Feedback Classification of Invariant Control Systems on Three-Dimensional Lie Groups

R. Biggs C.C. Remsing*

Department of Mathematics (Pure & Applied) Rhodes University, 6140 Grahamstown, South Africa

9th IFAC Symposium on Nonlinear Control Systems Toulouse, France, September 4-6, 2013

Outline

- Invariant control systems and equivalence
 - Invariant control affine systems
 - Detached feedback equivalence
- Classification of systems
 - The Bianchi-Behr classification
 - The solvable case
 - The semisimple case
- Conclusion

Invariant control affine systems

Left-invariant control affine system (with ℓ inputs)

$$(\Sigma)$$
 $\dot{g} = g(A + u_1B_1 + \cdots + u_\ell B_\ell), \qquad g \in G, u \in \mathbb{R}^\ell.$

- state space : G is a connected (matrix) Lie group
- input set : $U = \mathbb{R}^{\ell}$
- parametrization map : $\Xi(\mathbf{1},\cdot)$: $\mathbb{R}^{\ell} \to \mathfrak{g}$, $u \mapsto A + u_1 B_1 + \cdots + u_{\ell} B_{\ell}$ is an injective (affine) map
- trace : $\Gamma = A + \Gamma^0 = A + \langle B_1, \dots, B_\ell \rangle$ is an affine subspace of (the Lie algebra) \mathfrak{g} .

When the state space is fixed, we simply write

$$\Sigma: A + u_1B_1 + \cdots + u_\ell B_\ell.$$

Invariant control affine systems (cont.)

A system Σ is called

- homogeneous : $A \in \Gamma^0$
- inhomogeneous : $A \notin \Gamma^0$.

Full-rank system

 Σ has full rank : the trace $\Gamma \subset \mathfrak{g}$ generates \mathfrak{g} .

Systems on 3D (matrix) Lie groups

- A single-input inhomogeneous system has full rank if and only if A, B_1 and $[A, B_1]$ are linearly independent.
- A two-input homogeneous system has full rank if and only if B_1, B_2 and $[B_1, B_2]$ are linearly independent.
- Any two-input inhomogeneous system has full rank.

Detached feedback equivalence

Definition

Two systems Σ and Σ' are called (locally) detached feedback equivalent if there exist

- neighbourhoods N and N' of (the unit elements) 1 and 1', resp.
- diffeomorphisms $\phi: N \to N'$ and $\varphi: \mathbb{R}^\ell \to \mathbb{R}^{\ell'}$

such that

$$\phi(\mathbf{1}) = \mathbf{1}'$$
 and $T_g \phi \cdot \Xi(g, u) = \Xi'(\phi(g), \varphi(u)).$
(Here $\Xi(g, u) = g \Xi(\mathbf{1}, u).$)

Note

Detached feedback transformations are an appropriate specialization of the (more general) feedback transformations.

Detached feedback equivalence (cont.)

Theorem

Two full-rank systems Σ and Σ' are detached feedback equivalent if and only if there exists a Lie algebra isomorphism $\psi:\mathfrak{g}\to\mathfrak{g}'$ such that

$$\psi \cdot \Gamma = \Gamma'$$
.

Note

The classification problem (of full-rank systems evolving on 3D Lie groups) reduces to the classification of the affine subspaces of each (3D) Lie algebra.

The Bianchi-Behr classification

Classification (of real 3D Lie algebras)

There are eleven types of algebras (in fact, nine algebras and two parametrized infinite families of algebras):

- $3\mathfrak{g}: \mathbb{R}^3 \quad (I, Abelian)$
- ullet ${\mathfrak g}_{2.1}\oplus{\mathfrak g}_1$: ${\mathfrak aff}({\mathbb R})\oplus{\mathbb R}$ (///)
- $\mathfrak{g}_{3.1}$: \mathfrak{h}_3 (II, nilpotent)
- $\mathfrak{g}_{3.2}$ (IV, solvable)
- $\mathfrak{g}_{3.3}$ (V, solvable)
- $\mathfrak{g}_{3.4}^0$: $\mathfrak{se}(1,1)$ (VI_0 , solvable); $\mathfrak{g}_{3.4}^a$, a > 0, $a \neq 1$ (VI_a)
- $\mathfrak{g}_{3.5}^0$: $\mathfrak{se}(2)$ (VII₀, solvable); $\mathfrak{g}_{3.5}^a$, a > 0, $a \neq 1$ (VII_a)
- $\mathfrak{g}_{3.6}^0$: $\mathfrak{sl}(2,\mathbb{R})$ (VIII, simple)
- $\mathfrak{g}_{3,7}^0$: $\mathfrak{so}(3)$ (IX, simple)

The solvable case: Heisenberg group

Theorem $\mathfrak{h}_3: [E_2, E_3] = E_1$

Let Σ be a full-rank system evolving on a solvable 3D Lie group (with Lie algebra \mathfrak{g}). If $\mathfrak{g}\cong\mathfrak{h}_3$, then Σ is equivalent to exactly one of the following systems :

- $\Sigma^{(1,1)}$: $E_2 + uE_3$
- $\bullet \Sigma^{(2,0)} : u_1 E_2 + u_2 E_3$

- $\bullet \ \Sigma^{(3,0)} : u_1 E_1 + u_2 E_2 + u_3 E_3.$

$$E_1 \in \Gamma^0$$

$$E_1 \notin \Gamma^0$$

The solvable case : Heisenberg group (cont.)

Proof

• The group of automorphisms $Aut(\mathfrak{h}_3)$ is given by

$$\left\{ \begin{bmatrix} yw - vz & x & u \\ 0 & y & v \\ 0 & z & w \end{bmatrix} : u, v, w, x, y, z \in \mathbb{R}, yw - vz \neq 0 \right\}.$$

• Suppose Σ is a single-input inhomogeneous system with trace $\Gamma = a^i E_i + \langle b^i E_i \rangle$. Then

$$\psi = \begin{vmatrix} a^2b^3 - a^3b^2 & a^1 & b^1 \\ 0 & a^2 & b^2 \\ 0 & a^3 & b^3 \end{vmatrix}, \qquad \psi \cdot \Gamma^{(1,1)} = \psi \cdot (E_2 + \langle E_3 \rangle) = \Gamma.$$

• Likewise, $\psi \cdot \Gamma^{(2,0)} = \psi \cdot \langle E_2, E_3 \rangle = \langle a^i E_i, b^i E_i \rangle$.

The solvable case : Heisenberg group (cont.)

Proof (cont.)

Let Σ be a two-input inhomogeneous system with trace $\Gamma = A + \Gamma^0$

• Suppose $E_1 \notin \Gamma^0$ and let $\Gamma = a^i E_i + \langle b^i E_i, c^i E_i \rangle$. Then

$$\psi = \begin{bmatrix} v_1 & v_2 & v_3 \\ 0 & 1 & 0 \\ 0 & 0 & v_1 \end{bmatrix}, \quad \begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix} \begin{bmatrix} a^1 & b^1 & c^1 \\ a^2 & b^2 & c^2 \\ a^3 & b^3 & c^3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$$

defines $\psi \in \operatorname{Aut}(\mathfrak{h}_3)$ such that $\psi \cdot \Gamma = \Gamma_1^{(2,1)} = E_1 + u_1 E_2 + u_2 E_3$.

• Suppose $E_1 \in \Gamma^0$. Then $\Gamma = a^2 E_2 + a^3 E_3 + \langle E_1, b^2 E_2 + b^3 E_3 \rangle$ and

$$\psi = \begin{bmatrix} b^2 a^3 - a^2 b^3 & 0 & 0 \\ 0 & b^2 & a^2 \\ 0 & b^3 & a^3 \end{bmatrix}, \quad \psi \cdot \Gamma_2^{(2,1)} = \psi \cdot (E_3 + \langle E_1, E_2 \rangle) = \Gamma.$$

The solvable case: Euclidean group

Theorem

$$\mathfrak{se}(2): [E_2, E_3] = E_1, [E_3, E_1] = E_2$$

Let Σ be a full-rank system evolving on a solvable 3D Lie group (with Lie algebra \mathfrak{g}). If $\mathfrak{g}\cong\mathfrak{se}$ (2), then Σ is equivalent to exactly one of the following systems :

$$\bullet \ \Sigma_1^{(1,1)} : E_2 + uE_3$$

$$E_3^*(\Gamma^0)\neq\{0\}$$

•
$$\Sigma_{2,\alpha}^{(1,1)}$$
 : $\alpha E_3 + uE_2$

$$E_3^*(\Gamma^0) = \{0\}, E_3^*(A) = \pm \alpha$$

$$\bullet \Sigma^{(2,0)} : u_1 E_2 + u_2 E_3$$

$$E_3^*(\Gamma^0) \neq \{0\}$$

$$\bullet \ \Sigma_{2,\alpha}^{(2,1)} : \alpha E_3 + u_1 E_1 + u_2 E_2$$

$$E_3^*(\Gamma^0) = \{0\}, \ E_3^*(A) = \pm \alpha$$

$$\bullet \Sigma^{(3,0)} : u_1E_1 + u_2E_2 + u_3E_3$$

The solvable case: Euclidean group (cont.)

Proof (distinct classes)

• The group of automorphisms $Aut(\mathfrak{se}(2))$ is given by

$$\left\{ \begin{bmatrix} x & y & u \\ \mp y & \pm x & v \\ 0 & 0 & \pm 1 \end{bmatrix} : x, y, u, v \in \mathbb{R}, x^2 + y^2 \neq 0 \right\}.$$

• $\langle E_1, E_2 \rangle$ is an invariant subspace for any automorphism.

Suppose
$$\psi \cdot (A + \Gamma^0) = A' + \psi \cdot \Gamma^0$$
.

- If $E_3^*(\Gamma^0) = \{0\}$, then $E_3^*(\psi \cdot \Gamma^0) = \{0\}$.
- Moreover, if $E_3^*(\Gamma^0) = \{0\}$ and $E_3^*(A) = \alpha$, then $E_3^*(A') = \pm \alpha$.
- These invariants (together with dimension and homogeneity of trace) allow us to distinguish between equivalence classes.

The semisimple case

Theorem $\mathfrak{sl}(2,\mathbb{R}): [E_2,E_3]=E_1, [E_3,E_1]=E_2, [E_1,E_2]=-E_3$

Let Σ be a full-rank system evolving on a semisimple 3D Lie group (with Lie algebra \mathfrak{g}). If $\mathfrak{g}\cong\mathfrak{sl}(2,\mathbb{R})$, then Σ is equivalent to exactly one of the following systems :

•
$$\Sigma_1^{(1,1)}$$
 : $E_3 + u(E_2 + E_3)$

•
$$\Sigma_{2,\alpha}^{(1,1)}$$
 : $\alpha E_2 + u E_3$

•
$$\Sigma_1^{(2,1)}$$
 : $E_3 + u_1 E_1 + u_2 (E_2 + E_3)$

•
$$\Sigma_{3,\alpha}^{(1,1)} : \alpha E_1 + u E_2$$

•
$$\Sigma_{4,\alpha}^{(1,1)} : \alpha E_3 + u E_2$$

$$\bullet \ \Sigma^{(3,0)} : u_1E_1 + u_2E_2 + u_3E_3.$$

The semisimple case : orthogonal group

Theorem

$$\mathfrak{so}(3): \quad [E_2, E_3] = E_1, \ [E_3, E_1] = E_2, \ [E_1, E_2] = E_3$$

Let Σ be a full-rank system evolving on a semisimple 3D Lie group (with Lie algebra \mathfrak{g}). If $\mathfrak{g}\cong\mathfrak{so}(3)$, then Σ is equivalent to exactly one of the following systems :

•
$$\Sigma_{\alpha}^{(1,1)}$$
 : $\alpha E_2 + u E_3$

$$\mathfrak{C}^{\bullet}(\Gamma) \bullet \mathfrak{C}^{\bullet}(\Gamma) = \alpha^2$$

$$\bullet \Sigma^{(2,0)} : u_1 E_2 + u_2 E_3$$

•
$$\Sigma_{\alpha}^{(2,1)}$$
 : $\alpha E_1 + u_1 E_2 + u_2 E_3$

$$\mathfrak{C}^{\bullet}(\Gamma) \bullet \mathfrak{C}^{\bullet}(\Gamma) = \alpha^2$$

$$\bullet \ \Sigma^{(3,0)} : u_1E_1 + u_2E_2 + u_3E_3.$$

The semisimple case : orthogonal group (cont.)

Proof

• The group of automorphisms $Aut(\mathfrak{so}(3))$ is given by

$$\left\{ oldsymbol{g} \in \mathbb{R}^{3 imes 3} \, : \, oldsymbol{g} oldsymbol{g}^ op = oldsymbol{1}, \; \det oldsymbol{g} = 1
ight\}.$$

The dot product • on so (3) is given by

$$a^{i}E_{i} \bullet b^{i}E_{i} = a^{1}b^{1} + a^{2}b^{2} + a^{3}b^{3}.$$

The level sets

$$\mathcal{S}_{\alpha}=\{A\in\mathfrak{so}\,(3)\,:\,A\bullet A=\alpha\}$$
 are spheres of radius $\sqrt{\alpha}.$

• Aut $(\mathfrak{so}(3))$ acts transitively on each sphere \mathcal{S}_{α} .

The semisimple case : orthogonal group (cont.)

Proof (cont.)

• The critical point $\mathfrak{C}^{\bullet}(\Gamma)$ at which $A + \langle B \rangle$ or $A + \langle B_1, B_2 \rangle$ is tangent to a sphere \mathcal{S}_{α} is (unique and is) given by

$$\mathfrak{C}^{\bullet}(\Gamma) = A - \frac{A \bullet B}{B \bullet B} B$$

$$\mathfrak{C}^{\bullet}(\Gamma) = A - \begin{bmatrix} B_1 & B_2 \end{bmatrix} \begin{bmatrix} B_1 \bullet B_1 & B_1 \bullet B_2 \\ B_1 \bullet B_2 & B_2 \bullet B_2 \end{bmatrix}^{-1} \begin{bmatrix} A \bullet B_1 \\ A \bullet B_2 \end{bmatrix}.$$

- Moreover, $\psi \cdot \mathfrak{C}^{\bullet}(\Gamma) = \mathfrak{C}^{\bullet}(\psi \cdot \Gamma)$ for any automorphism ψ .
- Equivalence classes (for inhomogeneous systems) are characterized by what sphere S_{α} their trace is tangent to.
- ullet Indeed, by transitivity all (2D) tangent spaces to \mathcal{S}_{lpha} are equivalent.

Conclusion

- Complete classification of invariant systems on 3D Lie groups has been obtained.
- There is another natural equivalence relation: state space equivalence (much stronger; of limited use).
- Detached feedback equivalence has a natural extension to invariant optimal control problems: cost equivalence.