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Introduction

A connected Lie group is nilpotent if and only if its Lie algebra is nilpotent \

@ Introduce concepts about Lie groups and Lie algebras J

@ Establish the relationship between Lie groups and Lie algebras
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Matrix Lie groups

General linear Lie group

GL(n,R) = {g € R™" | det(g) # 0}

@ Set of all invertible linear transformations on R”

Matrix Lie groups
G is a matrix Lie group if G is a closed subgroup of GL(n, R).

Homomorphism

A Lie group homomorphism is a smooth map ¢ : G — G’ such that for

81,82 S G:
v(g182) = v(g1)p(g2)
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Examples

Special linear group
SL(n,R) = {g € R""|detg =1}

Linear operators preserving the standard volume in R".

| \

Special orthogonal group

SO(n,R) = {g e R™"ggT =1,detg = 1}

Linear operators preserving the Euclidean structure and orientation in R”.

| A\

Special Euclidean group

SE(n,R) = { [g ﬂ e R IXntl ) h e SO(n,R), b e R”}

Orientation preserving isometries on R".
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Normal subgroups and the commutator bracket

Normal subgroups

A subgroup H is normal in G if

H=g 'Hg = {g 'hglh€ H} foreach geG

v

Commutator bracket

From two subgroups A and B of G we generate a new subgroup:

n
(A,B) = {H aibja; b ta; € A b; € B}

i=1

If A,B <G then (A,B) <G.
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Nilpotent Lie groups

Nilpotent Lie group

A matrix Lie group G is a nilpotent matrix Lie group if there is a series of
normal subgroups of G:

G=G>GD>--->Gs={1}

such that (G, G,) < Gpy1 for n=0,...,s — 1.

X2 X1
1 X3 |X1,X2,X3E]R
0 1

@ Go =Hs, Gi=(H3,H3)=2(H3), Go=(Hs Z(H3))={1} )
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© Lie algebras
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Lie algebras

Lie Algebras

A Lie algebra is a vector space equipped with a bilinear operation [-,]
(the Lie bracket) satisfying

o [X,Y]=—[Y,X] (skew symmetry)
o [X,[Y,ZN|+1[Y,[Z,X]+[Z,[X,Y]]=0. (Jacobi identity)

General linear Lie algebra

| A\

gli(n,R) = {X e R™"}

o Linearization of GL(n,R)
@ When equipped with the Lie bracket,

[X,Y]=XY - YX,

gl is a Lie algebra.

Catherine Bartlett (RU) Nilpotent Lie Groups and Lie Algebras Mathematics Seminar



Special linear Lie algebra

sl(n,R) = {X e R"™" | tr X = 0}

v

Special orthogonal Lie algebra

so(n,R) = {x eR™" | X+ XT = o}

v

Special Euclidean Lie algebra

se(n,R) = { [A b} e R™IXm+l 1A € 50(n,R), b € R”}

0 0
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Lie algebra homomorphisms

Homomorphism

A Lie algebra homomorphism is a linear map ¢ : g — ¢’ such that for any
X, Y eg:

o ¢([X, Y]) = [6(X), o(Y)]
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|deals and the product of ideals

An ideal of a Lie algebra g is a subspace h of g such that

[X,Y]€h forall X egand Y €.

Product of ideals
For two ideals b, f of g we define the product of ideals by

[h,§] = Span{[X, Y] | X € b, Y € f}

[b,f] is itself an ideal of g.
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Nilpotent Lie algebras

Nilpotent Lie algebra

A Lie algebra g is a nilpotent Lie algebra if there exists a sequence

g=go>g1>--->gs={0}

where all g, are ideals of g such that [g, gn] < gn+1-

| A\

Example

b3

‘ X1,X2,X3 € R

I
o oo

X2
0
0

o X

@ go = h3a g1 = [h37 r)3] = Z(bS)a 9, = [b3vz(h3)] =0
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@ Supporting results
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etXetYeftXeftY

_ et2[X,Y]+O(t3)

G nilpotent

0

g nilpotent

/o

( CBH

\

(hdg = HG]

Catherine Bartlett (RU) Nilpotent Lie Groups and Lie Algebras Mathematics Seminar 17 / 45



The matrix exponential and logarithm

Exponential of X € R"*"

v

Logarithm of X € R™" with || X —1|| <1

0 vkl
og(x) = > E T (x — 1y
k=1
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Commutator formula

Let X,Y € g, then for t near 0

exp(tX) exp(tY) exp(—tX) exp(—tY) = exp(t[X, Y] + o(t%))

| A

Proof
Let

G(t) = exp(tX) exp(tY) exp(—tX) exp(—tY)

2
= <1 +t(X+Y)+ %(x2 +2XY + Y?) + O(t3)> X

(1 —t(X+Y)+ t;(X2 +2XY + Y?) + O(t3)>

=1+ t?[X, Y]+ O(t%)
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Commutator formula

Proof continued

Then ||G(t) — 1|| < 1 for t near 0; So

log G(t) = log(1 + t2[X, Y] + O(t%))
= 2[X, Y] + O(t3) — O(t*)
= t2[X, Y]+ O(3)
— G(t) = exp(t?[X, Y] + o(t?)).
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tX tY ftX ftY
t2[X Y]+0(t3)
G nilpotent

3
/ g nilpotent
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Campbell-Baker-Hausdorff theorem

Statement of Campbell-Baker-Hausdorff theorem

For X, Y € g in some neighbourhood of 0,

XY — XHYH3IX Y+ XX Y= 51V [X, Y]
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Normal subgroups and ideals

Proposition
If HG, then h g

Proof
© 0§ is a vector subspace of g
@ b closed under Lie bracket with g:
o For g(s) € G and h(t) € H with g(0) = h(0) =1 and
g(0)=Xeg, h(0)=Yen.
g(s)h(t)g(s)™* € H.

o Differentiate with respect to t at t = 0:

g(s)h(0)g(s) ™" = g(s)Ye(s) ! €.

o Differentiate with respect to s at s = 0:

£(0)Yg(0)™! — g(0)Y£(0) = XY — YX =[X, Y] €.
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—— [d(X)](e) C g
[ w(e¥) = etve ]-»‘ e . }—»(649 — H<G)

For connected G,

X1

g:e X2 Xm

€ .. €
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The exponential map

There exists a neighbourhood U of 0 € g and a neighbourhood V of 1 € G
such that exp : U — V is a diffeomorphism.

E exp
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Connected matrix Lie groups

Corollary

If G is a connected matrix Lie group, then g € G is of the form

g =eNeX. ..

o dvy(t)eGst. y(0)=1and y(1) =g
@ We can choose ty,...,tpWithO =ty < t; <--- < t, = 1 s.t.

Xm

e for some X1, X5,..., Xm € g.

Yol €V Vk=1,....m

g = (Vg ) (5 ) (Ve ) Vit Vem)

o Then we can choose Xj € g s.t. eXk = fy;kflfytk(k =1,...,m) then

g:exl--~ex’".
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e [d6(X))(g) C g
[ w(e¥) = erve )—{ o) < g P[bﬂg — HG)

For connected G,

g=¢e"e"
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Homomorphisms

Let G be a lie group and X € g then there exists exactly one Lie group
homomorphism f : R — G such that f(0) = X.

f(0)
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Lie group and Lie algebra homomorphisms

Proposition

Let ® : G — H be a Lie group homomorphism. Then d® : g — b is a Lie
algebra homomorphism and for X € g

d(exp X) = exp[dP(X)]

@ The following diagram commutes:
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Lie group and Lie algebra homomorphisms

@ ¢ :R— H:t— d(exp(tX)) is a Lie group homomorphism:

¢(t1 4 tz) — ¢e(t1+t2)X
_ ¢(et1Xet2X)
= pe X pelX

= P(t1)Y(t2).
o Differentiate with respect to t at t = 0:

d

i ) tX
90) = o)

= dd(e%)xel
= (d®)X.
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Lie group and Lie algebra homomorphisms

@ But f: R — H: t+— exp(t(dP)X) is also a Lie group
homomorphism:

Bt + 1) = elatrldeX
_ ohd®X jhd®X

= B(t1)B(t2),

o ((0) = (dd)X.
@ From uniqueness of the homomorphism, we have ¢ = (3 :

O (exp tX) = exp t((dP)X)
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Lie group and Lie algebra homomorphisms

d® is a Lie algebra homomorphism:

@ d® is a linear map

@ d® is a Lie algebra homomorphism:

(™ e Y eXet) = (e )b (e )D(eX)D(e")

N ¢(et2[X,Y]+o(t3)) _ ¢(e—tX)¢(e—tY)¢(etX)¢(etY)

PN ed¢(t2[X,Y]+o(t3)) — o t(dP)X j—t(dP)Y t(dP)X t(dd)Y

PN etz(d¢[X,Y])+dd>o(t3) _ et2[d¢x,d¢Y]+d¢o(t3)

e Set t = +/t; differentiate with respect to t at t = 0:

d[X, Y] = [doX,ddY].
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() = [dyp(X)](9) < o
eV ‘ = ¢(g)(9) C g [b =0 =- 5= G]

‘ For connected G, ’

g=¢e"e"
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Connected matrix Lie groups

Let ¢ : G — GL(g) be a Lie group homomorphism, then
[dy(X)l(g) S 9, VXe€g = (g)(g) Co, VgeG.

Proof
o Let [dy(X)](Y) € g for Y € g then:

| \

P(e™)(Y) = WX (y) (1)
=Y+ tdl/{fx)(v) + tzdzﬁ(X)(Y) +--€0 (2
@ Now for g € G, . |
g:exlexz...ex’", X1...Xm €g.

D(g)(Y) = (e . e*)(Y)
= (™ )Pp(e™?)... p(e*")(Y) € g

Catherine Bartlett (RU) Nilpotent Lie Groups and Lie Algebras Mathematics Seminar 36 / 45



Y

: ; [d(X)](g) € g
(%) = e — Y Cs (EFEINETE

For connected G,

g=efe . e
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Generating normal subgroups from ideals

Proposition

Let g be a Lie algebra of a connected Lie group G. Let h < g; Then the
group H generated by exp(h) is a normal subgroup of G.

Proof
o Let: G — GL(g), (g):g—g,Xr—gXg™?!
@ Anddy(Y):g— g, X — YX - XY =[Y, X]
@ Forany Y € g,

dyp(Y)h=[Y,b] S h = +(g)h Cb.

e So 1

gexp(h)g ™! = (expghg ™)

= exp[t(g)(h)] Cexph
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© Main result for nilpotency
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tX tY ftX ftY
t2[X Y]+0(t3)
G nilpotent

31
/ g nilpotent
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Nilpotent Lie groups and Lie algebras

Let G be a connected real Lie group, then G is nilpotent if and only if its
Lie algebra g is nilpotent.
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G nilpotent = g nilpotent

@ Assume G is nilpotent; Then we have:
G=Gy>Gy--->G,={1} with (G,Gg) < Ggy1.
@ From which we have the corresponding series:
g=go>g1>--->g, =10}, ofidealsof g.
° (G,Gk) < Gry1 = [8,0k] < gk+1:
Let X € g, Y € gk then for t near 0

(eVEX eVEY) = ((tIXYI+e(VE)) ¢ G, )

d
= d—’)’(\/?) = [X, Y] € gks1
t t=0

= [g,0«] < gk+1
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g nilpotent = G nilpotent

@ Assume g is nilpotent; Then we have:
g=00>0-2gs={0} with [g,9n] <gns1
@ exp g, generates a chain of normal connected subgroups Gg:
G> Gy >G>, - > G, = {1}
° [9,0k] < gkt1 = (G, Gk) < Gpqa:
XY e Xe=Y — oXHYHFIX Y o= X=Y+1[-X,= Y]+
_ AP = 7 PP

€ Gkq1

@ True in neighbourhood of 1 therefore true for whole group.
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@ Conclusion
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Conclusion

@ There is a definite link between the properties of a Lie group and its
Lie algebra:

o Normal subgroups and ideals of Lie algebras
o Lie group homomorphisms and Lie algebra homomorphisms
o Nilpotent Lie groups and Nilpotent Lie algebras

@ Heisenberg group is nilpotent
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