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Introduction

Main result

A connected Lie group is nilpotent if and only if its Lie algebra is nilpotent

Introduce concepts about Lie groups and Lie algebras

Establish the relationship between Lie groups and Lie algebras
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Matrix Lie groups

General linear Lie group

GL(n,R) =
{
g ∈ Rn×n | det(g) 6= 0

}
Set of all invertible linear transformations on Rn

Matrix Lie groups

G is a matrix Lie group if G is a closed subgroup of GL(n, R).

Homomorphism

A Lie group homomorphism is a smooth map ϕ : G→ G′ such that for
g1, g2 ∈ G:

ϕ(g1g2) = ϕ(g1)ϕ(g2)
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Examples

Special linear group

SL(n,R) =
{
g ∈ Rn×n| det g = 1

}
Linear operators preserving the standard volume in Rn.

Special orthogonal group

SO(n,R) =
{
g ∈ Rn×n|ggT = 1, det g = 1

}
Linear operators preserving the Euclidean structure and orientation in Rn.

Special Euclidean group

SE(n,R) =

{[
h b
0 1

]
∈ Rn+1×n+1 | h ∈ SO(n,R), b ∈ Rn

}
Orientation preserving isometries on Rn.
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Normal subgroups and the commutator bracket

Normal subgroups

A subgroup H is normal in G if

H = g−1Hg =
{
g−1hg |h ∈ H

}
for each g ∈ G

Commutator bracket

From two subgroups A and B of G we generate a new subgroup:

(A,B) =

{
n∏

i=1

aibia
−1
i b−1

i |ai ∈ A, bi ∈ B

}

Remark

If A,B E G then (A,B) E G.
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Nilpotent Lie groups

Nilpotent Lie group

A matrix Lie group G is a nilpotent matrix Lie group if there is a series of
normal subgroups of G:

G = G0 D G1 D · · ·D Gs = {1}

such that (G,Gn) ≤ Gn+1 for n = 0, . . . , s − 1.

Example

H3 =


1 x2 x1

0 1 x3

0 0 1

 | x1, x2, x3 ∈ R


G0 = H3, G1 = (H3,H3) = Z (H3), G2 = (H3,Z (H3)) = {1}
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Lie algebras

Lie Algebras

A Lie algebra is a vector space equipped with a bilinear operation [·, ·]
(the Lie bracket) satisfying

[X ,Y ] = −[Y ,X ] (skew symmetry)

[X , [Y ,Z ]] + [Y , [Z ,X ] + [Z , [X ,Y ]] = 0. (Jacobi identity)

General linear Lie algebra

gl(n,R) =
{
X ∈ Rn×n}

Linearization of GL(n,R)

When equipped with the Lie bracket,

[X ,Y ] = XY − YX ,

gl is a Lie algebra.
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Examples

Special linear Lie algebra

sl(n,R) =
{
X ∈ Rn×n | trX = 0

}
Special orthogonal Lie algebra

so(n,R) =
{
X ∈ Rn×n | X + XT = 0

}
Special Euclidean Lie algebra

se(n,R) =

{[
A b
0 0

]
∈ Rn+1×n+1 | A ∈ so(n,R), b ∈ Rn

}
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Lie algebra homomorphisms

Homomorphism

A Lie algebra homomorphism is a linear map φ : g→ g′ such that for any
X ,Y ∈ g:

φ([X ,Y ]) = [φ(X ), φ(Y )]
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Ideals and the product of ideals

Ideals

An ideal of a Lie algebra g is a subspace h of g such that

[X ,Y ] ∈ h for all X ∈ g and Y ∈ h.

Product of ideals

For two ideals h, f of g we define the product of ideals by

[h, f] = Span {[X ,Y ] | X ∈ h,Y ∈ f}

Remark

[h, f] is itself an ideal of g.
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Nilpotent Lie algebras

Nilpotent Lie algebra

A Lie algebra g is a nilpotent Lie algebra if there exists a sequence

g = g0 D g1 D · · ·D gs = {0}

where all gn are ideals of g such that [g, gn] ≤ gn+1.

Example

h3 =


0 x2 x1

0 0 x3

0 0 0

 | x1, x2, x3 ∈ R


g0 = h3, g1 = [h3, h3] = Z (h3), g2 = [h3,Z (h3)] = 0
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Outline
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etX etY e−tX e−tY

= et
2[X ,Y ]+O(t3)

H E G =⇒ hE g

hE g =⇒ H E G
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m
g nilpotent
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The matrix exponential and logarithm

Exponential of X ∈ Rn×n

exp(X ) =
∞∑
k=0

X k

k!

Logarithm of X ∈ Rn×n with ||X − 1|| < 1

log(X ) =
∞∑
k=1

(−1)k+1

k
(X − 1)k
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Commutator formula

Proposition

Let X ,Y ∈ g, then for t near 0

exp(tX ) exp(tY ) exp(−tX ) exp(−tY ) = exp(t2[X ,Y ] + o(t3))

Proof

Let

G (t) = exp(tX ) exp(tY ) exp(−tX ) exp(−tY )

=

(
1 + t(X + Y ) +

t2

2
(X 2 + 2XY + Y 2) + O(t3)

)
×(

1− t(X + Y ) +
t2

2
(X 2 + 2XY + Y 2) + O(t3)

)
= 1 + t2[X ,Y ] + O(t3)
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Commutator formula

Proof continued

Then ||G (t)− 1|| < 1 for t near 0; So

logG (t) = log(1 + t2[X ,Y ] + O(t3))

= t2[X ,Y ] + O(t3)− O(t4)

= t2[X ,Y ] + O(t3)

=⇒ G (t) = exp(t2[X ,Y ] + o(t3)).

Catherine Bartlett (RU) Nilpotent Lie Groups and Lie Algebras Mathematics Seminar 20 / 45



Outline

CBH

etX etY e−tX e−tY

= et
2[X ,Y ]+O(t3)

H E G =⇒ hE g

hE g =⇒ H E G

G nilpotent

m
g nilpotent

Catherine Bartlett (RU) Nilpotent Lie Groups and Lie Algebras Mathematics Seminar 21 / 45



Campbell-Baker-Hausdorff theorem

Statement of Campbell-Baker-Hausdorff theorem

For X ,Y ∈ g in some neighbourhood of 0,

eX eY = eX+Y+ 1
2

[X ,Y ]+ 1
12

[X ,[X ,Y ]]− 1
12

[Y ,[X ,Y ]]−···
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Normal subgroups and ideals

Proposition

If H E G, then hE g

Proof
1 h is a vector subspace of g
2 h closed under Lie bracket with g:

For g(s) ∈ G and h(t) ∈ H with g(0) = h(0) = 1 and
ġ(0) = X ∈ g, ḣ(0) = Y ∈ h.

g(s)h(t)g(s)−1 ∈ H.

Differentiate with respect to t at t = 0:

g(s)ḣ(0)g(s)−1 = g(s)Yg(s)−1 ∈ h.

Differentiate with respect to s at s = 0:

ġ(0)Yg(0)−1 − g(0)Y ġ(0) = XY − YX = [X ,Y ] ∈ h.

Catherine Bartlett (RU) Nilpotent Lie Groups and Lie Algebras Mathematics Seminar 24 / 45



Outline

CBH

etX etY e−tX e−tY

= et
2[X ,Y ]+O(t3)

H E G =⇒ hE g

hE g =⇒ H E G

G nilpotent

m
g nilpotent

Catherine Bartlett (RU) Nilpotent Lie Groups and Lie Algebras Mathematics Seminar 25 / 45



hE g =⇒ H E G

ψ(etX ) = etdψ(X )

For connected G,

g = eX1eX2 . . . eXm

[dψ(X )](g) ⊆ g

=⇒ ψ(g)(g) ⊆ g
hE g =⇒ H E G
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The exponential map

Theorem

There exists a neighbourhood U of 0 ∈ g and a neighbourhood V of 1 ∈ G
such that exp : U → V is a diffeomorphism.
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Connected matrix Lie groups

Corollary

If G is a connected matrix Lie group, then g ∈ G is of the form

g = eX1eX2 · · · eXm for some X1,X2, . . . ,Xm ∈ g.

Proof

∃ γ(t) ∈ G s.t. γ(0) = 1 and γ(1) = g

We can choose t0, . . . , tm with 0 = t0 < t1 < · · · < tm = 1 s.t.

γ−1
tk−1γtk ∈ V ∀k = 1, . . . ,m

g = (γ−1
t0
γt1)(γ−1

t1
γt2) · · · (γ−1

tm−2
γtm−1)(γ−1

tm−1
γtm)

Then we can choose Xk ∈ g s.t. eXk = γ−1
tk−1

γtk (k = 1, . . . ,m) then

g = eX1 · · · eXm .
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hE g =⇒ H E G

ψ(etX ) = etdψ(X )

For connected G,

g = eX1eX2 . . . eXm

[dψ(X )](g) ⊆ g

=⇒ ψ(g)(g) ⊆ g
hE g =⇒ H E G
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Homomorphisms

Lemma

Let G be a lie group and X ∈ g then there exists exactly one Lie group
homomorphism f : R→ G such that ḟ (0) = X .
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Lie group and Lie algebra homomorphisms

Proposition

Let Φ : G→ H be a Lie group homomorphism. Then dΦ : g→ h is a Lie
algebra homomorphism and for X ∈ g

Φ(expX ) = exp[dΦ(X )]

The following diagram commutes:

G
Φ // H

g

exp

OO

dΦ // h

exp

OO
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Lie group and Lie algebra homomorphisms

Proof.

ψ : R→ H : t 7→ Φ(exp(tX )) is a Lie group homomorphism:

ψ(t1 + t2) = Φe(t1+t2)X

= Φ(et1X et2X )

= Φet1XΦet2X

= ψ(t1)ψ(t2).

Differentiate with respect to t at t = 0:

ψ̇(0) =
d

dt
Φ(etX )

∣∣∣∣
t=0

= dΦ(e0)Xe0

= (dΦ)X .
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Lie group and Lie algebra homomorphisms

But β : R→ H : t 7→ exp(t(dΦ)X ) is also a Lie group
homomorphism:

β(t1 + t2) = e(t1+t2)dΦX

= et1dΦX et2dΦX

= β(t1)β(t2),

β̇(0) = (dΦ)X .

From uniqueness of the homomorphism, we have ψ = β :

Φ(exp tX ) = exp t((dΦ)X )
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Lie group and Lie algebra homomorphisms

dΦ is a Lie algebra homomorphism:

dΦ is a linear map

dΦ is a Lie algebra homomorphism:

Φ(e−tX e−tY etX etY ) = Φ(e−tX )Φ(e−tY )Φ(etX )Φ(etY )

⇔ Φ(et
2[X ,Y ]+o(t3)) = Φ(e−tX )Φ(e−tY )Φ(etX )Φ(etY )

⇔ edΦ(t2[X ,Y ]+o(t3)) = e−t(dΦ)X e−t(dΦ)Y et(dΦ)X et(dΦ)Y

⇔ et
2(dΦ[X ,Y ])+dΦo(t3) = et

2[dΦX ,dΦY ]+dΦo(t3)

Set t =
√
t ; differentiate with respect to t at t = 0:

dΦ[X ,Y ] = [dΦX ,dΦY ].
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hE g =⇒ H E G

ψ(etX ) =

etdψ(X )

For connected G,

g = eX1eX2 . . . eXm

[dψ(X )](g) ⊆ g

=⇒ ψ(g)(g) ⊆ g
hE g =⇒ H E G
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Connected matrix Lie groups

Lemma

Let ψ : G→ GL(g) be a Lie group homomorphism, then

[dψ(X )](g) ⊆ g, ∀X ∈ g =⇒ ψ(g)(g) ⊆ g, ∀g ∈ G.

Proof

Let [dψ(X )](Y ) ∈ g for Y ∈ g then:

ψ(etX )(Y ) = e(tdψ(X ))(Y ) (1)

= Y +
tdψ(X )

1!
(Y ) +

t2d2ψ(X )

2!
(Y ) + · · · ∈ g (2)

Now for g ∈ G,

g = eX1eX2 . . . eXm , X1 . . .Xm ∈ g.

ψ(g)(Y ) = ψ(eX1eX2 . . . eXm)(Y )

= ψ(eX1)ψ(eX2) . . . ψ(eXm)(Y ) ∈ g
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hE g =⇒ H E G

ψ(etX ) = etdψ(X )

For connected G,

g = eX1eX2 . . . eXm

[dψ(X )](g) ⊆ g

=⇒ ψ(g)(g) ⊆ g
hE g =⇒ H E G
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Generating normal subgroups from ideals

Proposition

Let g be a Lie algebra of a connected Lie group G. Let hE g; Then the
group H generated by exp(h) is a normal subgroup of G.

Proof

Let ψ : G→ GL(g), ψ(g) : g→ g,X 7→ gXg−1

And dψ(Y ) : g→ g,X 7→ YX − XY = [Y ,X ]

For any Y ∈ g,

dψ(Y )h = [Y , h] ⊆ h =⇒ ψ(g)h ⊆ h.

So
g exp(h)g−1 = (exp ghg−1)

= exp[ψ(g)(h)] ⊆ exp h
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Nilpotent Lie groups and Lie algebras

Theorem

Let G be a connected real Lie group, then G is nilpotent if and only if its
Lie algebra g is nilpotent.
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G nilpotent =⇒ g nilpotent

Assume G is nilpotent; Then we have:

G = G0 D G1 · · ·D Gn = {1} with (G,Gk) ≤ Gk+1.

From which we have the corresponding series:

g = g0 D g1 D · · ·D gn = {0}, of ideals of g.

(G,Gk) ≤ Gk+1 =⇒ [g, gk ] ≤ gk+1:

Let X ∈ g,Y ∈ gk then for t near 0

(e
√
tX , e

√
tY ) = e(t[X ,Y ]+o(

√
t3 )) ∈ Gk+1

=⇒ d

dt
γ(
√
t)

∣∣∣∣
t=0

= [X ,Y ] ∈ gk+1

=⇒ [g, gk ] ≤ gk+1
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g nilpotent =⇒ G nilpotent

Assume g is nilpotent; Then we have:

g = g0 D g1 D · · ·D gs = {0} with [g, gn] ≤ gn+1

exp gk generates a chain of normal connected subgroups Gk :

G D G1 D G2D, · · ·D Gn = {1}.

[g, gk ] ≤ gk+1 =⇒ (G,Gk) ≤ Gk+1:

eX eY e−X e−Y = eX+Y+ 1
2

[X ,Y ]+···e−X−Y+ 1
2

[−X ,−Y ]+···

= e [X ,Y ]− 1
12

[Y ,[X ,[X ,Y ]]]+···

∈ Gk+1

True in neighbourhood of 1 therefore true for whole group.
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Conclusion

There is a definite link between the properties of a Lie group and its
Lie algebra:

Normal subgroups and ideals of Lie algebras

Lie group homomorphisms and Lie algebra homomorphisms

Nilpotent Lie groups and Nilpotent Lie algebras

Heisenberg group is nilpotent
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