HP Formalism	$\mathfrak{se}(1,1)$	Classification	

Quadratic Hamilton-Poisson Systems on $\mathfrak{se}(1,1)^*_{-}$ Equivalence, Stability and Integrability

Dennis Barrett

Mathematics Seminar Rhodes University

10 April, 2013

HP Formalism	$\mathfrak{se}(1,1)$	Classification	
Outline			

- 1 Hamilton-Poisson formalism
- 2 The semi-Euclidean Lie algebra
- Classification of systems
- 4 Stability analysis
- 5 Integration

HP Formalism	$\mathfrak{se}(1,1)$	Classification	Stability	Integration
Introduction				

Context

Study a class of Hamilton-Poisson systems relating to optimal control problems on Lie groups.

Objects

• quadratic Hamilton-Poisson systems on duals of Lie algebras

Equivalence

• equivalence under affine isomorphisms

Problem

- classify Hamilton-Poisson systems under affine equivalence
- investigate stability nature of equilibria
- find integral curves of systems.

Poisson bracket $\{\cdot, \cdot\}$ on \mathfrak{g}^*

Skew-symmetric, bilinear map $C^{\infty}(\mathfrak{g}^*) \times C^{\infty}(\mathfrak{g}^*) \to C^{\infty}(\mathfrak{g}^*)$ satisfying:

- Jacobi identity
- $\{\cdot, F\}$ is a derivation, $\forall F \in C^{\infty}(\mathfrak{g}^*)$.

(Minus) Lie-Poisson space $\mathfrak{g}_{-}^{*} = (\mathfrak{g}^{*}, \{\cdot, \cdot\})$

$$\{F,G\}(p) = -p([\mathbf{d}F(p),\mathbf{d}G(p)]).$$

(Linear Poisson) automorphisms

Linear isomorphisms $\Psi:\mathfrak{g}^*\to\mathfrak{g}^*$ that preserve the Poisson bracket:

$$\{F,G\} \circ \Psi = \{F \circ \Psi, G \circ \Psi\}, \qquad \forall F,G \in C^{\infty}(\mathfrak{g}^*).$$

HP Formalism	$\mathfrak{se}(1,1)$	Classification	Stability	Integration
Hamiltonian	formalism			

Hamiltonian vector fields

For every Hamiltonian function $H \in C^{\infty}(\mathfrak{g}^*)$ there is a unique vector field $\vec{H} \in \text{Vec}(\mathfrak{g}^*)$ such that

 $\vec{H}[F] = \{F, H\}, \qquad \forall F \in C^{\infty}(\mathfrak{g}^*).$

Equations of motion

A curve $p(\cdot)$ is an integral curve of \vec{H} if

$$rac{d}{dt} p(t) = ec{H}(p(t)).$$

In coordinates,

$$\frac{d}{dt}p_i(t)=-p\big([E_i,\mathbf{d}H(p)]\big).$$

Dennis Barrett (Rhodes)

HP Formalism	$\mathfrak{se}(1,1)$	Classification	
Constants of	of motion		

Conservation of energy

If $p(\cdot)$ is an integral curve of \vec{H} , then H(p(t)) is constant in t.

Casimir functions

Functions $C \in C^{\infty}(\mathfrak{g}^*)$ that Poisson commute with every other function:

$$\{C,F\}=0, \qquad \forall F\in C^\infty(\mathfrak{g}^*).$$

Integral curves of \vec{H} evolve on the intersection of the surfaces

H(p) = const. and C(p) = const.

HP Formalism	$\mathfrak{se}(1,1)$	Classification	
Stability of eq	uilibria		

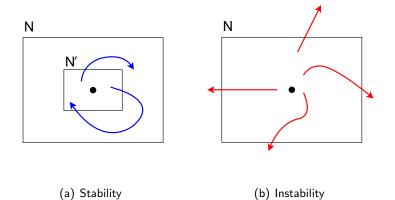
Equilibria

An equilibrium point of \vec{H} is a point $p_e \in \mathfrak{g}^*$ such that $\vec{H}(p_e) = 0$.

Lyapunov stability nature of p_e

- (Lyapunov) stable if for every neighbourhood N of p_e there exists a neighbourhood $N' \subseteq N$ of p_e such that, for every integral curve $p(\cdot)$ of \vec{H} with $p(0) \in N'$, we have $p(t) \in N$ for all t > 0.
- (Lyapunov) unstable if it is not stable.

HP Formalism	$\mathfrak{se}(1,1)$	Classification	
Lyapunov st	tability		



HP Formalism	$\mathfrak{se}(1,1)$	Classification	
Lyapunov st	tability		

Energy-Casimir method

Suppose there exist

• constants of motion C_1, \ldots, C_k (*i.e.* $\{C_i, H\} = 0$)

•
$$\lambda_0, \lambda_1, \ldots, \lambda_k \in \mathbb{R}$$

such that

•
$$\mathbf{d}(\lambda_0 H + \lambda_1 C_1 + \cdots + \lambda_k C_k)(p_e) = 0$$

• $\mathbf{d}^2(\lambda_0 H + \lambda_1 C_1 + \cdots + \lambda_k C_k)(p_e)|_{W \times W}$ is positive definite, where

$$W = \ker \mathbf{d}H(p_e) \cap \ker \mathbf{d}C_1(p_e) \cap \cdots \cap \ker \mathbf{d}C_k(p_e).$$

Then p_e is (Lyapunov) stable.

HP Formalism	$\mathfrak{se}(1,1)$	Classification	Integration
Spectral sta	ability		

Spectral stability nature of p_e

- spectrally stable if all eigenvalues of $\mathbf{D}\vec{H}(p_e)$ have non-positive real parts.
- spectrally unstable if it is not spectrally stable.

Lyapunov	-	Spectral
stability	\rightarrow	stability

Quadratic HP systems $(\mathfrak{g}_{-}^*, H_{A,Q})$

The Hamiltonian $H_{A,Q}$ is given by

$$egin{aligned} &\mathcal{H}_{A,\mathcal{Q}}(p) = \mathcal{L}_A(p) + \mathcal{H}_\mathcal{Q}(p) \ &= p(A) + \mathcal{Q}(p) \ &(A \in \mathfrak{g}). \end{aligned}$$

- \mathcal{Q} is a quadratic form on \mathfrak{g}^*
- in coordinates: $H_{A,\mathcal{Q}}(p) = pA + \frac{1}{2}pQp^{\top}$
- $H_{A,Q}$ is homogeneous if A = 0; otherwise, inhomogeneous.

Restriction

• \mathcal{Q} is positive semidefinite.

Affine equivalence (A-equivalence)

 $H_{A,\mathcal{Q}}$ and $H_{B,\mathcal{R}}$ are *A*-equivalent if there exists an affine isomorphism $\Psi: \mathfrak{g}^* \to \mathfrak{g}^*, \ p \mapsto \Psi_0(p) + q$ such that

$$\Psi_0 \cdot \vec{H}_{A,\mathcal{Q}} = \vec{H}_{B,\mathcal{R}} \circ \Psi.$$

We write $H_{A,Q} \sim H_{B,R}$.

Sufficient conditions

 $H_{A,Q}$ is A-equivalent to

• $H_{A,\mathcal{Q}} \circ \Psi$, where $\Psi : \mathfrak{g}^* \to \mathfrak{g}^*$ is a linear Poisson automorphism

•
$$H_{A,Q} + C$$
, where C is a Casimir function

• $H_{A,rQ}$, where $r \neq 0$.

HP Formalism se(1, 1) The semi-Euclidean Lie algebra $\mathfrak{se}(1,1)$ $\mathfrak{se}(1,1) = \left\{ egin{array}{ccc} 0 & 0 & 0 \ x & 0 & heta \ y & heta & 0 \end{array}
ight| : x, y, heta \in \mathbb{R}
ight\}$

Standard basis

$$E_1 = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \qquad E_2 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix} \qquad E_3 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

Commutators

$$[E_2, E_3] = -E_1$$
 $[E_3, E_1] = E_2$ $[E_1, E_2] = 0$

Dennis Barrett (Rhodes)

Hamilton-Poisson systems on $\mathfrak{se}(1,1)^*_{-}$

Dual basis (E_1^*, E_2^*, E_3^*)

$$E_i^*(E_j) = \delta_{ij}, \qquad 1 \le i, j \le 3.$$

Equations of motion

$$\begin{cases} \dot{p}_1 = \frac{\partial H}{\partial p_3} p_2 \\ \dot{p}_2 = \frac{\partial H}{\partial p_3} p_1 \\ \dot{p}_3 = -\frac{\partial H}{\partial p_1} p_2 - \frac{\partial H}{\partial p_2} p_1 \end{cases}$$

Casimir function

The function $C:(p_1,p_2,p_3)\mapsto p_1^2-p_2^2$ is a Casimir on $\mathfrak{se}(1,1)_-^*$.

Dennis Barrett (Rhodes)

Quadratic HP Systems on $\mathfrak{se}(1,1)^*_{-}$

RU Math. Sem. 14 / 28

Proposition

Any HP system $(\mathfrak{se}(1,1)^*_{-},H_Q)$ is A-equivalent to exactly one of the following systems:

$$\begin{aligned} H_0(p) &= 0 & H_1(p) = \frac{1}{2}p_1^2 & H_2(p) = \frac{1}{2}(p_1 + p_2)^2 \\ H_3(p) &= \frac{1}{2}p_3^2 & H_4(p) = \frac{1}{2}(p_1^2 + p_3^2) & H_5(p) = \frac{1}{2}[(p_1 + p_2)^2 + p_3^2] \end{aligned}$$

Method of proof

- simplify representatives using sufficient conditions for A-equivalence
- result: collection of potential representatives
- confirm that representatives are not equivalent.

Classification of inhomogeneous systems

Approach (for each $i = 0, \ldots, 5$)

- assume $H_{A,Q} = L_A + H_i$
- simplify L_A using automorphisms that leave H_i invariant
- employ affine isomorphisms for further simplification
- verify that representatives are not equivalent.

Lemma

There exists an automorphism Ψ such that $H_3 \circ \Psi = H_3$ and $L_A \circ \Psi$ is exactly one of $L_{E_1+\beta E_3}$, $L_{E_1+E_2+\gamma E_3}$ or $L_{\alpha E_3}$, where $\alpha > 0$, $\beta \ge 0$, $\gamma \in \mathbb{R}$.

• From the lemma, $L_A + H_3$ is A-equivalent to one of

$$G_{1,\beta}(p) = p_1 + \beta p_3 + \frac{1}{2}p_3^2$$

$$G_{2,\gamma}(p) = p_1 + p_2 + \gamma p_3 + \frac{1}{2}p_3^2$$

$$G_{3,\alpha}(p) = \alpha p_3 + \frac{1}{2}p_3^2$$

• using $\Psi: p \mapsto p + \beta E_3^*$, we have $G_{1,\beta} \sim G_{1,0}$

- similarly, ${\it G}_{2,\gamma} \sim {\it G}_{2,0}$ and ${\it G}_{3,lpha} \sim {\it G}_{3,0}$
- \bullet verify that ${\it G}_{1,0},~{\it G}_{2,0}$ and ${\it G}_{3,0}$ are not equivalent.

Example: systems associated to $H_3(p) = \frac{1}{2}p_3^2$

Proposition

Any HP system $(\mathfrak{se}(1,1)^*_{-}, H_{A,Q})$ of the form $H_{A,Q} = L_A + H_3$ is A-equivalent to exactly one of the following systems:

$$\begin{split} H_1^{(3)}(p) &= p_1 + \frac{1}{2}p_3^2 \\ H_2^{(3)}(p) &= p_1 + p_2 + \frac{1}{2}p_3^2 \\ H_3^{(3)}(p) &= \frac{1}{2}p_3^2. \end{split}$$

$$\begin{aligned} & \text{Permalism} \quad \text{sc(1,1)} \quad \text{Classification of inhomogeneous systems } \left(\texttt{ste}(1,1)^*, H_{A,Q} \right) \\ & \text{Classification of inhomogeneous systems } \left(\texttt{se}(1,1)^*, H_{A,Q} \right) \\ & \text{H}_{1}^{(0)}(p) = p_1 \\ & \text{H}_{2,\alpha}^{(0)}(p) = \alpha p_3 \\ & \text{H}_{1}^{(1)}(p) = p_1 + \frac{1}{2}p_1^2 \\ & \text{H}_{2}^{(1)}(p) = p_1 + p_2 + \frac{1}{2}p_1^2 \\ & \text{H}_{3,\alpha}^{(1)}(p) = \alpha p_3 + \frac{1}{2}p_1^2 \\ & \text{H}_{3,\alpha}^{(2)}(p) = p_1 + p_2 + \frac{1}{2}p_1^2 \\ & \text{H}_{1,\alpha}^{(2)}(p) = p_1 + \frac{1}{2}(p_1 + p_2)^2 \\ & \text{H}_{3,\delta}^{(2)}(p) = p_1 + p_2 + \frac{1}{2}(p_1 + p_2)^2 \\ & \text{H}_{3,\delta}^{(2)}(p) = \delta p_3 + \frac{1}{2}(p_1 + p_2)^2 \\ & \text{H}_{3,\alpha}^{(2)}(p) = \delta p_3 + \frac{1}{2}(p_1 + p_2)^2 \\ & \text{H}_{3,\alpha}^{(2)}(p) = \delta p_3 + \frac{1}{2}(p_1 + p_2)^2 \end{aligned}$$

 $\alpha > 0$, $\alpha_1 > \alpha_2 > 0$, $\delta \neq 0$

HP Formalism $\mathfrak{se}_{(1,1)}$ Classification Stability Integral Stability analysis of $H_1^{(3)}(p)=p_1+rac{1}{2}p_3^2$

Equations of motion $\begin{cases} \dot{p}_1 = p_2 p_3\\ \dot{p}_2 = p_1 p_3\\ \dot{p}_3 = -p_2 \end{cases}$

Equilibria

$$egin{aligned} \mathsf{e}_1^\mu &= (\mu, 0, 0) \ \mathsf{e}_2^
u &= (0, 0,
u) \ (\mu,
u \in \mathbb{R}, \
u
eq 0) \end{aligned}$$

The states e_2^{ν} are unstable

• the linearisation is

$$\mathbf{D}\vec{H}_{1}^{(3)}(p) = \begin{bmatrix} 0 & p_{3} & p_{2} \\ p_{3} & 0 & p_{1} \\ -1 & -1 & 0 \end{bmatrix} \quad \Rightarrow \quad \mathbf{D}\vec{H}_{1}^{(3)}(e_{2}^{\nu}) = \begin{bmatrix} 0 & \nu & 0 \\ \nu & 0 & 0 \\ -1 & -1 & 0 \end{bmatrix}$$

- the eigenvalues of ${\sf D} ec{{\cal H}}_1^{(3)}({\sf e}_2^
 u)$ are $\lambda_1=0,\;\lambda_{2,3}=\pm
 u$
- therefore e_2^{ν} is (spectrally) unstable.

HP Formalism $\mathfrak{sc}(1,1)$ Classification Stability Integration Stability analysis of $H_1^{(3)}(p) = p_1 + \frac{1}{2}p_3^2$

The states $e_1^{\mu} = (\mu, 0, 0)$, $\mu \leq 0$ are unstable

• consider the case $\mu = 0$ ($\mu < 0$ is similar)

the curve

$$p(\cdot):(-\infty,0)
ightarrow\mathfrak{se}(1,1)^*,\qquad t\mapsto(-rac{2}{t^2},rac{2}{t^2},rac{2}{t})$$

is an integral curve of $\vec{H}_1^{(3)}$, with

$$\lim_{t\to-\infty}\|p(t)-\mathsf{e}_1^0\|=0.$$

- thus for every neighbourhood N of e_1^0 , there exists $t_1 < 0$ such that $p(t_1) \in N$
- since $\lim_{t\to 0}\|p(t)-{\rm e}_1^0\|=\infty,$ the state ${\rm e}_1^0$ is unstable.

HP Formalism $\mathfrak{se}(1,1)$ Classification Stability Integration Stability analysis of $H_1^{(3)}(p)=p_1+rac{1}{2}p_3^2$

The states $e_1^{\mu} = (\mu, 0, 0)$, $\mu > 0$ are stable

• let
$$H_{\lambda} = \lambda_0 H_1^{(3)} + \lambda_1 C$$
, where $\lambda_0 = \mu$, $\lambda_1 = -\frac{1}{2}$

• then $\mathbf{d}H_{\lambda}(\mathbf{e}_{1}^{\mu})=0$ and

$$\mathbf{d}^2 H_\lambda(\mathbf{e}_1^\mu) = egin{bmatrix} -1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & \mu \end{bmatrix}$$

- since $W = \ker \mathbf{d} H_1^{(3)}(\mathbf{e}_1^{\mu}) \cap \ker \mathbf{d} C(\mathbf{e}_1^{\mu}) = \operatorname{span} \{E_2^*, E_3^*\}$, the restriction $\mathbf{d}^2 H_{\lambda}(\mathbf{e}_1^{\mu})|_{W \times W} = \begin{bmatrix} 1 & 0 \\ 0 & \mu \end{bmatrix}$ is positive definite
- therefore the states e_1^μ , $\mu > 0$ are stable.

HP Formalism $\mathfrak{se}(1,1)$ Classification Stability Integration

Integration of $H_2^{(3)}(p)=p_1+p_2+rac{1}{2}p_3^2$

Equations of motion

$$\left\{egin{array}{ll} \dot{p}_1 = p_2 p_3 \ \dot{p}_2 = p_1 p_3 \ \dot{p}_3 = -(p_1 + p_2) \end{array}
ight.$$

Sketch of integration

• let
$$\bar{p}(\cdot)$$
 be an integral curve of $\vec{H}_2^{(3)}$
• let $h_0 = H_2^{(3)}(\bar{p}(0))$ and $c_0 = C(\bar{p}(0))$
• consider the case $c_0 > 0$, $h_0 < 0$

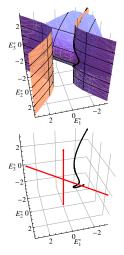


Figure: $c_0 > 0$, $h_0 < 0$

HP Formalism	$\mathfrak{se}(1,1)$	Classification	Integration
Case $c_0 >$	0, <i>h</i> ₀ < 0		

Sketch of integration, cont'd

• from $\dot{\bar{p}}_3 = -(\bar{p}_1 + \bar{p}_2)$ and $h_0 = \bar{p}_1(t) + \bar{p}_2(t) + \frac{1}{2}\bar{p}_3(t)^2$, we get the ODE

$$rac{d}{dt}ar{p}_3(t)=rac{1}{2}ar{p}_3(t)^2-h_0 \quad \Rightarrow \quad ar{p}_3(t)=2\Omega an(\Omega t), \quad \Omega=\sqrt{-rac{h_0}{2}}$$

• differentiate $\bar{p}_3(t)$ to get

$$\bar{p}_1(t) + \bar{p}_2(t) = 2\Omega^2 \sec^2(\Omega t)$$

• since $\bar{p}_1(t)^2 - \bar{p}_2(t)^2 = c_0$, we have

$$ar{p}_1(t)-ar{p}_2(t)=rac{c_0}{2\Omega^2}\cos^2(\Omega t)$$

HP Formalism	$\mathfrak{se}(1,1)$	Classification	Integration
Case $c_0 > 0$	$0, h_0 < 0$		

Sketch of integration, cont'd

now solve the equation

$$egin{bmatrix} 1 & 1 \ 1 & -1 \end{bmatrix} egin{bmatrix} ar{p}_1(t) \ ar{p}_2(t) \end{bmatrix} = egin{bmatrix} 2\Omega^2 \sec^2(\Omega t) \ rac{c_0}{2\Omega^2} \cos^2(\Omega t) \end{bmatrix}$$

- thus we have a prospective integral curve $\bar{p}(\cdot)$
- confirm that $\dot{\bar{p}}(t) = \vec{H}_2^{(3)}(\bar{p}(t))$
- we can now make a statement regarding all integral curves of $\vec{H}_2^{(3)}$ when $c_0 > 0$, $h_0 < 0$.

Proposition

Let
$$p(\cdot): (-\varepsilon, \varepsilon) \to \mathfrak{se}(1, 1)^*$$
 be an integral curve of $\vec{H}_3^{(2)}$ such that $H_2^{(3)}(p(0)) = h_0 < 0$ and $C(p(0)) = c_0 > 0$.

(i) There exists $t_0 \in \mathbb{R}$ such that $p(t) = \bar{p}(t + t_0)$, where $\bar{p}(\cdot) : \left(-\frac{\pi}{2\Omega}, \frac{\pi}{2\Omega}\right) \to \mathfrak{se}(1, 1)^*$ is defined by

$$\left\{ egin{array}{l} ar{p}_1(t) = -rac{1}{4\Omega^2} \left[4\Omega^4 \sec^2(\Omega t) + c_0 \cos^2(\Omega t)
ight] \ ar{p}_2(t) = -rac{1}{4\Omega^2} \left[4\Omega^4 \sec^2(\Omega t) - c_0 \cos^2(\Omega t)
ight] \ ar{p}_3(t) = 2\Omega \tan(\Omega t). \end{array}
ight.$$

Here $\Omega = \sqrt{-h_0/2}$. (*ii*) $t \mapsto \bar{p}(t+t_0)$ is the unique maximal integral curve starting at $\bar{p}(t_0)$. HP Formalism sc(1,1) Classification Stability Integration Integral curves of $\vec{H}_2^{(3)}$ with $c_0 > 0$, $h_0 < 0$

Proof sketch

Item (i):

- show that $\exists t_0$ such that $\bar{p}(t_0) = p(0)$
- then $t\mapsto p(t)$ and $t\mapsto ar{p}(t+t_0)$ solve the same Cauchy problem

• hence
$$p(t) = \overline{p}(t + t_0)$$
.

Item (ii):

- suppose \exists an integral curve $q(\cdot): (-\varepsilon', \varepsilon') \to \mathfrak{se}(1, 1)^*$ with $q(0) = \bar{p}(t_0)$ and $\frac{\pi}{2\Omega} \leq \varepsilon'$
- show that $\varepsilon' = \frac{\pi}{2\Omega}$
- uniqueness now follows from maximality of $t\mapsto \bar{p}(t+t_0)$.

HP Formalism	$\mathfrak{se}(1,1)$	Classification	
Conclusion			

Further work on $\mathfrak{se}(1,1)^*_{-}$

- investigate remaining systems: $H_{1,\alpha}^{(4)}$, $H_{2,\alpha_1,\alpha_2}^{(4)}$, $H_{1,\alpha}^{(5)}$, $H_2^{(5)}$ and $H_{3,\alpha}^{(5)}$
- link with optimal control problems

Further work on quadratic Hamilton-Poisson systems

- classify systems on all 3D Lie-Poisson spaces
- completed for the homogeneous case