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Introduction

Context

Study a class of Hamilton-Poisson systems relating to optimal control
problems on Lie groups.

Objects
@ quadratic Hamilton-Poisson systems on duals of Lie algebras

Equivalence

@ equivalence under affine isomorphisms

| A

Problem
o classify Hamilton-Poisson systems under affine equivalence
@ investigate stability nature of equilibria

o find integral curves of systems.

v
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HP Formalism
Lie-Poisson structures

Poisson bracket {-,-} on g*

Skew-symmetric, bilinear map C*°(g*) x C*(g*) — C*>°(g*) satisfying:
@ Jacobi identity
e {-,F} is a derivation, V F € C*(g*).

(Minus) Lie-Poisson space g* = (g*,{-, })

{F, G}(p) = —p([dF(p),dG(p)])-

(Linear Poisson) automorphisms

Linear isomorphisms W : g* — g* that preserve the Poisson bracket:

{F,G}oW ={FoW, GoV} VF,Ge C®(g").
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HP Formalism

Hamiltonian formalism

Hamiltonian vector fields

For every Hamiltonian function H € C*°(g*) there is a unique vector field
H € Vec(g*) such that

H[F] = {F,H}, YF e C®(g").

Equations of motion

| A\

A curve p(-) is an integral curve of H if

< p(t) = A(p(1)).

In coordinates, y
Epi(t) = —p([Ei, dH(p)]).

Dennis Barrett (Rhodes) Quadratic HP Systems on se(1,1)* RU Math. Sem.



HP Formalism

Constants of motion

Conservation of energy

If p(-) is an integral curve of H, then H(p(t)) is constant in t.

V.
Casimir functions

Functions C € C*>(g*) that Poisson commute with every other function:

{C,F} =0, VF e C™(g").

A,

Integral curves of H evolve on the intersection of the surfaces

H(p) = const. and C(p) = const.

§
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HP Formalism

Stability of equilibria

Equilibria
An equilibrium point of H is a point pe € g* such that Fl(pe) =0.

Lyapunov stability nature of p,

o (Lyapunov) stable if for every neighbourhood N of pe there exists a
neighbourhood N C N of pe such that, for every integral curve p(:)
of H with p(0) € N, we have p(t) € N for all t > 0.

@ (Lyapunov) unstable if it is not stable.
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HP Formalism

Lyapunov stability

N 7N

/
T —

")

(a) Stability (b) Instability
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HP Formalism

Lyapunov stability

Energy-Casimir method

Suppose there exist
@ constants of motion Cy,..., G (i.e. {C,H} =0)
@ Mo, A1, .-, Ak ER
such that
@ d(AoH + MG+ -+ A Cy)(pe) =0
o d?(MoH + A1 G+ - + M C)(pe)|wxw is positive definite, where

W = kerdH(pe) NkerdCi(pe) N - - - N ker dCy(pe)-

Then pe is (Lyapunov) stable.
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HP Formalism

Spectral stability

Spectral stability nature of p,

@ spectrally stable if all eigenvalues of Dﬁ(pe) have non-positive real
parts.

@ spectrally unstable if it is not spectrally stable.

Lyapunov Spectral
=
stability stability
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HP Formalism

Quadratic Hamilton-Poisson systems

Quadratic HP systems (g* , Ha o)
The Hamiltonian Hp o is given by

Ha,a(p) = La(p) + Ha(p)
=p(A)+Q(p) (Acq).
@ @ is a quadratic form on g*
@ in coordinates: Ha o(p) = pA+ %prT

@ Hj o is homogeneous if A = 0; otherwise, inhomogeneous.

Restriction

@ QO is positive semidefinite.
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HP Formalism

Equivalence of systems

Affine equivalence (A-equivalence)

Ha,0 and Hp are A-equivalent if there exists an affine isomorphism
V:g* — g* p— Vo(p) + g such that

Yy - /:I‘A’Q = ﬁB,R oV,

We write Ha o ~ Hp .

Sufficient conditions

| \

Ha,o is A-equivalent to
@ HagoVW, where U : g* — g* is a linear Poisson automorphism
@ Ha o+ C, where C is a Casimir function
® Haro, where r # 0.

.
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se(1,1)
The semi-Euclidean Lie algebra

se(1,1) = :x,y,0 €R

< X O
T O o
o > o

Standard basis

0
0
1

o O O
o = O

0 0O
E1: E2: 0 0O E3:
1 00

o = O
o O o
o O O

v

Commutators

(B2, B3] = —E1 [Es, E1] = E2 [E1,E2] =0
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se(1,1)

Hamilton-Poisson systems on se(1,1)*

Dual basis (Ef, E5, E5)

Equations of motion

p2

p3 =

_oH
_ oM

LN
8p1p2 apzpl

The function C : (p1, p2, p3) = p? — p3 is a Casimir on se(1,1)*.
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Classification

Classification: the homogeneous case

Proposition
Any HP system (se(1,1)*, Hg) is A-equivalent to exactly one of the
following systems:
Ho(p) =0  Hi(p) =
Hi(p) = 3p5  Ha(p) =

Method of proof

o simplify representatives using sufficient conditions for A-equivalence

(p1 + p2)?
[(p1 + p2)? + p3]

Nl= N=

@ result: collection of potential representatives

@ confirm that representatives are not equivalent.

.

15 / 28
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Classification

Classification of inhomogeneous systems

Approach (for each i =0,...,5)
assume Ha o = La+ H;
simplify L using automorphisms that leave H; invariant

employ affine isomorphisms for further simplification

verify that representatives are not equivalent.
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Classification

Example: systems associated to Hz(p) = %p%

Lemma

There exists an automorphism V such that H3 oW = Hz and LoV is
exactly one of Lg, 1 gg;, LE,+Ey+~E; OF Lags, whereaa >0, 3> 0, v € R.

v

@ From the lemma, L + H3 is A-equivalent to one of

Gus(p) = p1 + Bps + 3p3
G2y(P) = p1+ P2+ 73 + 393
Gsa(p) = aps + 3p3
@ using V: pr— p+ BE3, we have Gy g ~ Gig
@ similarly, Go, ~ G and Gz, ~ G3

o verify that G, Go0 and Gz are not equivalent.
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Classification

Example: systems associated to Hz(p) = %p%

Proposition
Any HP system (se(1,1)*, Ha o) of the form Hao = La+ Hz is

A-equivalent to exactly one of the following systems:
3
HO (p) = p1 + 363
3
H(p) = p1 + p2 + 163
3
H(p) = 1p3.
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Classification

Classification of inhomogeneous systems (se(1,1)*, Ha o)

HY (p) = pr + 1pt
H(p) = p1+ p2 + 19} H® (p) = apy + L(p] + p3)
H) (p) = aps + Lpt HY) o (P) = a1p1 + azps + (P} + P3)
HP(p) = pr + L(p1 + p2) HE)(p) = apr + L[(p1 + p2)° + p3]
HP (p) = p1 + p2 + 1(p1 + p2)? HP(p) = p1 — p2 + L[(p1 + p2)* + P3]
H(p) = ops + 3(p1 + p2)? HE)(p) = alp1 + p2) + 3[(p1 + p2)° + pi]
0(>0,CM1>CM2>0,57£0 J
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Stability

Stability analysis of H1(3)(p) =p+ %pg

Equations of motion Equilibria
p1 = p2p3 ey = (11,0,0)
P2 = p1p3 e; = (0,0,v)
p3 = —p2 (1, v €R, v#0)

The states e are unstable

@ the linearisation is

3) p3 P2 _3) 0 v 0
DH,”(p)=|p3 0 p1 = DH7(e3)=|v 0 0
-1 -1 0 -1 -1 0

@ the eigenvalues of DITI§3)(e§) are \y =0, A3 = +v

o therefore €} is (spectrally) unstable.
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Stability

Stability analysis of H1(3)(p) =p+ %pg

states e} = (11,0,0), p < 0 are unstable

@ consider the case ;1 =0 (p < 0 is similar)

@ the curve

p(:) : (—00,0) — se(1,1)", t (—

e[S
S
~+|N
N

is an integral curve of Hﬁ§3), with
. 0
. |'[“ Ip(t) — el = 0.

e thus for every neighbourhood N of €9, there exists t; < 0 such that
p(tl) eN
e since lim;_0 ||p(t) — €9 = oo, the state € is unstable.
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Stability

Stability analysis of H1(3)(p) =p+ %pg

The states ] = (1,0,0), > 0 are stable

o let H)\ — )\0H§3) 4 )\IC. where )\0 = U, )\1 — _%
o then dH,(e]') = 0 and

-1

d’Hy(e)) =

00
0 10
0 0 w

@ since W = kerdH§3)(e’f) NkerdC(ef) = span{E;, E5}, the
restriction dzH)\(e’l‘)\WXw = [(1) 2] is positive definite

o therefore the states €}, u > 0 are stable.
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Integration

Integration of H2(3)(p) =p+p+ %p%

Equations of motion

p1 = p2p3
p2 = p1p3
p3 = —(p1+ p2)

Sketch of integration

|
A\

(3)

o let p(-) be an integral curve of H,

o let hy = H®(p(0)) and ¢ = C((0))
@ consider the case ¢g > 0, hg <0

< 2 %
Figure: ¢ >0, hg <0
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Integration

Case ¢g >0, hg <O

Sketch of integration, cont'd

o from b3 = —(P1 + B2) and ho = Pu(t) + p2(t) + 3p3(t)?, we get the
ODE

d = - =
(0 =35t —h = P3(t) =2Qtan(Qr), Q=/-%
o differentiate ps3(t) to get

P1(t) + po(t) = 2Q% sec®(Qt)

@ since p1(t)? — p2(t)? = co, we have

Pi(t) = Palt) = 505 cos*(Q1)
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Integration

Case ¢g >0, hg <O

Sketch of integration, cont’d

@ now solve the equation

[1 1] [;31(1')] _ [2{22 sec2(Qt)]

1 -1 52, cos?(Qt)

b2(t) 202

@ thus we have a prospective integral curve p(+)
e confirm that p(t) = H§3)(ﬁ(t))

@ we can now make a statement regarding all integral curves of Flg‘”
when ¢y > 0, hy < 0.
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Integration

Integral curves of ,3,2(3) with ¢g >0, hg <0

Let p(+) : (—e,e) — se(1,1)* be an integral curve of Ijlz.(;z) such that
H®(p(0)) = ho < 0 and C(p(0)) = co > O.
(i) There exists ty € R such that p(t) = p(t + to), where

p() : (=20, 20) — s¢(1,1)" is defined by

pi(t) = 492 [4Q% sec?(Qt) + o cos?(Qt)]

p2(t) = —@ [4Q% sec?(Qt) — o cos?(Qt)]
p3(t) = 2Q tan(Qt).

Here Q = \/—ho/2.

(if) t+— p(t+ to) is the unique maximal integral curve starting at p(to).
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Integration

Integral curves of FI2(3) with ¢g >0, hg <0

Proof sketch
Item (i):

@ show that 3ty such that p(tp) = p(0)

o then t — p(t) and t — p(t + to) solve the same Cauchy problem
@ hence p(t) = p(t + to).
ltem (ii):
@ suppose 7 an integral curve g(-) : (—¢’,&’) — se(1,1)* with
(0) = p(to) and % < &
o show that ¢’ = 55

@ uniqueness now follows from maximality of t — p(t + to).
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Conclusion

Further work on se(1,1)*

@ investigate remaining systems: H®  H® H®) H§5) and Hé‘r’o)é

La' " 2,a1,ap" " 'L

@ link with optimal control problems

Further work on quadratic Hamilton-Poisson systems

@ classify systems on all 3D Lie-Poisson spaces

@ completed for the homogeneous case
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