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Problem statement

@ Quadratic Hamilton-Poisson systems

@ 3D (minus) Lie-Poisson spaces

@ Classification under linear equivalence

@ Stability (Casimir energy method)

@ Integration
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Lie-Poisson formalism

(Minus) Lie-Poisson space g*

{F,G}(p) = —p([dF(p),dG(p)]), peEg

e Hamiltonian vector field: H[F] = {F, H}
e Casimir function: {C,F} =0

@ Restrict to case: global Casimir exists

Quadratic Hamilton-Poisson system (g*, Ho)

RS,

@ Hamiltonian Hg(p) = Q(p) is a quadratic form
@ Restrict to case: quadratic form is positive semidefinite
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Lie-Poisson formalism (example)

Orthogonal Lie algebra so (3)

0 —z y [E2, Es] = E1
z 0 —x| =xE+yE+ zE;3 [E3, E1] = E>
-y x 0 [E1, E2] = E3

v

Lie-Poisson space s0(3)*

o Coordinates: p = p1Ef + pE; + p3E5
@ Equations of motion for Hamiltonian H
0 OH

p1 —p3 P2 | |55
Hip)= |p| = | ps 0 —p1 %
p3 -p2 p1 O %,’;’,

e Casimir (constant of motion): C(p) = p? + p3 + p3

v
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Bianchi-Behr classification

Classification (1/2) [Mubarakzyanov 1963, Krasiriski et al 2003, Patera et al 1976]

Any three-dimensional (minus) Lie-Poisson space admitting a global

Casimir function is isomorphic to one of the following
o R® (I, Abelian) all
e (h3) (I, nilpotent) C(p) =p1
o (aff(R)® R):  (/ll, completely solvable) C(p)=p3
e se(1,1)*  (Vl, completely solvable) C(p) = p? — p3
o s5¢(2)*  (Vlp, solvable) C(p) = p? + p3
e s0(2,1)* (VI simple) C(p) = p? + p3 — p3
e s0(3)"  (IX, simple) C(p)=p3 +p3+p3

v
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Coadjoint orbits (spaces admitting global Casimirs)
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© Classification
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Linear equivalence

(g%,Hg) and (h*,Hg) are linearly equivalent if

3 linear isomorphism 1 : g* — b*
such that w*Flg = /’772

e Equivalence up to linear coordinate change (change of base)

@ One-to-one correspondence between integral curves

Classification approach

Step 1. Classification by Lie-Poisson space

Step 2. General classification
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Classification by Lie-Poisson space

(aff (R) ® R)*
pi p? p?

P>
pi + P
(p1+ p3)?
p3 + (p1 + p3)’

v

p3
Pt + P3
(p1 + p2)?
(p1+p2)* +p5

p3
pi + p3
(P2 + p3)?
p3 + (p1 + p3)

vy

P3
P+ p3
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Proof sketch 1/4

The following systems on g* are equivalent to Hg:

(€1) Hg o, where ¢ : g* — g* is a linear Poisson automorphism
(€2) H,g, where r #0
(€3) Hg + C, where C is a Casimir function

e Casimir: C(p) = p?
yw—zv 0 0
@ Linear Poisson automorphisms: X y z
u v o w
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Proof sketch 2/4

al b1 bg
® Ho(p)=p' Qp, Q= |bi a b3
by b3 a3
1 0 O
@ Suppose az > 0. Theny = | O 1 0| €Aut((hz)"),
by by 1
as as
b3 bob
1= o ? 0 ay by 0
VTQY=|p _kbs , _ B ol =|b & 0
as a3
0 0 as 0 0 as
o If a, =0, then Hg ~ H(p) = p3.
@ Suppose a, > 0. Then ¢’ € Aut((h3)%), such that
W' Qipy’ = diag (af,1,1). Thus Hg ~ H(p) = p3 + p3.

v
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Proof sketch 3/4

o Suppose a3z = 0. Likewise, Hg ~ H(p) = p3.
@ Remains to be shown: Hi(p) = p3 and H, = p3 + p3 distinct.
@ Suppose J 1 such that ) - Hy = Hs o 1. Then

—212p1p3 0
—2¢pip3| = | =2 (Yupr + Y12p2 + P13p3) (Y31p1 + Y32p2 + P33ps) | -
—232p1p3 2 (Yrapr + Y12p2 + Y13p3) (Y21 p1 + Y22p2 + Y23p3)

Contradiction.

Case: (s0(3)")
Casimir: C(p) = p? + p3 + p3 Automorphisms: SO (3)

@ Orthogonal matrices diagonalize symmetric matrices

o Consequently H~p? or H~p? +ap3, 0<a<1

o 1 =diag(—v2v1 - a,2y/a(l — a), —v2\/a)

brings p? + a p? into p? + %p%

v
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Proof sketch 4/4

Case: s0(2,1)*

Casimir: C(p) = p? + p3 — p3 Automorphisms: SO (2,1)

@ Direct application of automorphisms (€1) not fruitful.
al 0 b2
e Using rotation: Q' = p3(8)" @p3(0) = |0 ax bs|.
bg b3 a3
@ Assume aj,a» # 0. Then Q + xC has a Cholesky decomposition
rn 0 r3
Q +xC=R"R, R=1[0 n n for some x > 0.
0 0 O

Use automorphisms to normalize R.

After normalization, we can apply similar approach to R' R.

v
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General classification

@ Consider equivalence of systems on different spaces
— direct computation with MATHEMATICA

Types of systems

@ linear: integral curves contained in lines
(sufficient: has two linear constants of motion)

@ planar: integral curves contained in planes, not linear
(sufficient: has one linear constant of motion)

@ otherwise: non-planar
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Classification by Lie-Poisson space

(aff (R) ® R)*
pi p? p?

P>
pi + P
(p1+ p3)?
p3 + (p1 + p3)’

v

p3
Pt + P3
(p1 + p2)?
(p1+p2)* +p5

p3
pi + p3
(P2 + p3)?
p3 + (p1 + p3)

vy

P3
P+ p3
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Linear systems

(aff (R) & R)* se(1,1)* 50(2,1)*
5 pi
P
(p1+ p3)° (p1 + p2)?

p3 \ p? |
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Linear systems (3 classes)

AT
pi pi

P

(p1+ P3)2 (p1+ ,02)2
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Linear systems
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Planar systems

(off (R) & R)"
P

p? p?

pi + p3
(Pz + P3)2

p3 + (p1 + p3)?

p?
p3 + p3 p?

Rory Biggs (Rhodes) Quadratic Hamilton-Poisson Systems October 2, 2013 21 / 56




Planar systems (5 classes)

(off (R) & R)"
pi

p? p?

pi + p3
(p2 + p3)?

p3 + (p1 + p3)?

p?
p3 + p3 p3
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Planar systems

(aff (R) ® R)~ 1) s50(2,1)*
pi
3: p% Pg
1: pf+p3
5: (p2+ p3)’
2: 05+ (pr+ p3) | J
pi
p5 + P 4:p3
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Non-planar systems

(off (R) & R)"

p? + p3 p? + p3

(p1+ p2)* + p3 p3 + (p1 + p3)?

\ pi+ip3 \
P + P3
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Non-planar systems (2 classes)

(aff (R) & R)* se(1,1)*

Pt + p3 Pt + p3
(p1+ p2)* + p3 p3 + (p1 + p3)?
pi + 3P
P + P
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Non-planar systems Np(1), Np(2)

(0 (R) © R)*

P+ p3 pi + P
| ‘13(P1+P2)2+P§‘ p§+(p1+p3)2 |
(b3)* s50(3)*
| pi+3p |
2: p5+p3
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Interesting features

@ Systems on (h3)* or so(3)*

— equivalent to ones on se (2)*

@ Systems on (aff(R) ® R)* or (h3)*

— planar or linear

@ Systems on (h3)*, se(1,1)*, se(2)* and so(3)*
— may be realized on multiple spaces
(for s0(2,1)* exception is P (5))

v
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Outline

© Stability & Integration
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Types of stability

Stability of equilibrium point z,

@ (Lyapunov) stable
V nbd N 3 nbd N sit. F(N)C N

@ spectrally stable .
Re (Ai) < 0 for eigenvalues of DH(z.)

e weakly asymptotically stable [Ortega et al. 2005]
stable & 3 nhd N s.it. .Z:(N) C .#s(N) whenever t > s

weak asymptotic stab = (Lyapunov) stab = spectral stab J

Methods (Positive results)

@ Energy Casimir:
d(H+ C)(ze) =0 and d?(H+ C)(ze) > 0

o Extended Energy Casimir:
d()\oH + A C+ /\QF)(ZE) =0 and dz()\oH + A C+ )\2F)(Ze) >0

October 2, 2013 29 / 56
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Linear systems

B
n
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L(1) L(2) L(3)

Figure: Equilibria (and vector fields) for linear systems
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Planar systems

Figure: Equilibria of planar systems
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Non-planar systems

=

Figure: Equilibria states of non-planar systems
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Example: P(2)

Lie-Poisson space : (aff (R) & R)*
Casimir : C(p) = p3
Hamiltonian : H(p) = p3 + (p1 + p3)?
p1 = —2p1p>
o Equations of motion H: p2 = 2p1(p1 + p3)
p3 =0

o Coadjoint orbits:

v
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Example: P(2) — Qualitative cases

2 E

2
—vho < 0 < vVho

C0<—\/h70<0

Figure: Planar system P(2)
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Example: P(2) — Stability

e = (0,m,u) #0, n <0

Linearization DH has eigenvalues
{0,0,—2n}. Spectrally unstable.

]”1 = (0 n, [l)‘ n>0,u#0 (Case p =0 similar.)
o Hy=F, F=p
o H[F](p) = —4p2p, <0 for p in some nhd of (0,1, )
o dHy(e}") =0 and d?H,(e]") = diag(2,0,0)
o dH(el")=[2u 2n 2u] and d C?(e7*)=1[0 0 4]
o d? Hy(e]") is PD on W = kerd H(e]") N kerd C?(e]")
o Weakly asymptotically stable

v
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Example: P(2) — Stability (cont.)

(Case =0 similar.)

2 0 2
0 20
2 0 2

Hyx = H, dH(e3) =0, d*Hx (&) =

o dC2(ef)=1[0 0 —24]
o d?Hy(eh) is PD on W = kerd C?(ey) — stable

" = (0,0, 1), u#0

e p(t) = (ﬁ“rtz,]:—fuz%,u) is integral curve
o Vnhd N of & 3 ty <0s.t. p(t) € N

o [p(0) — er™|| = 2|l —

@ Unstable
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Example: P(2) — Integration

Proposition

Suppose p(-) is a integral curve of H.

(a) If ¢ > ho > 0, then there exists to € R such
that p(t) = p(t + to), where

pi(t) = g — v/ho cos(26 t)
~ o 0vhosin(23t)
pa(t) = co — v/ho cos(20 t)
p3(t) = co

Here § = \/c2 — ho.
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Example: P(2) — Integration (cont.)

Proposition (cont.)

(b) If ¢ = hg > 0, then there exists ty € R such
that p(t) = p(t + to), where

_ 29
t)=—— 2
Aut) 14 4¢3 t2
_ 4c§ t
t)=—10_
Pe(t) 1+4c3t2
p3(t) = co
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Example: P(2) — Integration (cont.)

Proposition (cont.)

(c) If 2 < ho, then there exists ty € R and
o € {—1,1} such that p(t) = p(t + to), where

o sgn(cp) 62

pi(t) = o|co| — v/ho cosh(20 t)
pa(t) = e

olco] — v/ho cosh(26 t)
p3(t) = o

Here 6 = \/hy — 3.
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Example: Np(2)

Lie-Poisson space : se(2)%
Casimir . C(p) = p2 + p3
Hamiltonian . H(p) = p? + p3
. p1 = 2p2p3
@ Equations of motion H: P2 = —2p1p3
p3 = 2p1p2

o Coadjoint orbits:

v
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Example: Np(2) — Qualitative cases

Figure: Planar system Np(2)
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Example: Np(2) — Stability

The equilibrium states are

el = (1,0,0), peR
e5 =(0,1,0), v #0

e =(0,0,v), v #0 _—

Proposition

The equilibrium states have the following behaviour:
@ The states €, u € R are stable
@ The states €4, v # 0 are (spectrally) unstable
© The states e, v # 0 are stable

Rory Biggs (Rhodes) Quadratic Hamilton-Poisson Systems October 2, 2013



Example: Np(2) — Integration

Proposition

Suppose p(-) is a integral curve of H.

(a) If co > ho > 0, then there exists ty € R and
o € {—1,1} such that p(t) = p(t + to), where

ﬁl(t) = U\/C_O dn(2\/C_0t’ \//C'I(()))
pa(t) = Vho sn(2y/ao t, \//ng)
p3(t) = —ov/ hy cn(2\/co t, \/Zig)

Rory Biggs (Rhodes) Quadratic Hamilton-Poisson Systems October 2, 2013 43 / 56



Example: Np(2) — Integration (cont.)

Proposition (cont.)

(b) If co = hg > 0, then there exists ty € R and
01,02 € {—1,1} such that p(t) = p(t + to),

where
B1(t) = o102+/G0 sech(2,/Go t)
p2(t) = 011/ tanh(2/co t)
B3(t) = —02r/Go sech(2y/co t)
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Example: Np(2) — Integration (cont.)

Proposition (cont.)

(c) If hg > co > 0, then there exists ty € R and
o € {—1,1} such that p(t) = p(t + ty), where

pi(t) = o/ cn(2\/h_0 t Z_g)
p2(t) = v/ sn(2v/ho t, \/EIS)
p3(t) = —ov/ho dn(2\/ho t, \/;Ig)
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Outline

@ Invariants
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Equilibria and invariants

E-equivalence

Systems (g*, H) and ((¢g')*,H’) are E-equivalent if there

exists a linear isomorphism ¢ : g* — (g')*
such that ¢ - & =&~ and ¢ - &, =&

e Non-planar systems equivalent < E-equivalent

@ Planar systems equivalent < E-equivalent

o Linear systems equivalent <= &-equivalent

Equilibrium index

Set of equilibria is union of i lines and j planes.

Pair (i,/): equilibrium index
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Space Class Equi(ll@briulm I)ndex Normal Form(s)
linear ©.1) L(2)
(0,2) L(3)
se(1,1)X planar (1,1) P(3)
non-planar (2,0) Np(1)
(3,0) Np(2)
linear (0,2) L(3)
se(2)” planar (1,1) P(4)
non-planar (3,0) Np(2)

. LD PE)._P(4)

s0(2,1)% ©.1) P(5)
non-planar (2,0) Np(1)
(3,0) Np(2)
50 (3)" planar (1,1) P(4)
non-planar (3,0) Np(2)
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Outline

© Extended class
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Bianchi-Behr classification

Classification (2/2) [Mubarakzyanov 1963, Krasiriski et al 2003, Patera et al 1976]

Any three-dimensional (minus) Lie-Poisson space not admitting a global
Casimir function is isomorphic to one of the following

e (g32)" (IV, completely solvable) C(p) = prexp (%)
e (g33)" (V, completely solvable) C(p) = %
1,41
° (g54)Y (Vl,, completely solvable) C(p) = L”{kl
a>0 (F3mFim) Tt
a#l
° (ggg)"‘_ (Vll,, exponential) C(p) = (p? + p3) (ﬁ%ﬁﬁﬁ)
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Coadjoint orbits (spaces admitting only local Casimirs)
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Example: Np(8b)

Lie-Poisson space : (935)

Casimir ; C(p) = (p3 + P3) (ﬁ)m
Hamiltonian : H(p) = Bp? + p3 + p3
Restriction : 0< B <Ky =1+2a%—-2ava2+1

p1 = 2(a p1 + p2)p3
Equations of motion H: p2 = —2(p1 —ap2)ps

ps = —2(aB pi + (B — 1)p1p2 + a p3)
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Example: Np(8b) — Qualitative cases

Figure: Non-planar system Np(8b)
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Example: Np(8b) — Stability

The equilibrium states are

e =(0,0,v), veR
egz(y,l_ﬁJr\/1—2[3_40‘26”32%0), b £0 )\(

2
1—8—/1-28—4025+ 3 _—
es = (1, v e 1,0), peR
Proposition

The equilibrium states have the following behaviour
@ The states €}, v < 0 are (weakly asymptotically) stable
@ The states e, v > 0 are (spectrally) unstable
© The states €5, v # 0 are (spectrally) unstable
Q The states €5, p € R are stable
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@ Conclusion
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Conclusion

Classification of PSD quadratic systems in 3D

Integration

Behaviour of equilibria

Invariants & taxonomy

Relax restriction: PSD

Affine case: Ha o = p(A) + Q(p)
4D case

Optimal control / sub-Riemannian geometry J
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