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Geometric control theory

Overview

@ Began in the late 1960s

@ study (nonlinear) control systems using concepts and methods
from differential geometry [Sussmann 1983; Jurdjevic 1997]

@ crossroads for differential geometry, mechanics, optimal control

Smooth control systems

@ Family of vector fields, parametrized by controls
@ state space, input space, control (function), trajectories

@ characterize set of reachable points: controllability problem

@ reach in best way: optimal control problem
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Invariant control systems

Overview

@ Brockett [1972], Jurdjevic and Sussmann [1972]

@ Important class of interesting problems (particularly in engineering
and in physics, e.g., controlling the orientation of a rigid body)

@ Natural geometric setting for a variety of problems in mathematical
physics, mechanics, elasticity, and differential geometry.

v

@ Last few decades: invariant control affine systems evolving on
matrix Lie groups of low dimension have drawn attention
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Left-invariant control affine systems

9==(g,u) =g(A+uBy +-- -+ whB), geG ucR’

state space G
@ (real, finite-dimensional) Lie group with Lie algebra g

dynamics =
@ family of smooth left-invariant vector fields
=:G xR = TG, (9,u)— g=(1,u) € T4G
@ parametrization map =(1,-) is affine and injective
=(1,) (uq,...,u) —» A+ u By +---+wBy €g.
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Admissible controls u(:) : [0, T] — R¢
@ piecewise continuous Rf-valued maps.

Trajectory g(-): [0, T] = G
@ absolutely continuous curve satisfying (a.e.)
a(t) = =(9(t), u(t)).

Pair (g(-), u(+)) is called a controlled trajectory. ]
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Controllability

Y is controllable

For all go, g1 € G, there exists a trajectory g(-) such that
9g0)=g and  g(T)=gi.

Controllability implies
@ State space G is connected
@ A By, ..., B, generate g, we say ¥ has full rank.

@ Homogeneous system or compact state space:

full rank <= controllable [Jurdjevic and Sussmann 1972]
@ Completely solvable and simply connected:
By, ..., B, generate g < controllable [Sachkov 2009]
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Euclidean group SE (2)
1 0 0
X cosf —sinf| : x,y,0 eR
y sinf cosé
5(1, U) = Es+ UEs
Parametrically
X=—u;sind y=ujcosf 0=u

se(2): [Ez, E3] = E4 [Es, E1] = E2 [E1, Eo] =
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@ !nvariant control systems

@ Equivalences
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Equivalence

Y =(G,2) and ¥ = (G,Z)
S-equivalent
3¢ : G — G suchthat Tg¢ - =(g,u) = ='(4(9), u)

@ Equivalence up to coordinate changes in the state space
@ One-to-one correspondence between trajectories
@ Very strong equivalence relation

Characterization

Y and ¥’ . 3¢ € dAut(G)
S-equivalent Yv-=(1,))=='(1,")
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Example (S-equivalence)

..
On the Euclidean group SE (2), any full-rank system

>: A+ uB, A Beg

is S-equivalent to exactly one of the following systems

Yi0: aE3+ Uk, a>0
Yooy Eo+vE3+ u(aEs), a>0,v€eR.
X y v
dAut(SE (2)) : —oy ox w|, o=41,x2+y2#0
0 0o 1
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Concrete cases covered (S-equivalence)

Classifications on

@ Euclidean group SE(2)
@ Semi-Euclidean group SE (1,1)
@ Pseudo-orthogonal group SO (2,1) (resp. SL(2,R))

@ Many equivalence classes
@ Limited use
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Equivalence

Detached feedback equivalence (DF-equivalence)
Yy =(G,Z) and ¥’ = (G,Z)
DF-equivalent
3¢:G — G, ¢: R = RY suchthat Typ-=(g,u) = ='(¢(9), p(u)).

v

@ Specialised feedback transformations
@ ¢ preserves left-invariant vector fields

Trace T =im=(1,)=A+ (By,...,By) J

Characterization

Y and ¥’ Iy € dAut(G)
DF-equivalent -r=r’
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Example (DF-equivalence)

A
On the Euclidean group SE (2),
any full-rank system

Y:A+tuB, ABecg

is DF-equivalent to exactly one of
the following systems

251) : Ez + UE3
Zg; s abEs+uE, a>0

X 'y v
dAut (SE (2)) : —oy ox w|, o=+1,x2+y2#0
0 0o 1
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Concrete cases covered (DF-equivalence)

Equivalence & controllability on

@ All connected 3D matrix Lie groups

Heisenberg group Hs

Euclidean group SE (2)

semi-Euclidean group SE (1,1)

pseudo-orthogonal group SO (2,1)g

orthogonal group SO (3)

o others: R3, Aff(R)o x R, Gz, Gas, G§,, and G

@ The four-dimensional oscillator Lie group HS = Hz x SO (2).
@ The six-dimensional orthogonal group SO (4)
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e Optimal control and Pontryagin Maximum Principle
@ Invariant optimal control problems
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Problem statement

Minimize cost functional J = fo u(t)) dt
over controlled trajectories of a system pu
subject to boundary data.

Formal statement

g=g(A+wuBi+ - +wB), geG ueR’
9(0) =go. 9(T) = g

-
J = / (u(t) — 1) " Q(u(t) — ) dt — min.
0
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g=9(unE+ wEs), geSE(2)
9(0)=1, g(1) =g

/1 (us (1) + wa(t)?) dt — min )

-~
\

Parametrically
X=—u;sind y=ujcosf 0=u
x(0) =0, x(1) = x4,
f01 (w1 (t)2 + up(t)?) dt — min

| o
A\

A\
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Pontryagin Maximum Principle

Associate Hamiltonian function on T*G = G x g*:

H3(€) = Ax(u) + £(Z(g, v))
AW +p (E(w),  €=(g,p)e TG

v

Maximum Principle [Pontryagin et al. 1964]
If (g(-),u(-)) is a solution, then there exists a curve

£(1): [0, T] = T*G, §(t) € T3»nG, t€[0,T]
and X < 0, such that (for almost every t € [0, T]):

eF 6(1‘)) 0,0)

(0,
E(1) = Hyp (&(1)
Ha (£(1) = max H. (£(t)) = constant.

v
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Example (cont.)

g=9(ukE+ wkE3), geSE(2)
9(0)=1, g(1) =g

/1 (us(1)? + wa(t)?) dt — min
0

Associated (reduced) Hamiltonian on se (2)*

H(p) = 3(05 + P5), p=> PiE €se(2)

Normal extremal controlled trajectories (g(-), u(+))

d=9(p2E2+psEs)  p(t) = H(p)
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Example (cont.)

Integration

. p1 = p2ps
° H: P2 = —P1Ps
P3 = p1P2

@ Integration involves simple elliptic integrals

@ Solutions expressed in terms of Jacobi elliptic functions

pr(t) = v/ dn (Vo t, /2)
pe(t) = v/2ho sn (VG t, |/ 22)
pa(t) = /2o en (v t, /%),

v
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Example (cont.)

(a) co < 2hg (b) co = 2hg (€) co > 2hg

Figure: Typical configurations for integral curves of H
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e Optimal control and Pontryagin Maximum Principle

@ Cost-extended systems
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Cost-extended systems

Introduce equivalence. \

Cost-extended system (X, x)

A pair, consisting of
@ asystem X
@ an admissible cost x.

(X,x) + boundarydata = optimal control problem. J
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Cost equivalence

Cost equivalence (C-equivalence)

(X,x) and (¥, ') are C-equivalent if there exist
@ a Lie group isomorphism ¢ : G — G/
@ an affine isomorphism ¢ : Rf — R”
such that
Tgg - =(9, u) = =/(6(9), ¢(u))
X op=rx for some r > 0.
GxR—2% G xR RE—F L RY
| = |
TG — TG R———R

v
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Relation of equivalences

(X, x) and (X', x) . Y and ¥’
C-equivalent DF -equivalent

Y and Y’ N (X,x) and (X', x)
S-equivalent C-equivalent for any x

Y and Y’
DF -equivalent =
w.rt. ¢ € Aff (R)

(X, x o) and (X', x)
C-equivalent for any x
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Extremal trajectories

Controlled trajectory (g(-), u(-)) over interval [0, T]. )

@ (Normal) extremal controlled trajectory (ECT)
e satisfies conditions of PMP

If (X,x) and (X', x') are C-equivalent (w.r.t. ¢ x ¢), then

@ (9(),u() isan ECT < (¢og(-),pou(:)) isan ECT
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Characterizations (for fixed system %)

Proposition

(X,x) and (¥',x') are C-equivalent for some x/
if and only if there
exists LGrp-isomorphism ¢ : G — G’ such that Ty¢-T =1T".

(X,x) and (%, x') are C-equivalent
if and only if
there exists p € Ty such that x' = ry oy for some r > 0.

\

E:{@EAﬁ(RK) . 3P e dAWt(G), ¢-T=T }

¥-=(1,u) = =(1, p(u))
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Example: on the Euclidean group SE (2)

Any full-rank cost-extended system (X, x) on SE(2)

E(1,U):U1B1+U282, X:UTQU
is C-equivalentto (X1, x1), where
=i(1,u) = B + waEs, xi(u) = U2 + u3.
Proof sketch:

@ Find dAut(SE (2)).
@ Show ¥ is DF-equivalentto Y1 = (SE(2),=Z1)
o (¥,x) is C-equivalentto (X1,x), X' :u—u' Q u.

© Calculate Ty, :{u'—> [g(;( lﬂu : X #£0, weR,g:i1}.

@ Find ¢ € Ty, suchthat x1 = ry/ o .
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Concrete cases covered (C-equivalence)

Classifications on
@ The Heisenberg group Hs

@ Two-input systems on the Euclidean group SE (2)
(partially covered)
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e Quadratic Hamilton-Poisson systems
@ Lie-Poisson structure
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Lie-Poisson structure

(Minus) Lie-Poisson structure: g*

{F,G}(p) = —p([dF(p),dG(p)]), peg", F,Ge C(g")

Quadratic Hamilton-Poisson system (g*, Haq)

Haolp) =pPA+pQp"

@ Invariant optimal control problems — Q is PSD
@ Class of interesting dynamical systems
e e.g. Euler’s classic equations for the rigid body
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Quadratic Hamilton-Poisson system

Linear equivalence (L-equivalence)
(62, G) and (b=, H)
L-equivalent
3 linear isomorphism ¢ : g* — h* such that Tp¢ - é(p) = Fl(qﬁ(p)).

C-equivalence —  L-equivalence

Proposition

The following systems are L-equivalentto Hp q:

(1) Haqo, where ¢ : g* — g* is a linear Poisson automorphism;
€(2) Haq+ C, where C is a Casimir function;
&(3) Harq, where r # 0.
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e Quadratic Hamilton-Poisson systems

@ Examples
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Proposition (On the Euclidean space se (2)*)

Any system (se¢(2)*,H), H=pQp" with Q PSD is equivalent to

or  Hs(p)=ps+p;

.

Proposition (On the orthogonal space so (3)*)

Any system (so(3)*,H), H=pQp" is equivalent to

or Ho(p) = P + 3P5

V.

Proposition (Between spaces)

Any system (so(3)*,H), H=pQp'" is equivalent to

(se(2)", p3) or (se(2)*, 05 + p3)

v
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Equivalence procedure

@ Calculate group of linear Lie-Poisson automorphisms
@ Use (¢1), (¢2), and (¢3) to reduce

© Use linear isomorphisms ) such that 1 - H=H o
(this step is not always needed)

© verify that normal forms are not equivalent

Stability and integration
Stability

@ Lyapunov stable: energy Casimir method and extensions
[Ortega, Planas-Bielsa and Ratiu 2005]

@ Lyapunov unstable: usually sufficient to prove spectral instability
Integration
@ In many cases, in terms of elementary or Jacobi elliptic functions

v

| A\
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Concrete cases covered (L-equivalence)

Equivalence, stability, integration

@ Three dimensional, homogeneous, positive definite systems

@ Inhomogeneous systems on the Euclidean space se (2)
(partially, via optimal control problems)

@ Currently under way (w.r.t. affine equivalence)

e inhomogeneous systems on semi-Euclidean space se (1,1)*
e inhomogeneous systems on orthogonal space so (3)*
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e Outlook
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Outlook

@ Cost-extended systems and sub-Riemannian geometry

@ Cartan’s method of equivalence
@ Study of various distinguished subclasses of systems (4D)
@ Quadratic Hamilton-Poisson systems (4D)

@ Extend 3D study to cover all homogeneous QHP systems
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