2)):
$$\begin{bmatrix} x & y & v \\ -\sigma y & \sigma x & w \\ 0 & 0 & 1 \end{bmatrix}, \qquad \sigma = \pm 1, \ x^2 + y^2 \neq 0$$

Concrete cases covered (S-equivalence)

Classifications on

- Euclidean group SE(2)
- Semi-Euclidean group SE(1,1)
- Pseudo-orthogonal group $SO(2,1)_0$ (resp. $SL(2,\mathbb{R})$)

Remark

- Many equivalence classes
- Limited use

Equivalence

Detached feedback equivalence (*DF*-equivalence)

$$\Sigma = (G, \Xi)$$
 and $\Sigma' = (G, \Xi')$
DF-equivalent

$$\exists \ \phi: \mathsf{G} \to \mathsf{G}, \ \varphi: \mathbb{R}^\ell \to \mathbb{R}^{\ell'} \ \text{ such that } \ T_g \phi \cdot \Xi(g,u) = \Xi'(\phi(g), \varphi(u)).$$

- Specialised feedback transformations
- ullet ϕ preserves left-invariant vector fields

Trace
$$\Gamma = \operatorname{im} \Xi(\mathbf{1}, \cdot) = A + \langle B_1, \dots, B_\ell \rangle$$

Characterization

$$\Sigma$$
 and Σ' *DF*-equivalent

$$\iff$$

$$\exists \, \psi \in d \, \mathsf{Aut} \, (\mathsf{G}) \\ \psi \cdot \Gamma = \Gamma'$$

Example (DF-equivalence)

On the Euclidean group SE (2), any full-rank system

$$\Sigma: A + uB, A, B \in \mathfrak{g}$$

is *DF*-equivalent to exactly one of the following systems

$$\Sigma_1^{(1)}: E_2 + uE_3$$

 $\Sigma_{2,\alpha}^{(1)}: \alpha E_3 + uE_2, \quad \alpha > 0$

$$d$$
 Aut (SE (2)) :
$$\begin{bmatrix} x & y & v \\ -\sigma y & \sigma x & w \\ 0 & 0 & 1 \end{bmatrix}, \qquad \sigma = \pm 1, \ x^2 + y^2 \neq 0$$

Concrete cases covered (*DF*-equivalence)

Equivalence & controllability on

- All connected 3D matrix Lie groups
 - Heisenberg group H₃
 - Euclidean group SE(2)
 - semi-Euclidean group SE(1,1)
 - pseudo-orthogonal group SO (2, 1)₀
 - orthogonal group SO(3)
 - others: \mathbb{R}^3 , Aff $(\mathbb{R})_0 \times \mathbb{R}$, $G_{3.2}$, $G_{3.3}$, $G_{3.4}^{\alpha}$, and $G_{3.5}^{\alpha}$
- The four-dimensional oscillator Lie group $H_3^{\diamond}=H_3\rtimes SO(2)$.
- The six-dimensional orthogonal group SO (4)

- Invariant control systems
 - Introduction
 - Equivalences
- Optimal control and Pontryagin Maximum Principle
 - Invariant optimal control problems
 - Cost-extended systems
- Quadratic Hamilton-Poisson systems
 - Lie-Poisson structure
 - Examples
- 4 Outlook

Problem statement

Minimize cost functional $\mathcal{J} = \int_0^T \chi(u(t)) dt$ over controlled trajectories of a system Σ subject to boundary data.

Formal statement

$$\left\{ egin{aligned} \dot{g} &= g\left(A + u_1B_1 + \dots + u_\ell B_\ell
ight), \quad g \in \mathsf{G}, \ u \in \mathbb{R}^\ell \ g(0) &= g_0, \quad g(T) = g_1 \ \mathcal{J} &= \int_0^T (u(t) - \mu)^\top \ Q\left(u(t) - \mu
ight) \ dt
ightarrow \mathsf{min} \,. \end{aligned}
ight.$$

Example

Problem

$$\dot{g} = g \left(u_1 E_2 + u_2 E_3 \right), \quad g \in \mathsf{SE} \, (2)$$
 $g(0) = \mathbf{1}, \quad g(1) = g_1$ $\int_0^1 \left(u_1(t)^2 + u_2(t)^2 \right) \, dt o \mathsf{min}$

Parametrically

$$\dot{x} = -u_1 \sin \theta$$
 $\dot{y} = u_1 \cos \theta$ $\dot{\theta} = u_2$
 $x(0) = 0, \ x(1) = x_1, \dots$
 $\int_0^1 (u_1(t)^2 + u_2(t)^2) \ dt \to \min$

Pontryagin Maximum Principle

Associate Hamiltonian function on $T^*G = G \times \mathfrak{g}^*$:

$$H_u^{\lambda}(\xi) = \lambda \chi(u) + \xi(\Xi(g, u))$$

= $\lambda \chi(u) + p(\Xi(\mathbf{1}, u)), \qquad \xi = (g, p) \in T^*G.$

Maximum Principle

[Pontryagin et al. 1964]

If $(\bar{g}(\cdot), \bar{u}(\cdot))$ is a solution, then there exists a curve

$$\xi(\cdot):[0,T] \to T^*\mathsf{G}, \qquad \qquad \xi(t) \in T^*_{\overline{g}(t)}\mathsf{G}, \ t \in [0,T]$$

and $\lambda \leq 0$, such that (for almost every $t \in [0, T]$):

$$\begin{split} (\lambda,\xi(t)) \not\equiv (0,0) \\ \dot{\xi}(t) &= \vec{H}_{\bar{u}(t)}^{\lambda}(\xi(t)) \\ H_{\bar{u}(t)}^{\lambda}\left(\xi(t)\right) &= \max_{u} H_{u}^{\lambda}\left(\xi(t)\right) = \text{constant}. \end{split}$$

Example (cont.)

Problem

$$egin{align} \dot{g} &= g \left(u_1 E_2 + u_2 E_3
ight), \quad g \in \mathsf{SE} \left(2
ight) \ g(0) &= \mathbf{1}, \quad g(1) = g_1 \ \int_0^1 \left(u_1(t)^2 + u_2(t)^2
ight) \, dt o \mathsf{min} \ \end{split}$$

Associated (reduced) Hamiltonian on $\mathfrak{se}(2)_{-}^{*}$

$$H(p)=rac{1}{2}(p_2^2+p_3^2), \qquad p=\sum p_i E_i^*\in \mathfrak{se}\,(2)^*$$

Normal extremal controlled trajectories $(g(\cdot), u(\cdot))$

$$\dot{g} = g(p_2E_2 + p_3E_3)$$
 $\dot{p}(t) = \vec{H}(p)$

Example (cont.)

Integration

$$\begin{array}{ll}
\bullet & \vec{H}: & \begin{cases}
\rho_1 = \rho_2 \rho_3 \\
\dot{\rho}_2 = -\rho_1 \rho_3 \\
\dot{\rho}_3 = \rho_1 \rho_2
\end{cases}$$

- Integration involves simple elliptic integrals
- Solutions expressed in terms of Jacobi elliptic functions

Case $c_0 < 2h_0$

$$\begin{cases} p_1(t) = \pm \sqrt{c_0} \, \operatorname{dn}(\sqrt{c_0} \, t, \, \sqrt{\frac{2h_0}{c_0}}) \\ p_2(t) = \sqrt{2h_0} \, \operatorname{sn}(\sqrt{c_0} \, t, \, \sqrt{\frac{2h_0}{c_0}}) \\ p_3(t) = \mp \sqrt{2h_0} \, \operatorname{cn}(\sqrt{c_0} \, t, \, \sqrt{\frac{2h_0}{c_0}}). \end{cases}$$

Example (cont.)

Figure: Typical configurations for integral curves of \vec{H}

- Invariant control systems
 - Introduction
 - Equivalences
- Optimal control and Pontryagin Maximum Principle
 - Invariant optimal control problems
 - Cost-extended systems
- Quadratic Hamilton-Poisson systems
 - Lie-Poisson structure
 - Examples
- 4 Outlook

Cost-extended systems

Aim

Introduce equivalence.

Cost-extended system (Σ, χ)

A pair, consisting of

- a system Σ
- an admissible cost χ .

 (Σ, χ) + boundary data = optimal control problem.

Cost equivalence

Cost equivalence (C-equivalence)

 (Σ, χ) and (Σ', χ') are *C*-equivalent if there exist

- a Lie group isomorphism $\phi: G \to G'$
- ullet an affine isomorphism $arphi: \mathbb{R}^\ell o \mathbb{R}^{\ell'}$

such that

$$T_g \phi \cdot \Xi(g, u) = \Xi'(\phi(g), \varphi(u))$$

 $\chi' \circ \varphi = r\chi$ for some $r > 0$.

$$G \times \mathbb{R}^{\ell} \xrightarrow{\phi \times \varphi} G' \times \mathbb{R}^{\ell'}$$

$$\exists \downarrow \qquad \qquad \downarrow \exists'$$

$$TG \xrightarrow{T_{\phi}} TG'$$

Relation of equivalences

Proposition

$$(\Sigma,\chi)$$
 and (Σ',χ') \Longrightarrow Σ and Σ' DF -equivalent

Proposition

$$\Sigma$$
 and Σ' \Longrightarrow (Σ,χ) and (Σ',χ) S -equivalent for any χ

$$\Sigma$$
 and Σ'
 DF -equivalent
 $w.r.t. \ \varphi \in \mathsf{Aff}(\mathbb{R}^\ell)$
 $\Longrightarrow \qquad (\Sigma, \chi \circ \varphi) \ \text{and} \ (\Sigma', \chi)$
 C -equivalent for any χ

Extremal trajectories

Controlled trajectory $(g(\cdot), u(\cdot))$ over interval [0, T].

ECTs

- (Normal) extremal controlled trajectory (ECT)
 - satisfies conditions of PMP

Theorem

If (Σ, χ) and (Σ', χ') are C-equivalent (w.r.t. $\phi \times \varphi$), then

• $(g(\cdot), u(\cdot))$ is an ECT \iff $(\phi \circ g(\cdot), \varphi \circ u(\cdot))$ is an ECT

Characterizations (for fixed system Σ)

Proposition

 (Σ,χ) and (Σ',χ') are C-equivalent for some χ' if and only if there exists LGrp-isomorphism $\phi: \mathsf{G} \to \mathsf{G}'$ such that $T_1\phi \cdot \Gamma = \Gamma'$.

Proposition

$$\mathcal{T}_{\Sigma} = \left\{ \begin{array}{l} \varphi \in \mathsf{Aff}\left(\mathbb{R}^{\ell}\right) \ : & \exists \ \psi \in \mathit{d} \ \mathsf{Aut}\left(\mathsf{G}\right), \ \psi \cdot \Gamma = \Gamma \\ \psi \cdot \Xi(\mathbf{1}, \mathit{u}) = \Xi(\mathbf{1}, \varphi(\mathit{u})) \end{array} \right\}$$

Example: on the Euclidean group SE(2)

Example

Any full-rank cost-extended system (Σ, χ) on SE (2)

$$\Xi(\mathbf{1}, u) = u_1 B_1 + u_2 B_2, \qquad \chi = u^{\top} Q u$$

is *C*-equivalent to (Σ_1, χ_1) , where

$$\Xi_1(\mathbf{1},u)=u_1E_2+u_2E_3,$$

$$\chi_1(u) = u_1^2 + u_2^2.$$

Proof sketch:

- Find dAut (SE (2)).
- ② Show Σ is *DF*-equivalent to $\Sigma_1 = (SE(2), \Xi_1)$
 - (Σ, χ) is *C*-equivalent to (Σ_1, χ') , $\chi' : u \mapsto u^\top Q' u$.
- **4** Find $\varphi \in \mathcal{T}_{\Sigma_1}$ such that $\chi_1 = r\chi' \circ \varphi$.

Concrete cases covered (*C*-equivalence)

Classifications on

- The Heisenberg group H₃
- Two-input systems on the Euclidean group SE (2) (partially covered)

- Invariant control systems
 - Introduction
 - Equivalences
- Optimal control and Pontryagin Maximum Principle
 - Invariant optimal control problems
 - Cost-extended systems
- Quadratic Hamilton-Poisson systems
 - Lie-Poisson structure
 - Examples
- Outlook

Lie-Poisson structure

(Minus) Lie-Poisson structure: \mathfrak{g}_{-}^{*}

$$\{F,G\}(p)=-p\left([dF(p),dG(p)]\right),\qquad p\in\mathfrak{g}^*,\,F,G\in C^\infty(\mathfrak{g}^*)$$

Quadratic Hamilton-Poisson system $(\mathfrak{g}_{-}^*, H_{A,Q})$

$$H_{A,Q}(p) = pA + pQp^{\top}$$

- Invariant optimal control problems Q is PSD
- Class of interesting dynamical systems
 - e.g. Euler's classic equations for the rigid body

Quadratic Hamilton-Poisson system

Linear equivalence (L-equivalence)

$$(\mathfrak{g}_{-}^*, G)$$
 and (\mathfrak{h}_{-}^*, H)

L-equivalent

linear isomorphism $\psi: \mathfrak{g}^* \to \mathfrak{h}^*$ such that $T_p \phi \cdot \vec{G}(p) = \vec{H}(\phi(p))$.

Remark

C-equivalence \Longrightarrow L-equivalence

Proposition

The following systems are L-equivalent to $H_{A,O}$:

- $\mathfrak{E}(1)$ $H_{A,O} \circ \psi$, where $\psi : \mathfrak{g}^* \to \mathfrak{g}^*$ is a linear Poisson automorphism;
- $\mathfrak{E}(2)$ $H_{A,C} + C$, where C is a Casimir function;
- $\mathfrak{E}(3)$ $H_{A,rO}$, where $r \neq 0$.

- Invariant control systems
 - Introduction
 - Equivalences
- Optimal control and Pontryagin Maximum Principle
 - Invariant optimal control problems
 - Cost-extended systems
- Quadratic Hamilton-Poisson systems
 - Lie-Poisson structure
 - Examples
- 4 Outlook

Examples

Proposition (On the Euclidean space $\mathfrak{se}(2)^*$)

Any system $(\mathfrak{se}(2)^*_-, H)$, $H = p Q p^\top$ with Q PSD is equivalent to

$$H_1(p)=p_2^2$$

$$H_2(p)=p_3^2$$

$$H_1(p) = p_2^2$$
 $H_2(p) = p_3^2$ or $H_3(p) = p_2^2 + p_3^2$

Proposition (On the orthogonal space $\mathfrak{so}(3)^*$)

Any system $(\mathfrak{so}(3)^*_-, H)$, $H = p Q p^\top$ is equivalent to

$$H_1(p)=p_2^2$$

or

$$H_2(p) = p_2^2 + \frac{1}{2}p_3^2$$

Proposition (Between spaces)

Any system $(\mathfrak{so}(3)^*_-, H)$, $H = p Q p^\top$ is equivalent to

$$(\mathfrak{se}(2)^*_{-}, p_3^2)$$

or

$$(\mathfrak{se}(2)_{-}^{*}, p_2^2 + p_3^2)$$

Examples

Equivalence procedure

- Calculate group of linear Lie-Poisson automorphisms
- ② Use (€1), (€2), and (€3) to reduce
- ① Use linear isomorphisms ψ such that $\psi \cdot \vec{H} = \vec{H}' \circ \psi$ (this step is not always needed)
- verify that normal forms are not equivalent

Stability and integration

Stability

- Lyapunov stable: energy Casimir method and extensions [Ortega, Planas-Bielsa and Ratiu 2005]
- Lyapunov unstable: usually sufficient to prove spectral instability

Integration

In many cases, in terms of elementary or Jacobi elliptic functions

Concrete cases covered (*L*-equivalence)

Equivalence, stability, integration

- Three dimensional, homogeneous, positive definite systems
- Inhomogeneous systems on the Euclidean space se (2) (partially, via optimal control problems)
- Currently under way (w.r.t. affine equivalence)
 - inhomogeneous systems on semi-Euclidean space $\mathfrak{se}(1,1)^*_-$
 - inhomogeneous systems on orthogonal space $\mathfrak{so}(3)_{-}^*$

- Invariant control systems
 - Introduction
 - Equivalences
- Optimal control and Pontryagin Maximum Principle
 - Invariant optimal control problems
 - Cost-extended systems
- Quadratic Hamilton-Poisson systems
 - Lie-Poisson structure
 - Examples
- Outlook

Outlook

- Cost-extended systems and sub-Riemannian geometry
- Cartan's method of equivalence
- Study of various distinguished subclasses of systems (4D)
- Quadratic Hamilton-Poisson systems (4D)
- Extend 3D study to cover all homogeneous QHP systems

- A.A. Agrachev and Y.L. Sachkov Control Theory from the Geometric Viewpoint Springer-Verlag, 2004.
- V. Jurdjevic Geometric Control Theory Cambridge University Press, 1997.

- R.W. Brockett
 System theory on group manifolds and coset spaces
 SIAM J. Control 10 (1972), 265–284.
- V. Jurdjevic and H.J. Sussmann
 Control systems on Lie groups
 J. Diff. Equations 12 (1972), 313–329.
- J-P. Ortega, V. Planas-Bielsa and T.S. Ratiu
 Asymptotic and Lyapunov stability of constrained and Poisson
 equilibria
 - J. Diff. Equations 214 (2005), 92–127.
- Y.L. Sachkov
 Control theory on Lie groups
 J. Math. Sci. **156** (2009), 381–439.
- H.J. Sussmann
 Lie brackets, real analyticity and geometric control
 Differential Geometric Control Theory (R.W. Brockett, R.S. Millman
 and H.J. Sussmann, eds.), Birkhäuser, Boston, 1983, 1–116.