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Introduction : Dynamical and control systems

A wide range of dynamical systems from

classical mechanics

quantum mechanics

elasticity

electrical networks

molecular chemistry

can be modelled by invariant systems on matrix Lie groups.
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Introduction : Applied nonlinear control

Invariant control systems with control affine dynamics (evolving on matrix

Lie groups of low dimension) arise in problems like

the airplane landing problem

the attitude problem (in spacecraft dynamics)

the motion planning for wheeled robots

the control of underactuated underwater vehicles

the control of quantum systems

the dynamic formation of the DNA
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Matrix Lie groups : definition

The ground field k is either R or C.

Matrix Lie group

A (real) matrix Lie group is any closed subgroup G of the general linear

group GL (n, k) (for some positive integer n).

It is then known that G is a (smooth) embedded submanifold of the

matrix space kn×n of all n × n matrices over k, identified with the (real)

Euclidean space kn2
.
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Matrix Lie groups : examples

Main examples of matrix Lie groups

the general linear group GL (n, k)

the special linear group SL (n, k)

the orthogonal groups O (n), SO (n)

the pseudo-orthogonal groups O (p, q), SO (p, q)

the Euclidean groups E (n), SE (n)

the semi-Euclidean groups E (1, n), SE (1, n)

the symplectic group Sp (n,k)

the unitary and special unitary groups U (n), SU (n)

the (upper) triangular group.
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Matrix Lie groups : the tangent space

The tangent space at 1 = In is given by

T1G = {α̇(0) ∈ kn×n | α is a curve in G, α(0) = 1}.

T1G equipped with the matrix commutator

[A,B] = AB − BA

is a (real) Lie algebra, denoted by g.

The tangent space at g ∈ G is

TgG = g (T1G) = (T1G) g .
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Invariant vector fields : left invariance

A vector field X on G is called left-invariant if it is invariant under every

left translation La : g 7→ ag :

X (ag) = aX (g), a, g ∈ G.

Each A ∈ g gives rise to a left-invariant vector field : AL(g) = gA.

Any left-invariant vector field on G arises in this way.

[AL,BL](g) = g(AB − BA) = g [A,B].

The mapping A 7→ AL from g to XL(G) is a Lie algebra

isomorphism (with inverse X 7→ X (1)).
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The left-invariant realizations of TG and T ∗G

Both the tangent bundle TG and the cotangent bundle T ∗G can be

trivialized by left translations :

TG will be identified with G× g.

(gA ∈ TgG is identified with (g ,A) ∈ G× g.)

T ∗G will be identified with G× g∗.

(ξ ∈ T ∗g G is identified with (g , p) ∈ G× g∗ via p = dL∗g (ξ) :

ξ(gA) = p(A).)
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Invariant vector fields (on G) and functions on T ∗G

Each left-invariant vector field AL defines a (smooth) function HA on

T ∗G :

HA(ξ) = ξ(AL(g)), ξ ∈ T ∗g G.

HA is left-invariant on G× g∗ and so is (identified with) a linear function

on g∗ :

HA(p) = p(A), p ∈ g∗.

C.C. Remsing (Rhodes University) Geometric Optimal Control Palermo, 9 July 2013 10 / 44



Left-invariant control systems

Invariant control systems were first considered by Brockett (1972) and by

Jurdjevic and Sussmann (1972).

A left-invariant control system (evolving on some matrix Lie group G) is

described by

ġ = g Ξ(1, u), g ∈ G, u ∈ U.

state space : G ≤ GL (n,k)

input set : U (metric space); typically, U ⊆ R`

(left-invariant) dynamics : Ξ : G× U → TG (i.e., the vector fields

Ξu = Ξ(·, u) : G→ TG are left invariant)

parametrization map : Ξ(1, ·) : U → g
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Controls and trajectories

Admissible control

An admissible control is a map u(·) : [0,T ]→ U that is bounded and

measurable. (“Measurable” means “almost everywhere limit of piecewise

constant maps”.)

Trajectory

A trajectory for an admissible control u(·) : [0,T ]→ U is an absolutely

continuous curve g : [0,T ]→ G such that (for a.e. t ∈ [0,T ])

ġ(t) = g(t) Ξ(1, u(t)).

Controlled trajectory

A controlled trajectory is a pair (g(·), u(·)), where u(·) is an admissible

control and g(·) is the trajectory corresponding to u(·).
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Control affine systems

Left-invariant control affine system

For many practical control applications, (left-invariant) control systems

contain a drift term and are affine in controls :

ġ = g (A + u1B1 + · · ·+ u`B`) , g ∈ G, u ∈ R`.

input set : U = R`

the parametrization map is an (injective) affine map :

Ξ(1, u) = A + u1B1 + · · ·+ u`B`.

The trace Γ = imΞ(1, ·) of the control system is an affine subspace

of (the Lie algebra) g.
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Poisson manifolds

The Hamilton-Poisson formalism constitutes an appropriate theoretical

framework for dealing with Hamiltonian dynamical systems on Poisson

manifolds.

Poisson structure

A Poisson structure (or Poisson bracket) on a smooth manifold M is a

bilinear map {·, ·} : C∞(M)× C∞(M)→ C∞(M) that

defines a Lie algebra structure on C∞(M)

is a derivation (i.e., satisfies the Leibniz identity) in each of its

arguments.

(M, {·, ·}) is called a Poisson manifold.)
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Hamiltonian vector fields and Casimirs

Hamiltonian vector field

If H ∈ C∞(M), then the derivation {·,H} defines a vector field ~H on

M :
~H[F ] = {F ,H}, F ∈ C∞(M).

~H is called the Hamiltonian vector field associated with H.

Casimir function

A (nonconstant) function K ∈ C∞(M) such that

{K ,F} = 0, F ∈ C∞(M)

is called a Casimir function.
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Hamilton-Poisson dynamical systems

Definition

A Hamilton-Poisson system is a triplet (M, {·, ·},H), where (M, {·, ·}) is

a Poisson manifold (called the phase space), and H is a smooth function

(called the energy, or the Hamiltonian).

Flow

If ϕt is the flow of ~H, then

H ◦ ϕt = H (conservation of energy)
d
dt (F ◦ ϕt) = {F ,H} ◦ ϕt = {F ◦ ϕt ,H}.

For short,

Ḟ = {F ,H}, F ∈ C∞(M)

(the equation of motion in Poisson bracket form).
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The Lie-Poisson bracket on (the dual space) g∗

The Lie-Poisson structure

The dual space g∗ has a natural Poisson structure, called the (minus)

Lie-Poisson structure :

{F ,G}−(p) = −p ([dF (p), dG (p)]) , p ∈ g∗, F ,G ∈ C∞(g∗).

Notation

The Poisson manifold (g∗, {·, ·}−) is denoted by g∗−.
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The Lie-Poisson bracket on g∗

If (Ek)1≤k≤m is a basis for g and

[Ei ,Ej ] =
m∑

k=1

ckijEk (i , j = 1, 2, . . . ,m)

then

{F ,G}−(p) = −
m∑

i ,j ,k=1

ckij pk
∂F

∂pi

∂G

∂pj
·
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Lyapunov stability

Let

M be a (smooth) manifold

X a (complete) vector field on M

φt = exp tX the flow of X

ze ∈ M an equilibrium of X : X (ze) = 0 ∈ TzeM or, equivalently,

(exp tX ) (ze) = ze for all t ∈ R.

The equilibrium ze is Lyapunov stable if for any (open) nbd U of ze
there is an (open) nbd U ′ ⊂ U of ze such that

φt(z) ∈ U for any z ∈ U ′ and any t > 0.
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The energy-Casimir method

The energy-Casimir method - due to Holm, Marsden, Ratiu, and Weinstein

(1985) - is a generalization of the Lagrange-Dirichlet stability test.

It gives sufficient conditions for Lyapunov stability of equilibrium states for

certain types of Hamilton-Poisson systems.

Remark

The energy-Casimir method is restricted to certain types of systems, since

its implementation relies on an abundant supply of Casimir functions.
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The energy-Casimir method

Let (M, {·, ·},H) be a (finite-dim) Hamilton-Poisson system.

STEP 1 - Find a constant of motion for the system (usually the

energy H).

STEP 2 - Find a family C of constants of motion.

STEP 3 - Relate an equilibrium state ze of the system to a constant

of motion K ∈ C by requiring that H +K have a critical point at ze .

STEP 4 - Check that the second variation δ2(H + K ) at ze is

positive (or negative) definite.

Then the equilibrium state ze of the system is Lyapunov stable.
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Invariant control problems

A left-invariant optimal control problem consists in minimizing some

(practical) cost functional over the controlled trajectories of a given

left-invariant control system, subject to appropriate boundary conditions.

Left-invariant control problem (LiCP)

ġ = g Ξ(1, u), g ∈ G, u ∈ R`

g(0) = g0, g(T ) = g1 (g0, g1 ∈ G)

J =
1

2

∫ T

0
L(u(t)) dt → min.
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The Maximum Principle

The Pontryagin Maximum Principle is a necessary condition for optimality

expressed most naturally in the language of the geometry of the cotangent

bundle T ∗G of G.

To a LiCP (with fixed terminal time) we associate - for each λ ∈ R and

each control parameter u ∈ R` - a Hamiltonian function on T ∗G :

Hλ
u (ξ) = λ L(u) + ξ (gΞ(1, u))

= λ L(u) + p (Ξ(1, u)), ξ = (g , p) ∈ T ∗G.
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The Maximum Principle

Theorem (Pontryagin’s Maximum Principle)

Suppose the controlled trajectory (ḡ(·), ū(·)) is a solution for the LiCP.

Then, there exists a curve ξ(·) with ξ(t) ∈ T ∗ḡ(t)G and λ ≤ 0 such that

(λ, ξ(t)) 6≡ (0, 0) (nontriviality)

ξ̇(t) = ~Hλ
ū(t)(ξ(t)) (Hamiltonian system)

Hλ
ū(t)(ξ(t)) = max

u
Hλ
u (ξ(t)) = constant. (maximization)
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Optimal trajectories and extremals

An optimal trajectory ḡ(·) : [0,T ]→ G is the projection of an integral

curve ξ(·) of the (time-varying) Hamiltonian vector field ~Hλ
ū(t).

A trajectory-control (ξ(·), u(·)) is said to be an extremal pair if ξ(·) is

such that the conditions of the Maximum Principle hold. The projection

ξ(·) of an extremal pair is called an extremal.

An extremal curve is called normal if λ = −1 (and abnormal if λ = 0).
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Optimal control problem with quadratic cost

Theorem (Krishnaprasad, 1993)

For the LiCP (with quadratic cost)

ġ = g (A + u1B1 + · · ·+ u`B`) , g ∈ G, u ∈ R`

g(0) = g0, g(T ) = g1 (g0, g1 ∈ G)

J =
1

2

∫ T

0

(
c1u

2
1(t) + · · ·+ c`u

2
` (t)

)
dt → min (T is fixed)

every normal extremal is given by

ūi (t) =
1

ci
p(t)(Bi ), i = 1, . . . , `
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Theorem (cont.)

where p(·) : [0,T ]→ g∗ is an integral curve of the vector field ~H

corresponding to H(p) = p(A) + 1
2

(
1
c1
p(B1)2 + · · ·+ 1

c`
p(B`)

2
)

.

Furthermore, in coordinates on g∗−, the (components of the) integral curve

satisfy

ṗi = −
m∑

j ,k=1

ckij pk
∂H

∂pj
, i = 1, . . . ,m.
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The Euclidean group SE (2)

Matrix representation

The Euclidean group SE (2) is the group of all orientation-preserving

isometries (i.e., translations and rotations) of the Euclidean plane R2.

SE (2) =


1 0 0

x cos θ − sin θ

y sin θ cos θ

 : x , y , θ ∈ R

 ≤ GL (3,R)

is a 3D connected (solvable) matrix Lie group.
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The Lie algebra se (2)

Matrix representation

se (2) =


 0 0 0

a1 0 −a3

a2 a3 0

 : a1, a2, a3 ∈ R

 .

The standard basis

E1 =

0 0 0

1 0 0

0 0 0

 ,E2 =

0 0 0

0 0 0

1 0 0

 ,E3 =

0 0 0

0 0 −1

0 1 0

 .
Commutation relations

[E2,E3] = E1, [E3,E1] = E2, [E1,E2] = 0.
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The equations of motion

Compact form

The equations of motion can be written

ṗi = −p ([Ei , dH(p)]) , i = 1, 3.

Explicit form

ṗ1 =
∂H

∂p3
p2

ṗ2 = − ∂H
∂p3

p1

ṗ3 =
∂H

∂p2
p1 −

∂H

∂p1
p2.
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Jacobi elliptic functions

The Jacobi elliptic functions sn(·, k), cn(·, k), dn(·, k) :

sn(x , k) = sin am(x , k)

cn(x , k) = cos am(x , k)

dn(x , k) =

√
1− k2 sin2 am(x , k).

(am(·, k) = F (·, k)−1 is the amplitude;F (ϕ, k) =
∫ ϕ

0
dt√

1−k2 sin2 t
·)
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Example

Problem

ġ = g (u1E2 + u2E3) , g ∈ SE (2)

g(0) = 1, g(1) = g1∫ 1

0

(
u1(t)2 + u2(t)2

)
dt → min

Associated (reduced) Hamiltonian on se (2)∗−

H(p) = 1
2 (p2

2 + p2
3), p =

∑
piE
∗
i ∈ se (2)∗

Normal extremal controlled trajectories (g(·), u(·))

ġ = g (p2E2 + p3E3) ṗ(t) = ~H(p)
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Example (cont.)

Integration

~H :


ṗ1 = p2p3

ṗ2 = −p1p3

ṗ3 = p1p2

Integration involves simple elliptic integrals

Solutions expressed in terms of Jacobi elliptic functions

Case c0 < 2h0 
p1(t) = ±

√
c0 dn (

√
c0 t,

√
2h0
c0

)

p2(t) =
√

2h0 sn (
√
c0 t,

√
2h0
c0

)

p3(t) = ∓
√

2h0 cn (
√
c0 t,

√
2h0
c0

).
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Lyapunov stability

The equilibrium states (for the reduced system) are

eM1 = (M, 0, 0), eN2 = (0,N, 0), eM3 = (0, 0,M) (M,N ∈ R,N 6= 0).

Proposition

1 The equilibrium state eM1 is Lyapunov stable.

2 The equilibrium state eN2 is Lyapunov unstable.

3 The equilibrium state eM3 is Lyapunov stable.
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The energy-Casimir method

Lyapunov stability of the equilibrium state eM1 (M 6= 0)

Linearization of the system: 0 p3 p2

−p3 0 −p1

p2 p1 0

 ·
Energy-Casimir function:

Hχ = H + χ(C ) = 1
2

(
p2

2 + p2
3

)
+ χ(p2

1 + p2
2).

The first variation (derivative)

dHχ(eM1 ) = 0 if χ̇(M2) = 0.

C.C. Remsing (Rhodes University) Geometric Optimal Control Palermo, 9 July 2013 35 / 44



The energy-Casimir method (cont.)

Lyapunov stability of the equilibrium state eM1 (M 6= 0) (cont.)

Then second variation (Hessian)

d2Hχ(eM1 ) = diag(2χ̇(M2) + 4M2χ̈(M2), 1 + 2χ̇(M2), 1)

is positive definite if χ̈(M2) > 0 (and χ̇(µ2) = 0).

The function

χ(x) =
1

2
x2 −M2x

satisfies these requirements.

Hence (by the standard energy-Casimir method) eM1 is stable.
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The energy-Casimir method (cont.)

Lyapunov stability of the equilibrium state eN2 (N 6= 0)

The linearization of the system at eN2 has eigenvalues

λ1 = 0, λ2,3 = ±N.

eN2 is unstable.

Lyapunov stability of the equilibrium state eM3

By an extended energy-Casimir method, eM3 is stable.
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Outlook

Low-dimensional matrix Lie groups

Invariant optimal control problems on other matrix Lie groups:

the rotation groups SO (3), SO (4) (dimension 3,6)

the Euclidean groups SE (2) and SE (3) (dimension 3,6)

the Lorentz groups SO (1, 2)0 and SO (1, 3)0 (dimension 3,6)

the semi-Euclidean groups SE (1, 1) and SE (1, 2) (dimension 3,6)

the Heisenberg groups H (1) and H (2) (dimension 3,5)

the oscillator group (dimension 4)

the diamond group (dimension 4)

the Engel group (dimension 4).
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Outlook: Controllability

Definition

For all g0, g1 ∈ G, there exists a trajectory g(·) such that

g(0) = g0 and g(T ) = g1.

Controllability implies

State space G is connected

A, B1, . . . , B` generate g, we say Σ has full rank.

Known results

Homogeneous system or compact state space:

full rank ⇐⇒ controllable [Jurdjevic and Sussmann, 1972]

Completely solvable and simply connected:

B1, . . . , B` generate g ⇐⇒ controllable [Sachkov, 2009]
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Outlook:Equivalence

State space equivalence (S-equivalence)

Σ = (G,Ξ) and Σ′ = (G,Ξ′)

S-equivalent

∃φ : G→ G such that Tgφ · Ξ(g , u) = Ξ′(φ(g), u)

Equivalence up to coordinate changes in the state space

One-to-one correspondence between trajectories

Very strong equivalence relation

Characterization

Σ and Σ′

S-equivalent
⇐⇒ ∃ψ ∈ d Aut (G)

ψ · Ξ(1, ·) = Ξ′(1, ·)
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Outlook: Equivalence (cont.)

Detached feedback equivalence (DF -equivalence)

Σ = (G,Ξ) and Σ′ = (G,Ξ′)

DF -equivalent

∃ φ : G→ G, ϕ : R` → R`′ such that Tgφ · Ξ(g , u) = Ξ′(φ(g), ϕ(u)).

Specialized feedback transformations

φ preserves left-invariant vector fields

Trace Γ = imΞ(1, ·) = A + 〈B1, . . . ,B`〉

Characterization

Σ and Σ′

DF -equivalent
⇐⇒ ∃ψ ∈ d Aut (G)

ψ · Γ = Γ′
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Outlook: Cost equivalence

Cost equivalence (C-equivalence)

(Σ, χ) and (Σ′, χ′) are C -equivalent if there exist

a Lie group isomorphism φ : G→ G′

an affine isomorphism ϕ : R` → R`′

such that

Tgφ · Ξ(g , u) = Ξ′(φ(g), ϕ(u))

χ′ ◦ ϕ = rχ for some r > 0.

G× R`

Ξ
��

φ×ϕ // G′ × R`′

Ξ′

��
TG

Tφ
// TG′

R`

χ

��

ϕ // R`′

χ′

��
R

δr
// R
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Outlook: Cost equivalence (cont.)

(Σ, χ) and (Σ′, χ′)

C -equivalent
=⇒ Σ and Σ′

DF -equivalent

Σ and Σ′

S-equivalent
=⇒ (Σ, χ) and (Σ′, χ)

C -equivalent for any χ

Σ and Σ′

DF -equivalent

w.r.t. ϕ ∈ Aff (R`)
=⇒ (Σ, χ ◦ ϕ) and (Σ′, χ)

C -equivalent for any χ
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Outlook (cont.)

Other

Cost-extended systems and sub-Riemannian geometry

Classification (in lower dimensions)

Cartan’s method of equivalence

Quadratic Hamilton-Poisson systems
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