Nilpotent Lie Groups and Lie Algebras

Catherine Bartlett

Department of Mathematics (Pure and Applied)
Rhodes University, Grahamstown 6140

Mathematics Seminar
11 September 2013
Outline

1. Introduction
2. Lie groups
3. Lie algebras
4. Supporting results
5. Main result for nilpotency
6. Conclusion
1 Introduction

2 Lie groups

3 Lie algebras

4 Supporting results

5 Main result for nilpotency

6 Conclusion
Introduction

Main result

A connected Lie group is nilpotent if and only if its Lie algebra is nilpotent

- Introduce concepts about Lie groups and Lie algebras
- Establish the relationship between Lie groups and Lie algebras
Matrix Lie groups

General linear Lie group

\[\text{GL}(n, \mathbb{R}) = \{ g \in \mathbb{R}^{n \times n} \mid \det(g) \neq 0 \} \]

- Set of all invertible linear transformations on \(\mathbb{R}^n \)

Matrix Lie groups

G is a matrix Lie group if G is a closed subgroup of \(\text{GL}(n, \mathbb{R}) \).

Homomorphism

A Lie group homomorphism is a smooth map \(\varphi : G \rightarrow G' \) such that for \(g_1, g_2 \in G \):

\[\varphi(g_1g_2) = \varphi(g_1)\varphi(g_2) \]
Examples

Special linear group

\[SL(n, \mathbb{R}) = \{ g \in \mathbb{R}^{n \times n} | \det g = 1 \} \]

Linear operators preserving the standard volume in \(\mathbb{R}^n \).

Special orthogonal group

\[SO(n, \mathbb{R}) = \left\{ g \in \mathbb{R}^{n \times n} | gg^T = 1, \det g = 1 \right\} \]

Linear operators preserving the Euclidean structure and orientation in \(\mathbb{R}^n \).

Special Euclidean group

\[SE(n, \mathbb{R}) = \left\{ \begin{bmatrix} h & b \\ 0 & 1 \end{bmatrix} \in \mathbb{R}^{n+1 \times n+1} | h \in SO(n, \mathbb{R}), b \in \mathbb{R}^n \right\} \]

Orientation preserving isometries on \(\mathbb{R}^n \).
Normal subgroups and the commutator bracket

Normal subgroups

A subgroup H is normal in G if

$$H = g^{-1}Hg = \{g^{-1}hg \mid h \in H\} \quad \text{for each } g \in G$$

Commutator bracket

From two subgroups A and B of G we generate a new subgroup:

$$(A, B) = \left\{ \prod_{i=1}^{n} a_i b_i a_i^{-1} b_i^{-1} \mid a_i \in A, b_i \in B \right\}$$

Remark

If $A, B \trianglelefteq G$ then $(A, B) \trianglelefteq G.$
Nilpotent Lie group

A matrix Lie group G is a nilpotent matrix Lie group if there is a series of normal subgroups of G:

$$G = G_0 \trianglerighteq G_1 \trianglerighteq \cdots \trianglerighteq G_s = \{1\}$$

such that $(G, G_n) \leq G_{n+1}$ for $n = 0, \ldots, s - 1$.

Example

$$H_3 = \left\{ \begin{bmatrix} 1 & x_2 & x_1 \\ 0 & 1 & x_3 \\ 0 & 0 & 1 \end{bmatrix} \mid x_1, x_2, x_3 \in \mathbb{R} \right\}$$

- $G_0 = H_3$,
- $G_1 = (H_3, H_3) = Z(H_3)$,
- $G_2 = (H_3, Z(H_3)) = \{1\}$
A Lie algebra is a vector space equipped with a bilinear operation \([\cdot, \cdot \)] (the Lie bracket) satisfying

- \([X, Y] = -[Y, X]\) (skew symmetry)
- \([X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0\). (Jacobi identity)

General linear Lie algebra

\[\mathfrak{gl}(n, \mathbb{R}) = \{ X \in \mathbb{R}^{n \times n} \} \]

- Linearization of \(\text{GL}(n, \mathbb{R})\)
- When equipped with the Lie bracket,
 \[[X, Y] = XY - YX, \]

\(\mathfrak{gl}\) is a Lie algebra.
Examples

Special linear Lie algebra

\(\mathfrak{sl}(n, \mathbb{R}) = \{ X \in \mathbb{R}^{n \times n} \mid \text{tr} X = 0 \} \)

Special orthogonal Lie algebra

\(\mathfrak{so}(n, \mathbb{R}) = \{ X \in \mathbb{R}^{n \times n} \mid X + X^T = 0 \} \)

Special Euclidean Lie algebra

\(\mathfrak{se}(n, \mathbb{R}) = \left\{ \begin{bmatrix} A & b \\ 0 & 0 \end{bmatrix} \in \mathbb{R}^{n+1 \times n+1} \mid A \in \mathfrak{so}(n, \mathbb{R}), b \in \mathbb{R}^n \right\} \)
Lie algebra homomorphisms

A Lie algebra homomorphism is a linear map $\phi : g \to g'$ such that for any $X, Y \in g$:

$\phi([X, Y]) = [\phi(X), \phi(Y)]$
Ideals and the product of ideals

Ideals

An **ideal** of a Lie algebra \mathfrak{g} is a subspace \mathfrak{h} of \mathfrak{g} such that

$$ [X, Y] \in \mathfrak{h} \quad \text{for all } X \in \mathfrak{g} \text{ and } Y \in \mathfrak{h}. $$

Product of ideals

For two ideals $\mathfrak{h}, \mathfrak{f}$ of \mathfrak{g} we define the **product of ideals** by

$$ [\mathfrak{h}, \mathfrak{f}] = \text{Span} \{ [X, Y] \mid X \in \mathfrak{h}, Y \in \mathfrak{f} \} $$

Remark

$[\mathfrak{h}, \mathfrak{f}]$ is itself an ideal of \mathfrak{g}.
Nilpotent Lie algebras

Nilpotent Lie algebra

A Lie algebra \mathfrak{g} is a nilpotent Lie algebra if there exists a sequence

$$\mathfrak{g} = \mathfrak{g}_0 \triangleright \mathfrak{g}_1 \triangleright \cdots \triangleright \mathfrak{g}_s = \{0\}$$

where all \mathfrak{g}_n are ideals of \mathfrak{g} such that $[\mathfrak{g}, \mathfrak{g}_n] \leq \mathfrak{g}_{n+1}$.

Example

$$\mathfrak{h}_3 = \left\{ \begin{bmatrix} 0 & x_2 & x_1 \\ 0 & 0 & x_3 \\ 0 & 0 & 0 \end{bmatrix} \mid x_1, x_2, x_3 \in \mathbb{R} \right\}$$

- $\mathfrak{g}_0 = \mathfrak{h}_3$,
- $\mathfrak{g}_1 = [\mathfrak{h}_3, \mathfrak{h}_3] = Z(\mathfrak{h}_3)$,
- $\mathfrak{g}_2 = [\mathfrak{h}_3, Z(\mathfrak{h}_3)] = 0$
\[e^t X e^t Y e^{-tX} e^{-tY} = e^{t^2 [X,Y] + O(t^3)}\]

\[H \leq G \iff h \leq g\]

\[h \leq g \implies H \leq G\]
The matrix exponential and logarithm

Exponential of $X \in \mathbb{R}^{n\times n}$

\[
\exp(X) = \sum_{k=0}^{\infty} \frac{X^k}{k!}
\]

Logarithm of $X \in \mathbb{R}^{n\times n}$ **with** $\|X - 1\| < 1$

\[
\log(X) = \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} (X - 1)^k
\]
Commutator formula

Proposition

Let $X, Y \in g$, then for t near 0

$$\exp(tX) \exp(tY) \exp(-tX) \exp(-tY) = \exp(t^2[X, Y] + o(t^3))$$

Proof

Let

$$G(t) = \exp(tX) \exp(tY) \exp(-tX) \exp(-tY)$$

$$= \left(1 + t(X + Y) + \frac{t^2}{2}(X^2 + 2XY + Y^2) + O(t^3)\right) \times$$

$$\left(1 - t(X + Y) + \frac{t^2}{2}(X^2 + 2XY + Y^2) + O(t^3)\right)$$

$$= 1 + t^2[X, Y] + O(t^3)$$
Then $||G(t) - 1|| < 1$ for t near 0; So

$$
\begin{align*}
\log G(t) &= \log(1 + t^2[X, Y] + O(t^3)) \\
&= t^2[X, Y] + O(t^3) - O(t^4) \\
&= t^2[X, Y] + O(t^3) \\
\implies G(t) &= \exp(t^2[X, Y] + o(t^3)).
\end{align*}
$$
\[e^{tX} e^{tY} e^{-tX} e^{-tY} = e^{t^2[X,Y] + O(t^3)} \]

- CBH
- \(G \) nilpotent
 \(\iff \) \(g \) nilpotent
- \(H \leq G \iff h \leq g \)
- \(h \leq g \iff H \leq G \)
Campbell-Baker-Hausdorff theorem

Statement of Campbell-Baker-Hausdorff theorem

For $X, Y \in \mathfrak{g}$ in some neighbourhood of 0,

$$e^X e^Y = e^{X+Y + \frac{1}{2}[X,Y] + \frac{1}{12}[X,[X,Y]] - \frac{1}{12}[Y,[X,Y]] - \cdots}$$
\[e^{tX} e^{tY} e^{-tX} e^{-tY} = e^{t^2[X,Y] + O(t^3)} \]

\[G \text{ nilpotent} \]

\[g \text{ nilpotent} \]

\[H \leq G \iff h \leq g \]

\[h \leq g \iff H \leq G \]
Normal subgroups and ideals

Proposition

If $H \trianglelefteq G$, then $\mathfrak{h} \trianglelefteq \mathfrak{g}$

Proof

1. \mathfrak{h} is a vector subspace of \mathfrak{g}
2. \mathfrak{h} closed under Lie bracket with \mathfrak{g}:
 - For $g(s) \in G$ and $h(t) \in H$ with $g(0) = h(0) = 1$ and $\dot{g}(0) = X \in \mathfrak{g}$, $\dot{h}(0) = Y \in \mathfrak{h}$.
 \[g(s)h(t)g(s)^{-1} \in H. \]
 - Differentiate with respect to t at $t = 0$:
 \[g(s)\dot{h}(0)g(s)^{-1} = g(s)Yg(s)^{-1} \in \mathfrak{h}. \]
 - Differentiate with respect to s at $s = 0$:
 \[\dot{g}(0)Yg(0)^{-1} - g(0)Y\dot{g}(0) = XY - YX = [X, Y] \in \mathfrak{h}. \]
\[
e^{tX} e^{tY} e^{-tX} e^{-tY} = e^{t^2[X,Y] + O(t^3)}
\]

GBH

\[H \trianglelefteq G \iff \mathfrak{h} \trianglelefteq \mathfrak{g}\]

\[\mathfrak{h} \trianglelefteq \mathfrak{g} \iff H \trianglelefteq G\]

G nilpotent

\[\mathfrak{g}\] nilpotent
\[\psi(e^{tX}) = e^{td\psi(X)} \]

\[[d\psi(X)](\mathfrak{g}) \subseteq \mathfrak{g} \quad \Rightarrow \quad \psi(\mathfrak{g})(\mathfrak{g}) \subseteq \mathfrak{g} \]

\[\mathfrak{h} \trianglelefteq \mathfrak{g} \quad \Rightarrow \quad H \trianglelefteq G \]

For connected \(G \),

\[g = e^{X_1} e^{X_2} \ldots e^{X_m} \]
The exponential map

Theorem

There exists a neighbourhood U of $0 \in g$ and a neighbourhood V of $1 \in G$ such that $\exp : U \rightarrow V$ is a diffeomorphism.
Corollary

If G is a connected matrix Lie group, then $g \in G$ is of the form

$$g = e^{X_1} e^{X_2} \cdots e^{X_m} \quad \text{for some } X_1, X_2, \ldots, X_m \in \mathfrak{g}.$$

Proof

- $\exists \gamma(t) \in G$ s.t. $\gamma(0) = 1$ and $\gamma(1) = g$

- We can choose t_0, \ldots, t_m with $0 = t_0 < t_1 < \cdots < t_m = 1$ s.t.

 $$\gamma_{t_{k-1}}^{-1} \gamma_{t_k} \in V \quad \forall k = 1, \ldots, m$$

-

 $$g = (\gamma_{t_0}^{-1} \gamma_{t_1})(\gamma_{t_1}^{-1} \gamma_{t_2}) \cdots (\gamma_{t_{m-2}}^{-1} \gamma_{t_{m-1}})(\gamma_{t_{m-1}}^{-1} \gamma_{t_m})$$

- Then we can choose $X_k \in \mathfrak{g}$ s.t. $e^{X_k} = \gamma_{t_{k-1}}^{-1} \gamma_{t_k}$ $(k = 1, \ldots, m)$ then

 $$g = e^{X_1} \cdots e^{X_m}.$$
\[\psi(e^{tX}) = e^{td_\psi(X)} \]

For connected \(G \),
\[g = e^{X_1} e^{X_2} \ldots e^{X_m} \]

\[[d_\psi(X)](g) \subseteq g \Rightarrow \psi(g)(g) \subseteq g \]

\[h \trianglelefteq g \quad \Rightarrow \quad H \trianglelefteq G \]
Lemma

Let G be a lie group and $X \in \mathfrak{g}$ then there exists exactly one Lie group homomorphism $f : \mathbb{R} \to G$ such that $\dot{f}(0) = X$.
Proposition

Let $\Phi : G \to H$ be a Lie group homomorphism. Then $d\Phi : \mathfrak{g} \to \mathfrak{h}$ is a Lie algebra homomorphism and for $X \in \mathfrak{g}$

$$\Phi(\exp X) = \exp [d\Phi(X)]$$

The following diagram commutes:
Proof.

- $\psi : \mathbb{R} \to H : t \mapsto \Phi(\exp(tX))$ is a Lie group homomorphism:

 \[
 \psi(t_1 + t_2) = \Phi(e^{t_1}X e^{t_2}X) = \Phi(e^{t_1}X e^{t_2}X) = \Phi e^{t_1}X \Phi e^{t_2}X = \psi(t_1)\psi(t_2).
 \]

- Differentiate with respect to t at $t = 0$:

 \[
 \dot{\psi}(0) = \frac{d}{dt} \Phi(e^{tX}) \bigg|_{t=0} = d\Phi(e^0)Xe^0 = (d\Phi)X.
 \]
But $\beta : \mathbb{R} \to H : t \mapsto \exp(t(d\Phi)X)$ is also a Lie group homomorphism:

$$\beta(t_1 + t_2) = e^{(t_1+t_2)d\Phi X} = e^{t_1d\Phi X}e^{t_2d\Phi X} = \beta(t_1)\beta(t_2),$$

$\dot{\beta}(0) = (d\Phi)X$.

From uniqueness of the homomorphism, we have $\psi = \beta : \Phi(\exp tX) = \exp t((d\Phi)X)$
\(d\Phi \) is a Lie algebra homomorphism:

- \(d\Phi \) is a linear map
- \(d\Phi \) is a Lie algebra homomorphism:

\[
\Phi(e^{-tX}e^{-tY}e^{tX}e^{tY}) = \Phi(e^{-tX})\Phi(e^{-tY})\Phi(e^{tX})\Phi(e^{tY})
\]
\[
\Leftrightarrow \Phi(e^{t^2[X,Y]+o(t^3)}) = \Phi(e^{-tX})\Phi(e^{-tY})\Phi(e^{tX})\Phi(e^{tY})
\]
\[
\Leftrightarrow e^{d\Phi(t^2[X,Y]+o(t^3))} = e^{-t(d\Phi)X}e^{-t(d\Phi)Y}e^{t(d\Phi)X}e^{t(d\Phi)Y}
\]
\[
\Leftrightarrow e^{t^2(d\Phi[X,Y])+d\Phi o(t^3)} = e^{t^2[d\Phi X,d\Phi Y]+d\Phi o(t^3)}
\]

- Set \(t = \sqrt{t} \); differentiate with respect to \(t \) at \(t = 0 \):

\[
d\Phi[X, Y] = [d\Phi X, d\Phi Y].
\]
$\mathfrak{h} \trianglelefteq \mathfrak{g} \iff H \trianglelefteq G$

\[
\psi(e^{tX}) = e^{t d\psi(X)}
\]

For connected G, $g = e^{X_1} e^{X_2} \ldots e^{X_m}$

\[
[d\psi(X)](g) \subseteq \mathfrak{g} \\
\implies \psi(g)(g) \subseteq \mathfrak{g}
\]

\[
\mathfrak{h} \trianglelefteq \mathfrak{g} \implies H \trianglelefteq G
\]
Lemma

Let $\psi : G \to \text{GL}(g)$ be a Lie group homomorphism, then

$$[d\psi(X)](g) \subseteq g, \quad \forall X \in g \implies \psi(g)(g) \subseteq g, \quad \forall g \in G.$$

Proof

- **Let** $[d\psi(X)](Y) \in g$ **for** $Y \in g$ **then:**

$$\psi(e^{tX})(Y) = e^{(td\psi(X))}(Y) = Y + \frac{t d\psi(X)}{1!}(Y) + \frac{t^2 d^2\psi(X)}{2!}(Y) + \cdots \in g$$

- **Now** for $g \in G$,

$$g = e^{X_1}e^{X_2} \cdots e^{X_m}, \quad X_1 \cdots X_m \in g.$$

$$\psi(g)(Y) = \psi(e^{X_1}e^{X_2} \cdots e^{X_m})(Y) = \psi(e^{X_1})\psi(e^{X_2}) \cdots \psi(e^{X_m})(Y) \in g$$
$\mathfrak{h} \trianglelefteq g \implies H \trianglelefteq G$

\[
\psi(e^{tX}) = e^{td\psi(X)}
\]

\[
[d\psi(X)](g) \subseteq g \\
\implies \psi(g)(g) \subseteq g
\]

For connected G,

$g = e^{X_1} e^{X_2} \ldots e^{X_m}$
Proposition

Let \(\mathfrak{g} \) be a Lie algebra of a connected Lie group \(G \). Let \(\mathfrak{h} \subseteq \mathfrak{g} \); Then the group \(H \) generated by \(\exp(\mathfrak{h}) \) is a normal subgroup of \(G \).

Proof

- Let \(\psi : G \to \text{GL}(\mathfrak{g}), \quad \psi(g) : \mathfrak{g} \to \mathfrak{g}, \quad X \mapsto gXg^{-1} \)
- And \(d\psi(Y) : \mathfrak{g} \to \mathfrak{g}, \quad X \mapsto YX - XY = [Y, X] \)
- For any \(Y \in \mathfrak{g} \),
 \[
 d\psi(Y)h = [Y, h] \subseteq h \implies \psi(g)h \subseteq h.
 \]
- So
 \[
 g \exp(\mathfrak{h})g^{-1} = (\exp g\mathfrak{h}g^{-1}) = \exp[\psi(g)(\mathfrak{h})] \subseteq \exp \mathfrak{h}
 \]
\[e^{tX} e^{tY} e^{-tX} e^{-tY} = e^{t^2[X,Y] + O(t^3)} \]

CBH

G nilpotent

\[\downarrow \]

g nilpotent

H \subseteq G \iff h \subseteq g

h \subseteq g \iff H \subseteq G
Theorem

Let G be a connected real Lie group, then G is nilpotent if and only if its Lie algebra \mathfrak{g} is nilpotent.
Assume G is nilpotent; Then we have:

$$G = G_0 \triangleright G_1 \cdots \triangleright G_n = \{1\} \quad \text{with} \quad (G, G_k) \leq G_{k+1}.$$

From which we have the corresponding series:

$$\mathfrak{g} = \mathfrak{g}_0 \triangleright \mathfrak{g}_1 \triangleright \cdots \triangleright \mathfrak{g}_n = \{0\}, \quad \text{of ideals of } \mathfrak{g}.$$

$$(G, G_k) \leq G_{k+1} \implies [\mathfrak{g}, \mathfrak{g}_k] \leq \mathfrak{g}_{k+1}.$$

Let $X \in \mathfrak{g}, Y \in \mathfrak{g}_k$ then for t near 0

$$\left(e^{\sqrt{t}X}, e^{\sqrt{t}Y} \right) = e^{(t[X, Y] + o(\sqrt{t^3}))} \in G_{k+1}$$

$$\implies \frac{d}{dt} \gamma(\sqrt{t}) \bigg|_{t=0} = [X, Y] \in \mathfrak{g}_{k+1}$$

$$\implies [\mathfrak{g}, \mathfrak{g}_k] \leq \mathfrak{g}_{k+1}$$
Assume g is nilpotent; then we have:

$$g = g_0 \supset g_1 \supset \cdots \supset g_s = \{0\} \quad \text{with} \quad [g, g_n] \leq g_{n+1}$$

$\exp g_k$ generates a chain of normal connected subgroups G_k:

$$G \supset G_1 \supset G_2 \supset \cdots \supset G_n = \{1\}.$$

$$[g, g_k] \leq g_{k+1} \implies (G, G_k) \leq G_{k+1}$$:

$$e^X e^Y e^{-X} e^{-Y} = e^{X+Y+\frac{1}{2}[X, Y]} + \cdots e^{-X-Y+\frac{1}{2}[-X, -Y]} + \cdots$$

$$= e^{[X, Y] - \frac{1}{12} [Y, [X, [X, Y]]]} + \cdots$$

$$\in G_{k+1}$$

True in neighbourhood of 1 therefore true for whole group.
Outline

1. Introduction
2. Lie groups
3. Lie algebras
4. Supporting results
5. Main result for nilpotency
6. Conclusion
There is a definite link between the properties of a Lie group and its Lie algebra:

- Normal subgroups and ideals of Lie algebras
- Lie group homomorphisms and Lie algebra homomorphisms
- Nilpotent Lie groups and Nilpotent Lie algebras
- Heisenberg group is nilpotent