Nilpotent Lie Groups and Lie Algebras

Catherine Bartlett

Department of Mathematics (Pure and Applied) Rhodes University, Grahamstown 6140

> Mathematics Seminar 11 September 2013

Introduction

2 Lie groups

4 Supporting results

5 Main result for nilpotency

1 Introduction

2 Lie groups

- 3 Lie algebras
- 4 Supporting results
- 5 Main result for nilpotency

6 Conclusion

Main result

A connected Lie group is nilpotent if and only if its Lie algebra is nilpotent

- Introduce concepts about Lie groups and Lie algebras
- Establish the relationship between Lie groups and Lie algebras

Introduction

2 Lie groups

- 3 Lie algebras
- 4 Supporting results
- 5 Main result for nilpotency

6 Conclusion

Matrix Lie groups

General linear Lie group

$$\mathsf{GL}(n,\mathbb{R}) = \left\{g \in \mathbb{R}^{n \times n} \mid \det(g) \neq 0\right\}$$

• Set of all invertible linear transformations on \mathbb{R}^n

Matrix Lie groups

G is a matrix Lie group if G is a closed subgroup of $GL(n, \mathbb{R})$.

Homomorphism

A Lie group homomorphism is a smooth map $\varphi : G \to G'$ such that for $g_1, g_2 \in G$:

$$\varphi(g_1g_2) = \varphi(g_1)\varphi(g_2)$$

Examples

Special linear group

$$\mathsf{SL}(n,\mathbb{R}) = \left\{ g \in \mathbb{R}^{n \times n} | \det g = 1 \right\}$$

Linear operators preserving the standard volume in \mathbb{R}^n .

Special orthogonal group

$$\mathsf{SO}(n,\mathbb{R}) = \left\{ g \in \mathbb{R}^{n imes n} | gg^{\mathsf{T}} = \mathbf{1}, \det g = 1 \right\}$$

Linear operators preserving the Euclidean structure and orientation in \mathbb{R}^n .

Special Euclidean group

$$\mathsf{SE}(n,\mathbb{R}) = \left\{ egin{bmatrix} h & b \\ 0 & 1 \end{bmatrix} \in \mathbb{R}^{n+1 \times n+1} \mid h \in \mathsf{SO}(n,\mathbb{R}), b \in \mathbb{R}^n
ight\}$$

Orientation preserving isometries on \mathbb{R}^n .

Catherine Bartlett (RU)

Nilpotent Lie Groups and Lie Algebras

Normal subgroups

A subgroup H is normal in G if

$$\mathsf{H} = g^{-1}\mathsf{H}g = \left\{g^{-1}hg|h\in\mathsf{H}
ight\}$$
 for each $g\in\mathsf{G}$

Commutator bracket

From two subgroups A and B of G we generate a new subgroup:

$$(\mathsf{A},\mathsf{B}) = \left\{\prod_{i=1}^n a_i b_i a_i^{-1} b_i^{-1} | a_i \in \mathsf{A}, b_i \in \mathsf{B}\right\}$$

Remark

If $A, B \trianglelefteq G$ then $(A, B) \trianglelefteq G$.

Nilpotent Lie groups

Nilpotent Lie group

A matrix Lie group G is a nilpotent matrix Lie group if there is a series of normal subgroups of G:

$$\mathsf{G} = \mathsf{G}_0 \trianglerighteq \mathsf{G}_1 \trianglerighteq \cdots \trianglerighteq \mathsf{G}_s = \{\mathbf{1}\}$$

such that $(G, G_n) \leq G_{n+1}$ for $n = 0, \ldots, s - 1$.

Example

$$\mathsf{H}_{3} = \left\{ \begin{bmatrix} 1 & x_{2} & x_{1} \\ 0 & 1 & x_{3} \\ 0 & 0 & 1 \end{bmatrix} \mid x_{1}, x_{2}, x_{3} \in \mathbb{R} \right\}$$

• $G_0 = H_3$, $G_1 = (H_3, H_3) = Z(H_3)$, $G_2 = (H_3, Z(H_3)) = \{1\}$

Introduction

2 Lie groups

4 Supporting results

5 Main result for nilpotency

6 Conclusion

Lie algebras

Lie Algebras

A Lie algebra is a vector space equipped with a bilinear operation $[\cdot, \cdot]$ (the Lie bracket) satisfying

- [X, Y] = -[Y, X] (skew symmetry)
- [X, [Y, Z]] + [Y, [Z, X] + [Z, [X, Y]] = 0. (Jacobi identity)

General linear Lie algebra

$$\mathfrak{gl}(n,\mathbb{R})=\left\{X\in\mathbb{R}^{n\times n}\right\}$$

- Linearization of $GL(n, \mathbb{R})$
- When equipped with the Lie bracket,

$$[X, Y] = XY - YX,$$

 \mathfrak{gl} is a Lie algebra.

Catherine Bartlett (RU)

Special linear Lie algebra

$$\mathfrak{sl}(n,\mathbb{R}) = \left\{ X \in \mathbb{R}^{n \times n} \mid \operatorname{tr} \mathcal{X} = 0 \right\}$$

Special orthogonal Lie algebra

$$\mathfrak{so}(n,\mathbb{R}) = \left\{ X \in \mathbb{R}^{n \times n} \mid X + X^T = 0 \right\}$$

Special Euclidean Lie algebra

$$\mathfrak{se}(n,\mathbb{R}) = \left\{ \begin{bmatrix} A & b \\ 0 & 0 \end{bmatrix} \in \mathbb{R}^{n+1 \times n+1} \mid A \in \mathfrak{so}(n,\mathbb{R}), b \in \mathbb{R}^n \right\}$$

Homomorphism

A Lie algebra homomorphism is a linear map $\phi : \mathfrak{g} \to \mathfrak{g}'$ such that for any $X, Y \in \mathfrak{g}$:

•
$$\phi([X, Y]) = [\phi(X), \phi(Y)]$$

Ideals

An ideal of a Lie algebra \mathfrak{g} is a subspace \mathfrak{h} of \mathfrak{g} such that

$$[X,Y] \in \mathfrak{h}$$
 for all $X \in \mathfrak{g}$ and $Y \in \mathfrak{h}$.

Product of ideals

For two ideals $\mathfrak{h},\mathfrak{f}$ of \mathfrak{g} we define the product of ideals by

$$[\mathfrak{h},\mathfrak{f}] = Span \{ [X,Y] \mid X \in \mathfrak{h}, Y \in \mathfrak{f} \}$$

Remark

 $[\mathfrak{h},\mathfrak{f}]$ is itself an ideal of $\mathfrak{g}.$

Nilpotent Lie algebras

Nilpotent Lie algebra

A Lie algebra \mathfrak{g} is a nilpotent Lie algebra if there exists a sequence

$$\mathfrak{g} = \mathfrak{g}_0 \unrhd \mathfrak{g}_1 \trianglerighteq \cdots \trianglerighteq \mathfrak{g}_s = \{\mathbf{0}\}$$

where all \mathfrak{g}_n are ideals of \mathfrak{g} such that $[\mathfrak{g}, \mathfrak{g}_n] \leq \mathfrak{g}_{n+1}$.

Example

$$\mathfrak{h}_{3} = \left\{ \begin{bmatrix} 0 & x_{2} & x_{1} \\ 0 & 0 & x_{3} \\ 0 & 0 & 0 \end{bmatrix} \mid x_{1}, x_{2}, x_{3} \in \mathbb{R} \right\}$$

•
$$\mathfrak{g}_0 = \mathfrak{h}_3$$
, $\mathfrak{g}_1 = [\mathfrak{h}_3, \mathfrak{h}_3] = Z(\mathfrak{h}_3)$, $\mathfrak{g}_2 = [\mathfrak{h}_3, Z(\mathfrak{h}_3)] = \mathbf{0}$

Introduction

2 Lie groups

3 Lie algebras

4 Supporting results

5 Main result for nilpotency

6 Conclusion

Exponential of $X \in \mathbb{R}^{n \times n}$

$$\exp(X) = \sum_{k=0}^{\infty} \frac{X^k}{k!}$$

Logarithm of $X \in \mathbb{R}^{n \times n}$ with $||X - \mathbf{1}|| < 1$

$$\log(X) = \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} (X - 1)^k$$

Commutator formula

Proposition

Let $X, Y \in \mathfrak{g}$, then for t near 0

$$\exp(tX)\exp(tY)\exp(-tX)\exp(-tY)=\exp(t^2[X,Y]+o(t^3))$$

Proof

Let

$$G(t) = \exp(tX) \exp(tY) \exp(-tX) \exp(-tY)$$

= $\left(\mathbf{1} + t(X+Y) + \frac{t^2}{2}(X^2 + 2XY + Y^2) + O(t^3)\right) \times \left(\mathbf{1} - t(X+Y) + \frac{t^2}{2}(X^2 + 2XY + Y^2) + O(t^3)\right)$
= $\mathbf{1} + t^2[X, Y] + O(t^3)$

Proof continued

Then $||G(t) - \mathbf{1}|| < 1$ for t near 0; So

$$\log G(t) = \log(1 + t^{2}[X, Y] + O(t^{3}))$$

= $t^{2}[X, Y] + O(t^{3}) - O(t^{4})$
= $t^{2}[X, Y] + O(t^{3})$
 $\implies G(t) = \exp(t^{2}[X, Y] + o(t^{3})).$

Statement of Campbell-Baker-Hausdorff theorem

For $X, Y \in \mathfrak{g}$ in some neighbourhood of $\mathbf{0}$,

$$e^{X}e^{Y} = e^{X+Y+\frac{1}{2}[X,Y]+\frac{1}{12}[X,[X,Y]]-\frac{1}{12}[Y,[X,Y]]-\cdots}$$

Normal subgroups and ideals

Proposition

If $H \trianglelefteq G$, then $\mathfrak{h} \trianglelefteq \mathfrak{g}$

Proof

1 \mathfrak{h} is a vector subspace of \mathfrak{g}

2 \mathfrak{h} closed under Lie bracket with \mathfrak{g} :

• For $g(s) \in G$ and $h(t) \in H$ with g(0) = h(0) = 1 and $\dot{g}(0) = X \in \mathfrak{g}$, $\dot{h}(0) = Y \in \mathfrak{h}$.

$$g(s)h(t)g(s)^{-1}\in\mathsf{H}.$$

• Differentiate with respect to t at t = 0:

$$g(s)\dot{h}(0)g(s)^{-1}=g(s)Yg(s)^{-1}\in\mathfrak{h}.$$

• Differentiate with respect to s at s = 0:

$$\dot{g}(0)Yg(0)^{-1}-g(0)Y\dot{g}(0)=XY-YX=[X,Y]\in\mathfrak{h}.$$

Catherine Bartlett (RU)

Nilpotent Lie Groups and Lie Algebras

Theorem

There exists a neighbourhood U of $\mathbf{0} \in \mathfrak{g}$ and a neighbourhood V of $\mathbf{1} \in \mathsf{G}$ such that exp : $U \to V$ is a diffeomorphism.

Connected matrix Lie groups

Corollary

If G is a connected matrix Lie group, then $g \in G$ is of the form

$$g=e^{X_1}e^{X_2}\cdots e^{X_m}$$
 for some $X_1,X_2,\ldots,X_m\in \mathfrak{g}.$

Proof

•
$$\exists \gamma(t) \in \mathsf{G} \text{ s.t. } \gamma(0) = \mathbf{1} \text{ and } \gamma(1) = g$$

• We can choose t_0, \ldots, t_m with $0 = t_0 < t_1 < \cdots < t_m = 1$ s.t.

$$\gamma_{t_k-1}^{-1}\gamma_{t_k}\in V\quad\forall k=1,\ldots,m$$

۲

$$g = (\gamma_{t_0}^{-1} \gamma_{t_1})(\gamma_{t_1}^{-1} \gamma_{t_2}) \cdots (\gamma_{t_{m-2}}^{-1} \gamma_{t_{m-1}})(\gamma_{t_{m-1}}^{-1} \gamma_{t_m})$$

• Then we can choose $X_k \in \mathfrak{g}$ s.t. $e^{X_k} = \gamma_{t_{k-1}}^{-1} \gamma_{t_k} (k=1,\ldots,m)$ then

$$g = e^{X_1} \cdots e^{X_m}$$

Homomorphisms

Lemma

Let G be a lie group and $X \in \mathfrak{g}$ then there exists exactly one Lie group homomorphism $f : \mathbb{R} \to G$ such that $\dot{f}(0) = X$.

Proposition

Let $\Phi : G \to H$ be a Lie group homomorphism. Then $d\Phi : \mathfrak{g} \to \mathfrak{h}$ is a Lie algebra homomorphism and for $X \in \mathfrak{g}$

 $\Phi(\exp X) = \exp[\mathrm{d}\Phi(X)]$

• The following diagram commutes:

Lie group and Lie algebra homomorphisms

Proof.

• $\psi : \mathbb{R} \to \mathsf{H} : t \mapsto \Phi(\exp(tX))$ is a Lie group homomorphism:

$$egin{aligned} \psi(t_1+t_2) &= \Phi e^{(t_1+t_2)X} \ &= \Phi(e^{t_1X}e^{t_2X}) \ &= \Phi e^{t_1X}\Phi e^{t_2X} \ &= \psi(t_1)\psi(t_2). \end{aligned}$$

• Differentiate with respect to t at t = 0:

$$\begin{split} \dot{\psi}(0) &= \frac{\mathrm{d}}{\mathrm{d}t} \Phi(e^{tX}) \Big|_{t=0} \\ &= \mathrm{d}\Phi(e^0) X e^0 \\ &= (\mathrm{d}\Phi) X. \end{split}$$

Lie group and Lie algebra homomorphisms

 But β : ℝ → H : t → exp(t(dΦ)X) is also a Lie group homomorphism:

$$egin{aligned} eta(t_1+t_2)&=e^{(t_1+t_2)\mathrm{d}\Phi X}\ &=e^{t_1\mathrm{d}\Phi X}e^{t_2\mathrm{d}\Phi X}\ &=eta(t_1)eta(t_2), \end{aligned}$$

• $\dot{\beta}(0) = (\mathrm{d}\Phi)X.$

 $\bullet\,$ From uniqueness of the homomorphism, we have $\psi=\beta$:

$$\Phi(\exp tX) = \exp t((\mathrm{d}\Phi)X)$$

$\mathrm{d}\Phi$ is a Lie algebra homomorphism:

- $\bullet \ \mathrm{d} \Phi$ is a linear map
- $\mathrm{d}\Phi$ is a Lie algebra homomorphism:

$$\Phi(e^{-tX}e^{-tY}e^{tX}e^{tY}) = \Phi(e^{-tX})\Phi(e^{-tY})\Phi(e^{tX})\Phi(e^{tY})$$

$$\Leftrightarrow \Phi(e^{t^2[X,Y]+o(t^3)}) = \Phi(e^{-tX})\Phi(e^{-tY})\Phi(e^{tX})\Phi(e^{tY})$$

$$\Leftrightarrow e^{\mathrm{d}\Phi(t^2[X,Y]+o(t^3))} = e^{-t(\mathrm{d}\Phi)X}e^{-t(\mathrm{d}\Phi)Y}e^{t(\mathrm{d}\Phi)X}e^{t(\mathrm{d}\Phi)Y}$$

$$\Leftrightarrow e^{t^2(\mathrm{d}\Phi[X,Y])+\mathrm{d}\Phi o(t^3)} = e^{t^2[\mathrm{d}\Phi X,\mathrm{d}\Phi Y]+\mathrm{d}\Phi o(t^3)}$$

• Set $t = \sqrt{t}$; differentiate with respect to t at t = 0:

$$\mathrm{d}\Phi[X,Y] = [\mathrm{d}\Phi X,\mathrm{d}\Phi Y].$$

Connected matrix Lie groups

Lemma

Let $\psi : \mathsf{G} \to \mathsf{GL}(\mathfrak{g})$ be a Lie group homomorphism, then

$$[\mathrm{d}\psi(X)](\mathfrak{g})\subseteq\mathfrak{g},\quad orall X\in\mathfrak{g}\implies\psi(g)(\mathfrak{g})\subseteq\mathfrak{g},\quad orall g\in\mathsf{G}.$$

Proof

• Let
$$[d\psi(X)](Y) \in \mathfrak{g}$$
 for $Y \in \mathfrak{g}$ then:

$$\psi(e^{tX})(Y) = e^{(td\psi(X))}(Y)$$
(1)

$$=Y+\frac{t\mathrm{d}\psi(X)}{1!}(Y)+\frac{t^{2}\mathrm{d}^{2}\psi(X)}{2!}(Y)+\cdots\in\mathfrak{g} \qquad (2)$$

• Now for $g \in G$,

$$g = e^{X_1}e^{X_2}\ldots e^{X_m}, \qquad X_1\ldots X_m \in \mathfrak{g}.$$

$$egin{aligned} \psi(g)(Y) &= \psi(e^{X_1}e^{X_2}\dots e^{X_m})(Y) \ &= \psi(e^{X_1})\psi(e^{X_2})\dots \psi(e^{X_m})(Y) \in \mathfrak{g} \end{aligned}$$

Proposition

Let \mathfrak{g} be a Lie algebra of a connected Lie group G. Let $\mathfrak{h} \leq \mathfrak{g}$; Then the group H generated by $\exp(\mathfrak{h})$ is a normal subgroup of G.

Proof

- Let $\psi: \mathsf{G} \to \mathsf{GL}(\mathfrak{g}), \quad \psi(g): \mathfrak{g} \to \mathfrak{g}, X \mapsto gXg^{-1}$
- And $d\psi(Y) : \mathfrak{g} \to \mathfrak{g}, X \mapsto YX XY = [Y, X]$
- For any $Y \in \mathfrak{g}$,

$$\mathrm{d}\psi(Y)\mathfrak{h} = [Y,\mathfrak{h}] \subseteq \mathfrak{h} \implies \psi(g)\mathfrak{h} \subseteq \mathfrak{h}.$$

So

$$g \exp(\mathfrak{h})g^{-1} = (\exp g\mathfrak{h}g^{-1})$$

= $\exp[\psi(g)(\mathfrak{h})] \subseteq \exp \mathfrak{h}g$

1 Introduction

2 Lie groups

3 Lie algebras

4 Supporting results

5 Main result for nilpotency

6 Conclusion

Theorem

Let G be a connected real Lie group, then G is nilpotent if and only if its Lie algebra $\mathfrak g$ is nilpotent.

$\mathsf{G} \text{ nilpotent } \Longrightarrow \ \mathfrak{g} \text{ nilpotent}$

• Assume G is nilpotent; Then we have:

 $\mathsf{G}=\mathsf{G}_0 \trianglerighteq \mathsf{G}_1 \dots \trianglerighteq \mathsf{G}_n = \{\mathbf{1}\} \quad \text{with} \quad (\mathsf{G},\mathsf{G}_k) \leq \mathsf{G}_{k+1}.$

• From which we have the corresponding series:

$$\mathfrak{g} = \mathfrak{g}_0 \supseteq \mathfrak{g}_1 \supseteq \cdots \supseteq \mathfrak{g}_n = \{\mathbf{0}\}, \text{ of ideals of } \mathfrak{g}.$$

•
$$(\mathsf{G},\mathsf{G}_k) \leq \mathsf{G}_{k+1} \implies [\mathfrak{g},\mathfrak{g}_k] \leq \mathfrak{g}_{k+1}$$
:

Let $X \in \mathfrak{g}, Y \in \mathfrak{g}_k$ then for t near 0

$$(e^{\sqrt{t}X}, e^{\sqrt{t}Y}) = e^{(t[X,Y]+o(\sqrt{t^3}))} \in \mathsf{G}_{k+1}$$
$$\implies \left. \frac{d}{dt} \gamma(\sqrt{t}) \right|_{t=0} = [X,Y] \in \mathfrak{g}_{k+1}$$
$$\implies [\mathfrak{g},\mathfrak{g}_k] \le \mathfrak{g}_{k+1}$$

Catherine Bartlett (RU)

• Assume g is nilpotent; Then we have:

$$\mathfrak{g} = \mathfrak{g}_0 \unrhd \mathfrak{g}_1 \trianglerighteq \cdots \trianglerighteq \mathfrak{g}_s = \{ \mathbf{0} \}$$
 with $[\mathfrak{g}, \mathfrak{g}_n] \le \mathfrak{g}_{n+1}$

• exp g_k generates a chain of normal connected subgroups G_k:

$$\mathsf{G} \trianglerighteq \mathsf{G}_1 \trianglerighteq \mathsf{G}_2 \trianglerighteq, \dots \trianglerighteq \mathsf{G}_n = \{\mathbf{1}\}.$$

• $[\mathfrak{g},\mathfrak{g}_k] \leq \mathfrak{g}_{k+1} \implies (\mathsf{G},\mathsf{G}_k) \leq \mathsf{G}_{k+1}$:

$$e^{X}e^{Y}e^{-X}e^{-Y} = e^{X+Y+\frac{1}{2}[X,Y]+\cdots}e^{-X-Y+\frac{1}{2}[-X,-Y]+\cdots}$$
$$= e^{[X,Y]-\frac{1}{12}[Y,[X,[X,Y]]]+\cdots}$$
$$\in G_{k+1}$$

• True in neighbourhood of 1 therefore true for whole group.

Introduction

2 Lie groups

- 3 Lie algebras
- 4 Supporting results
- 5 Main result for nilpotency

- There is a definite link between the properties of a Lie group and its Lie algebra:
 - Normal subgroups and ideals of Lie algebras
 - Lie group homomorphisms and Lie algebra homomorphisms
 - Nilpotent Lie groups and Nilpotent Lie algebras
- Heisenberg group is nilpotent