Sub-Riemannian Geodesics on SE(1, 1)

Dennis Barrett

Department of Mathematics (Pure and Applied)
Rhodes University, Grahamstown 6140

Eastern Cape Postgraduate Seminar in Mathematics
NMMU, Port Elizabeth, 27–28 September 2013
Outline

1. Introduction to sub-Riemannian geometry
2. The semi-Euclidean group
3. Classification
4. Geodesics
Introduction

Context

Study the geometry of invariant Riemannian and sub-Riemannian structures on Lie groups

Riemannian

- equipped with inner product on tangent bundle
- local notions of angles, curve length, area, etc.

Sub-Riemannian

- inner product restricted to a class of “admissible velocities”
- motion is constrained

Problem

Determine geodesics of sub-Riemannian structures on SE(1, 1)
Left-invariant sub-Riemannian structures

Sub-Riemannian structure $\langle G, \mathcal{D}, g \rangle$

- Lie group G
 - Lie algebra \mathfrak{g}
- Distribution $\mathcal{D} = \{ \mathcal{D}_a \}_{a \in G}$
 - family of vector subspaces $\mathcal{D}_a \subset T_a G$
 - \mathcal{D}_a generates $T_a G$
- Sub-Riemannian metric $g = \{ g_a \}_{a \in G}$
 - family of inner products on \mathcal{D}:
 $$g_a : \mathcal{D}_a \times \mathcal{D}_a \rightarrow \mathbb{R}$$

Left-invariance of $\langle \mathcal{D}, g \rangle$

- $\mathcal{D}_a = a \mathcal{D}_1$
- $g_a(aX, aY) = g_1(X, Y)$

Figure: Distribution on \mathbb{R}^3
Horizontal curves

Horizontal curve $\gamma(\cdot) : [0, T] \rightarrow G$

- motion constrained (must be tangent to distribution):
 $$\dot{\gamma}(t) \in D_{\gamma(t)}, \forall t \in [0, T]$$

- length($\gamma(\cdot)$) = $\int_0^T \sqrt{g_{\gamma(t)}(\dot{\gamma}(t), \dot{\gamma}(t))} \, dt$

Carnot-Carathéodory metric

$$d(a, b) = \inf \{ \text{length}(\gamma(\cdot)) : \gamma(\cdot) \text{ is horizontal, } \gamma(0) = a, \gamma(T) = b \}$$
A horizontal curve $\gamma(\cdot) : [0, T] \to G$ is a length minimiser if
- \textit{length minimiser} if
 \[d(\gamma(0), \gamma(T)) = \text{length}(\gamma(\cdot)) \]
- \textit{geodesic} if every sufficiently small arc is a length minimiser

Figure: Geodesics on the sphere

Use optimal control theory to find geodesics
Equivalence of SR structures

\(\mathcal{L} \)-isometries

\((\mathcal{D}, g)\) is \(\mathcal{L} \)-isometric to \((\mathcal{D}', g')\) if there exists \(\phi : G \rightarrow G \) such that

- \(\phi \) is a Lie group isomorphism
- \(\phi \cdot \mathcal{D} = \mathcal{D}' \) and \(g = \phi^* g' \)

- preserve Lie group structure and SR structure
- geodesics of \(\mathcal{L} \)-isometric structures are in a 1-to-1 correspondence

Algebraic characterisation (G simply connected)

\((\mathcal{D}, g)\) and \((\mathcal{D}', g')\) are \(\mathcal{L} \)-isometric \(\iff \exists \psi \in \text{Aut}(g) \) s.t.

\[\psi \cdot \mathcal{D}_1 = \mathcal{D}'_1 \]

and

\[g_1(X, Y) = g'_1(\psi \cdot X, \psi \cdot Y) \]
The semi-Euclidean group

SE(1, 1)

\[
\text{SE}(1, 1) = \left\{ \begin{bmatrix} 1 & 0 & 0 \\ x & \cosh \theta & \sinh \theta \\ y & \sinh \theta & \cosh \theta \end{bmatrix} : x, y, \theta \in \mathbb{R} \right\}
\]

- group of motions of the Minkowski plane
- connected, simply connected 3D matrix Lie group

Lie algebra

\[
\mathfrak{se}(1, 1) = \left\{ xE_1 + yE_2 + \theta E_3 = \begin{bmatrix} 0 & 0 & 0 \\ x & 0 & \theta \\ y & \theta & 0 \end{bmatrix} : x, y, \theta \in \mathbb{R} \right\}
\]

Commutators

\[
[E_2, E_3] = -E_1 \quad [E_3, E_1] = E_2 \quad [E_1, E_2] = 0
\]
Classification of SR structures

Proposition

Every left-invariant SR structure on SE(1, 1) is \(\mathcal{L} \)-isometric (up to scale) to

\[D_1 = \text{span}\{E_1, E_3\} \quad g_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \]

Outline of proof

- classify 2D subspaces under Aut(se(1, 1))
- determine automorphisms preserving \(D_1 \)
- use such automorphisms to normalise SR metric
Optimal control problem

1. Horizontal curves
\[\dot{\gamma}(t) \in D_{\gamma(t)} \quad \iff \quad \dot{\gamma}(t) = \gamma(t)(u_1(t)E_1 + u_2(t)E_3) \]

2. Energy functional
\[\text{length}(\gamma(\cdot)) \to \min \quad \iff \quad J = \frac{1}{2} \int_0^T u_1(t)^2 + u_2(t)^2 \, dt \to \min \]

(SR)
\[\begin{cases}
\dot{\gamma} = \gamma(u_1 E_1 + u_2 E_3), & \gamma \in \text{SE}(1, 1), \ u \in \mathbb{R}^2, \\
\gamma(0) = 1, \ \gamma(T) = a, & a \in \text{SE}(1, 1), \ T > 0 \text{ fixed}, \\
J = \frac{1}{2} \int_0^T u_1(t)^2 + u_2(t)^2 \, dt \to \min
\end{cases} \]

Solutions of (SR) are geodesics
Pontryagin Maximum Principle

Cost-extended Hamiltonian

- $T^*\text{SE}(1, 1) \cong \text{SE}(1, 1) \times se(1, 1)^*$
- associated Hamiltonians $(H_u)_{u \in \mathbb{R}^2}$ on $T^*\text{SE}(1, 1)$:

$$H_u(a, p) = u_1p_1 + u_2p_3 - \frac{1}{2}(u_1^2 + u_2^2).$$

Maximum Principle Adapted to (SR)

Suppose $(\gamma(\cdot), u(\cdot))$ is a solution to (SR). Then there exists a curve $\xi(\cdot) : [0, T] \to T^\text{SE}(1, 1)$ with $\xi(t) \in T_{\gamma(t)}\text{SE}(1, 1)$ such that*

- $\dot{\xi}(t) = \vec{H}(\xi(t))$
- $H(\xi(t)) = \max_{u \in \mathbb{R}^2} H_u(\xi(t)) = \text{constant.}$ (maximality condition)
Geodesic equations

Proposition

If \((\gamma(\cdot), u(\cdot))\) is a solution to \((\text{SR})\), then

\[
\begin{align*}
\dot{p}(t) &= \vec{H}(p(t)) \quad \text{(vertical subsystem)} \\
\dot{\gamma}(t) &= \gamma(t)(u_1(t)E_1 + u_2(t)E_3) \quad \text{(horizontal subsystem)}
\end{align*}
\]

where \(u_1 = p_1, u_2 = p_3\) and \(H(p) = \frac{1}{2}(p_1^2 + p_3^2)\).

Sketch of proof

- from maximality condition: \(\frac{\partial H}{\partial u} = 0 \iff p_1 = u_1, p_3 = u_2\)
- hence \(H(p) = \frac{1}{2}(p_1^2 + p_3^2)\)
- \(\dot{\xi} = \vec{H}(\xi) \iff \dot{p} = \vec{H}(p)\) and \(\dot{\gamma} = \gamma(p_1E_1 + p_3E_3)\)
Geodesic equations, cont’d

Global coordinates

\[(x, y, \theta) \in \mathbb{R}^3 \quad \leftrightarrow \quad \begin{bmatrix} 1 & 0 & 0 \\ x & \cosh \theta & \sinh \theta \\ y & \sinh \theta & \cosh \theta \end{bmatrix} \in SE(1, 1)\]

Vertical subsystem

\[
\begin{align*}
\dot{p}_1 &= p_2 p_3 \\
\dot{p}_2 &= p_1 p_3 \\
\dot{p}_3 &= -p_1 p_2
\end{align*}
\]

Horizontal subsystem

\[
\begin{align*}
\dot{x} &= \dot{p}_1 \cosh \theta \\
\dot{y} &= \dot{p}_1 \sinh \theta \\
\dot{\theta} &= \dot{p}_3
\end{align*}
\]
Vertical subsystem

Sub-Riemannian geometry
SE(1, 1)
Classification
Geodesics

Dennis Barrett (Rhodes)
Sub-Riemannian Geodesics on SE(1, 1)
PG Sem. Math. 2013
Horizontal subsystem

Family $\left(\gamma_\tau \right)_{\tau \in \mathbb{R}}$ of geodesics through each point and admissible direction

Proposition

Every unit-speed geodesic $\gamma_\tau(\cdot) = (x(\cdot), y(\cdot), \theta(\cdot))$ satisfying

$$\gamma_\tau(0) = 1 \quad \text{and} \quad 0 < \dot{x}(0)^2 - \tau^2 < 1$$

is of the form $\gamma_\tau(t) = \tilde{\gamma}(\rho_0)^{-1}\gamma(t + \rho_0)$, where

$$\begin{align*}
\tilde{x}(t) &= \frac{\sigma}{1 - k^2} \left[E(\text{am}(t, k), k) - k^2 \text{sn}(t, k) \right] \\
\tilde{y}(t) &= \frac{\sigma k}{1 - k^2} \left[E(\text{am}(t, k), k) - \text{sn}(t, k) \right] \\
\tilde{\theta}(t) &= \ln[\text{dn}(t, k) - k \text{cn}(t, k)] - \ln[1 - k].
\end{align*}$$

Here $k = \sqrt{1 - \dot{x}(0)^2 + \tau^2}$, $\sigma = \text{sgn}(\dot{x}(0))$ and $\text{dn}(\rho_0, k) = |\dot{x}(0)|$.

Dennis Barrett (Rhodes) Sub-Riemannian Geodesics on SE(1, 1) PG Sem. Math. 2013 15 / 16
Conclusion

Further work on SE(1, 1)

- determine sub-Riemannian balls, \(i.e. \)
 \[
 B_r = \{ a \in \text{SE}(1, 1) : d(a, 1) = r \}
 = \{ g(r) : g(\cdot) \text{ is a unit-speed geodesic} \}

- investigate local and global behaviour of geodesics

Outlook

- invariant SR structures in higher-dimensions