Quadratic Hamilton-Poisson Systems

Rory Biggs

Department of Mathematics (Pure and Applied) Rhodes University, Grahamstown 6140, South Africa

October 2, 2013

Context

- Quadratic Hamilton-Poisson systems
- 3D (minus) Lie-Poisson spaces

Problem

- Classification under linear equivalence
- Stability (Casimir energy method)
- Integration

Outline

1 Introduction

2 Classification

Stability & Integration

Invariants

5 Extended class

Outline

1 Introduction

2 Classification

3 Stability & Integration

4) Invariants

5 Extended class

6 Conclusion

(Minus) Lie-Poisson space \mathfrak{g}_{-}^{*}

$$\{F,G\}(p) = -p([dF(p), dG(p)]), \qquad p \in \mathfrak{g}^*$$

- Hamiltonian vector field: $\vec{H}[F] = \{F, H\}$
- Casimir function: $\{C, F\} = 0$
- Restrict to case: global Casimir exists

Quadratic Hamilton-Poisson system $(\mathfrak{g}_{-}^{*}, H_{\mathcal{Q}})$

- Hamiltonian $H_{\mathcal{Q}}(p) = \mathcal{Q}(p)$ is a quadratic form
- Restrict to case: quadratic form is positive semidefinite

Lie-Poisson formalism (example)

Orthogonal Lie algebra $\mathfrak{so}(3)$

$$\begin{bmatrix} 0 & -z & y \\ z & 0 & -x \\ -y & x & 0 \end{bmatrix} = xE_1 + yE_2 + zE_3$$

$$[E_2, E_3] = E_1$$

 $[E_3, E_1] = E_2$
 $[E_1, E_2] = E_3$

Lie-Poisson space $\mathfrak{so}(3)^*_-$

• Coordinates:
$$p = p_1 E_1^* + p_2 E_2^* + p_3 E_3^*$$

• Equations of motion for Hamiltonian H

$$\vec{H}(p) = \begin{bmatrix} \dot{p}_1 \\ \dot{p}_2 \\ \dot{p}_3 \end{bmatrix} = \begin{bmatrix} 0 & -p_3 & p_2 \\ p_3 & 0 & -p_1 \\ -p_2 & p_1 & 0 \end{bmatrix} \begin{bmatrix} \frac{\partial H}{\partial p_1} \\ \frac{\partial H}{\partial p_2} \\ \frac{\partial H}{\partial p_3} \end{bmatrix}$$

• Casimir (constant of motion): $C(p) = p_1^2 + p_2^2 + p_3^2$

Classification (1/2) [Mubarakzyanov 1963, Krasiński et al 2003, Patera et al 1976]

Any three-dimensional (minus) Lie-Poisson space admitting a global Casimir function is isomorphic to one of the following

•
$$\mathbb{R}^3$$
 (I, Abelian)all• $(\mathfrak{h}_3)^*_-$ (II, nilpotent) $C(p) = p_1$ • $(\mathfrak{aff}(\mathbb{R}) \oplus \mathbb{R})^*_-$ (III, completely solvable) $C(p) = p_3$ • $\mathfrak{se}(1,1)^*_-$ (VI0, completely solvable) $C(p) = p_1^2 - p_2^2$ • $\mathfrak{se}(2)^*_-$ (VII0, solvable) $C(p) = p_1^2 + p_2^2$ • $\mathfrak{so}(2,1)^*_-$ (VIII, simple) $C(p) = p_1^2 + p_2^2 - p_3^2$ • $\mathfrak{so}(3)^*_-$ (IX, simple) $C(p) = p_1^2 + p_2^2 + p_3^2$

Coadjoint orbits (spaces admitting global Casimirs)

Introduction

2 Classification

3 Stability & Integration

4) Invariants

5 Extended class

6 Conclusion

Linear equivalence

Definition

 $(\mathfrak{g}_{-}^{*}, \mathcal{H}_{\mathcal{Q}})$ and $(\mathfrak{h}_{-}^{*}, \mathcal{H}_{\mathcal{R}})$ are linearly equivalent if \exists linear isomorphism $\psi : \mathfrak{g}^{*} \to \mathfrak{h}^{*}$ such that $\psi_{*} \vec{\mathcal{H}}_{\mathcal{Q}} = \vec{\mathcal{H}}_{\mathcal{R}}$

- Equivalence up to linear coordinate change (change of base)
- One-to-one correspondence between integral curves

Classification approach

- Step 1. Classification by Lie-Poisson space
- Step 2. General classification

Classification by Lie-Poisson space

$$(\mathfrak{aff}(\mathbb{R}) \oplus \mathbb{R})_{-}^{*} \qquad \mathfrak{se}(1,1)^{*}$$

$$p_{1}^{2} \qquad p_{2}^{2} \qquad p_{3}^{2} \qquad p_{1}^{2} + p_{2}^{2} \qquad p_{1}^{2} + p_{3}^{2} \qquad p_{1}^{2} + p_{3}^{2} \qquad (p_{1} + p_{3})^{2} \qquad (p_{1} + p_{2})^{2} + (p_{1} + p_{3})^{2} \qquad \mathfrak{se}(2)_{-}^{*} \qquad \mathfrak{se}(2)_{-}^{*}$$

$$\mathfrak{sc} (1, 1)_{-}^{\ast}$$

$$p_{1}^{2}$$

$$p_{3}^{2}$$

$$p_{1}^{2} + p_{3}^{2}$$

$$(p_{1} + p_{2})^{2}$$

$$(p_{1} + p_{2})^{2} + p_{3}^{2}$$

$$\begin{array}{c} \mathfrak{so} (2,1)^{*}_{-} \\ p_{1}^{2} \\ p_{3}^{2} \\ p_{1}^{2} + p_{3}^{2} \\ (p_{2} + p_{3})^{2} \\ p_{2}^{2} + (p_{1} + p_{3})^{2} \end{array}$$

$$\begin{array}{c}\mathfrak{so}(3)_{-}^{*}\\p_{1}^{2}\\p_{1}^{2}+\frac{1}{2}p_{2}^{2}\end{array}$$

Proposition

The following systems on \mathfrak{g}_{-}^{*} are equivalent to $H_{\mathcal{Q}}$:

(
$$\mathfrak{E}1$$
) $H_{\mathcal{Q}} \circ \psi$, where $\psi : \mathfrak{g}_{-}^{*} \to \mathfrak{g}_{-}^{*}$ is a linear Poisson automorphism
($\mathfrak{E}2$) $H_{r\mathcal{Q}}$, where $r \neq 0$
($\mathfrak{E}3$) $H_{\mathcal{Q}} + C$, where C is a Casimir function

Case: $(\mathfrak{h}_3)^*_-$

$$\begin{bmatrix} yw - zv & 0 & 0 \\ x & y & z \\ u & v & w \end{bmatrix}$$

Proof sketch 2/4

•
$$H_Q(p) = p^\top Q p$$
, $Q = \begin{bmatrix} a_1 & b_1 & b_2 \\ b_1 & a_2 & b_3 \\ b_2 & b_3 & a_3 \end{bmatrix}$.
• Suppose $a_3 > 0$. Then $\psi = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -\frac{b_2}{a_3} & -\frac{b_3}{a_3} & 1 \end{bmatrix} \in \operatorname{Aut}((\mathfrak{h}_3)^*_-),$

$$\psi^{\top} Q \psi = \begin{bmatrix} a_1 - \frac{b_2^2}{a_3} & b_1 - \frac{b_2 b_3}{a_3} & 0\\ b_1 - \frac{b_2 b_3}{a_3} & a_2 - \frac{b_3^2}{a_3} & 0\\ 0 & 0 & a_3 \end{bmatrix} = \begin{bmatrix} a_1' & b_1' & 0\\ b_1' & a_2' & 0\\ 0 & 0 & a_3 \end{bmatrix}$$

• If $a_2' = 0$, then $H_Q \sim H(p) = p_3^2$.

• Suppose $a'_2 > 0$. Then $\exists \psi' \in \operatorname{Aut}((\mathfrak{h}_3)^*_-)$, such that $\psi'^{\top} \psi^{\top} Q \psi \psi' = \operatorname{diag}(a''_1, 1, 1)$. Thus $H_{\mathcal{Q}} \sim H(p) = p_2^2 + p_3^2$.

Proof sketch 3/4

- Suppose $a_3 = 0$. Likewise, $H_Q \sim H(p) = p_3^2$.
- Remains to be shown: $H_1(p) = p_3^2$ and $H_2 = p_2^2 + p_3^2$ distinct.
- Suppose $\exists \ \psi$ such that $\psi \cdot \vec{H_1} = \vec{H_2} \circ \psi$. Then

$$\begin{bmatrix} -2\psi_{12}p_1p_3\\ -2\psi_{22}p_1p_3\\ -2\psi_{32}p_1p_3 \end{bmatrix} = \begin{bmatrix} 0\\ -2(\psi_{11}p_1 + \psi_{12}p_2 + \psi_{13}p_3)(\psi_{31}p_1 + \psi_{32}p_2 + \psi_{33}p_3)\\ 2(\psi_{11}p_1 + \psi_{12}p_2 + \psi_{13}p_3)(\psi_{21}p_1 + \psi_{22}p_2 + \psi_{23}p_3) \end{bmatrix}$$

Contradiction.

Case: $(\mathfrak{so}(3)_{-}^{*})$

Casimir:
$$C(p) = p_1^2 + p_2^2 + p_3^2$$
 Automorphisms: SO (3)

- Orthogonal matrices diagonalize symmetric matrices
- Consequently $H\sim p_1^2$ or $H\sim p_1^2+lpha p_2^2,\; 0<lpha<1$

•
$$\psi = \text{diag}(-\sqrt{2}\sqrt{1-\alpha}, 2\sqrt{\alpha(1-\alpha)}, -\sqrt{2}\sqrt{\alpha})$$

brings $p_1^2 + \alpha p_2^2$ into $p_1^2 + \frac{1}{2}p_2^2$

Proof sketch 4/4

Case: $\mathfrak{so}(2,1)_{-}^{*}$

Casimir:
$$C(p) = p_1^2 + p_2^2 - p_3^2$$
 Automorphisms: SO (2, 1)

• Direct application of automorphisms ($\mathfrak{E}1$) not fruitful.

• Using rotation:
$$Q' = \rho_3(\theta)^\top Q \rho_3(\theta) = \begin{bmatrix} a_1 & 0 & b_2 \\ 0 & a_2 & b_3 \\ b_2 & b_3 & a_3 \end{bmatrix}$$
.

• Assume $a_1, a_2 \neq 0$. Then Q' + xC has a Cholesky decomposition

$$Q' + xC = R^{\top}R,$$
 $R = \begin{bmatrix} r_1 & 0 & r_3 \\ 0 & r_2 & r_4 \\ 0 & 0 & 0 \end{bmatrix}$ for some $x \ge 0.$

- Use automorphisms to normalize R.
- After normalization, we can apply similar approach to $R^{\top} R$.

• Consider equivalence of systems on different spaces — direct computation with MATHEMATICA

Types of systems

 linear: integral curves contained in lines (sufficient: has two linear constants of motion)

 planar: integral curves contained in planes, not linear (sufficient: has one linear constant of motion)

• otherwise: non-planar

Classification by Lie-Poisson space

$$(\mathfrak{aff}(\mathbb{R}) \oplus \mathbb{R})_{-}^{*} \qquad \mathfrak{se}(1,1)_{-}^{*} \\ p_{1}^{2} \\ p_{2}^{2} \\ p_{1}^{2} + p_{2}^{2} \\ (p_{1} + p_{3})^{2} \\ p_{2}^{2} + (p_{1} + p_{3})^{2} \\ (\mathfrak{h}_{3})_{-}^{*} \\ \mathfrak{se}(2)_{-}^{*} \\ p_{2}^{2} \\ p_{2}^{2} + p_{3}^{2} \\ p_{2}^{2} + p_{3}^{2} \\ p_{2}^{2} + p_{3}^{2} \\ \mathfrak{se}(2)_{-}^{*} \\ p_{2}^{2} \\ p_{2}^{2} \\ p_{2}^{2} + p_{3}^{2} \\ p_{3}^{2} + p_{3$$

$$\begin{array}{c} \mathfrak{so} \ (2,1)^{*}_{-} \\ p_{1}^{2} \\ p_{3}^{2} \\ p_{1}^{2} + p_{3}^{2} \\ (p_{2} + p_{3})^{2} \\ p_{2}^{2} + (p_{1} + p_{3})^{2} \end{array}$$

$$\begin{array}{c} \mathfrak{so} (3)_{-}^{*} \\ p_{1}^{2} \\ p_{1}^{2} + \frac{1}{2}p_{2}^{2} \end{array}$$

 $p_2^2 p_3^2$

 $p_1^2 \\ p_3^2$

 $+ p_{3}^{2}$

 $\mathfrak{se}(1,1)^*_$ p_{1}^{2} p_{3}^{2} $p_1^2 + p_3^2$ $(p_1 + p_2)^2$ $(p_1 + p_2)^2 + p_3^2$ $\mathfrak{se}(2)^*_{-}$ p_{2}^{2} p_{3}^{2} $p_2^2 + p_3^2$

$$\mathfrak{so} (2, 1)_{-}^{*}$$

$$p_{1}^{2}$$

$$p_{3}^{2}$$

$$p_{1}^{2} + p_{3}^{2}$$

$$(p_{2} + p_{3})^{2}$$

$$p_{2}^{2} + (p_{1} + p_{3})^{2}$$

$$\mathfrak{so}(3)_{-}^{*}$$

 p_{1}^{2}
 $p_{1}^{2} + \frac{1}{2}p_{2}^{2}$

Linear systems (3 classes)

 $\mathfrak{se}(1,1)^*_$ p_{1}^{2} p_3^2 $p_1^2 + p_3^2$ $(p_1 + p_2)^2$ $(p_1 + p_2)^2 + p_3^2$ $\mathfrak{se}(2)^*_{-}$ p_{2}^{2} p_{3}^{2} $p_2^2 + p_3^2$

$$\mathfrak{so} (2, 1)_{-}^{*}$$

$$p_{1}^{2}$$

$$p_{3}^{2}$$

$$p_{1}^{2} + p_{3}^{2}$$

$$(p_{2} + p_{3})^{2}$$

$$p_{2}^{2} + (p_{1} + p_{3})^{2}$$

Rory Biggs (Rhodes)

Linear systems

L(1), L(2), L(3)

 $\mathfrak{se}(1,1)^*_{-}$ p_{1}^{2} p_{3}^{2} $p_1^2 + p_3^2$ 2 : $(p_1 + p_2)^2$ $(p_1 + p_2)^2 + p_3^2$ $\mathfrak{se}(2)^*_-$ 3: **p**₂² p_{3}^{2} $p_2^2 + p_3^2$

$$\mathfrak{so} (2, 1)_{-}^{*}$$

$$p_{1}^{2}$$

$$p_{3}^{2}$$

$$p_{1}^{2} + p_{3}^{2}$$

$$(p_{2} + p_{3})^{2}$$

$$p_{2}^{2} + (p_{1} + p_{3})^{2}$$

$$\mathfrak{so}(3)_{-}^{*}$$

 p_{1}^{2}
 $p_{1}^{2} + \frac{1}{2}p_{2}^{2}$

Rory Biggs (Rhodes)

Quadratic Hamilton-Poisson Systems

October 2, 2013 20 / 56

 $\mathfrak{se}(1,1)^*_$ p_{1}^{2} p_{3}^{2} $p_1^2 + p_3^2$ $(p_1 + p_2)^2$ $(p_1 + p_2)^2 + p_3^2$ $\mathfrak{se}(2)^*_{-}$ p_{2}^{2} p_{3}^{2} $p_2^2 + p_3^2$

$$\mathfrak{so} (2, 1)_{-}^{*}$$

$$p_{1}^{2}$$

$$p_{3}^{2}$$

$$p_{1}^{2} + p_{3}^{2}$$

$$(p_{2} + p_{3})^{2}$$

$$p_{2}^{2} + (p_{1} + p_{3})^{2}$$

$$\mathfrak{so} (3)_{-}^{*}$$

$$\mathfrak{so}(3)_{-}^{*}$$

 p_{1}^{2}
 $p_{1}^{2} + \frac{1}{2}p_{2}^{2}$

 $\mathfrak{se}(1,1)^*_$ p_{1}^{2} p_3^2 $p_1^2 + p_3^2$ $(p_1 + p_2)^2$ $(p_1 + p_2)^2 + p_3^2$ $\mathfrak{se}(2)^*_{-}$ p_{2}^{2} p_{3}^{2} $p_2^2 + p_3^2$

$$\mathfrak{so} (2, 1)_{-}^{*}$$

$$p_{1}^{2}$$

$$p_{3}^{2}$$

$$p_{1}^{2} + p_{3}^{2}$$

$$(p_{2} + p_{3})^{2}$$

$$p_{2}^{2} + (p_{1} + p_{3})^{2}$$

$$\mathfrak{so} (3)^{*}$$

$$\mathfrak{so}(3)_{-}^{*}$$

 p_{1}^{2}
 $p_{1}^{2} + \frac{1}{2}p_{2}^{2}$

Planar systems

P(1), ..., P(5)

 $\mathfrak{se}(1,1)^*_-$ 3 : **p**₃² $p_1^2 + p_3^2$ $(p_1 + p_2)^2$ $(p_1 + p_2)^2 + p_3^2$ $\mathfrak{se}(2)^*_$ p_{2}^{2}

 $\mathfrak{so}(3)_{-}^{*}$ p_{1}^{2} $p_1^2 + \frac{1}{2}p_2^2$

 $4: p_3^2$ $p_2^2 + p_3^2$

Non-planar systems

$$\begin{array}{r} \mathfrak{se}(1,1)_{-}^{*} \\ p_{1}^{2} \\ p_{3}^{2} \\ p_{1}^{2} + p_{3}^{2} \\ (p_{1} + p_{2})^{2} \\ (p_{1} + p_{2})^{2} + p_{3}^{2} \\ \end{array}$$

$$\begin{array}{r} \mathfrak{se}(2)_{-}^{*} \\ p_{2}^{2} \end{array}$$

$$\mathfrak{so} (2, 1)_{-}^{*}$$

$$p_{1}^{2}$$

$$p_{3}^{2}$$

$$p_{1}^{2} + p_{3}^{2}$$

$$(p_{2} + p_{3})^{2}$$

$$p_{2}^{2} + (p_{1} + p_{3})^{2}$$

$$\begin{array}{c} \mathfrak{so}(3)_{-}^{*} \\ p_{1}^{2} \\ p_{1}^{2} + \frac{1}{2}p_{2}^{2} \end{array}$$

 p_3^2 $p_2^2 + p_3^2$

Non-planar systems (2 classes)

 $\mathfrak{se}(1,1)^*_$ p_{3}^{2} $p_1^2 + p_3^2$ $(p_1 + p_2)^2$ $(p_1 + p_2)^2 + p_3^2$ $\mathfrak{se}(2)^*_{-}$ p_{3}^{2} $p_2^2 + p_3^2$

$$\mathfrak{so}(2,1)_{-}^{*}$$

$$p_{1}^{2}$$

$$p_{3}^{2}$$

$$p_{1}^{2} + p_{3}^{2}$$

$$(p_{2} + p_{3})^{2}$$

$$p_{2}^{2} + (p_{1} + p_{3})^{2}$$

$$\mathfrak{so}(3)_{-}^{*}$$

$$\mathfrak{so}(3)_{-}^{*}$$

 p_{1}^{2}
 $p_{1}^{2} + \frac{1}{2}p_{2}^{2}$

Rory Biggs (Rhodes)

October 2, 2013 25 / 56

Non-planar systems

Np(1), Np(2)

$$\mathfrak{so} (2, 1)_{-}^{*}$$

$$p_{1}^{2}$$

$$p_{3}^{2}$$

$$p_{1}^{2} + p_{3}^{2}$$

$$(p_{2} + p_{3})^{2}$$

$$p_{2}^{2} + (p_{1} + p_{3})^{2}$$

$$\mathfrak{so}(3)_{-}^{*}$$

$$p_{1}^{2}$$

$$p_{1}^{2} + \frac{1}{2}p_{2}^{2}$$

 p_{3}^{2}

2 : $p_2^2 + p_3^2$

Interesting features

- Systems on $(\mathfrak{h}_3)^*_-$ or $\mathfrak{so}(3)^*_-$
 - equivalent to ones on $\mathfrak{se}(2)^*_{-}$
- Systems on $(\mathfrak{aff}(\mathbb{R})\oplus\mathbb{R})^*_-$ or $(\mathfrak{h}_3)^*_-$
 - planar or linear
- Systems on $(\mathfrak{h}_3)^*_-$, $\mathfrak{se}(1,1)^*_-$, $\mathfrak{se}(2)^*_-$ and $\mathfrak{so}(3)^*_-$
 - may be realized on multiple spaces

(for $\mathfrak{so}(2,1)^*_{-}$ exception is P(5))

Introduction

2 Classification

Stability & Integration

Invariants

5 Extended class

6 Conclusion

Types of stability

Stability of equilibrium point z_e

- (Lyapunov) stable
 - \forall nbd $N \exists$ nbd N' s.t. $\mathscr{F}_t(N') \subset N$
- spectrally stable Re $(\lambda_i) \leq 0$ for eigenvalues of $D\vec{H}(z_e)$
- weakly asymptotically stable [Ortega et al. 2005] stable & ∃ nhd N s.t. 𝔅_t(N) ⊂ 𝔅_s(N) whenever t > s

weak asymptotic stab \implies (Lyapunov) stab \implies spectral stab

Methods (Positive results)

• Energy Casimir:

$$d(H+C)(z_e)=0$$
 and

• Extended Energy Casimir: $d(\lambda_0H + \lambda_1C + \lambda_2F)(z_e) = 0$ and $d^2(\lambda_0H + \lambda_1C + \lambda_2F)(z_e) > 0$

 $d^2(H+C)(z_e) > 0$

Figure: Equilibria (and vector fields) for linear systems

Figure: Equilibria states of non-planar systems

Example: P(2)

Lie-Poisson space	:	$(\mathfrak{aff}(\mathbb{R})\oplus\mathbb{R})^*$
Casimir	:	$C(p) = p_3$
Hamiltonian	:	$H(p) = p_2^2 + (p_1 + p_3)^2$

• Equations of motion \vec{H} :

$$\begin{cases} \dot{p}_1 = -2p_1p_2 \\ \dot{p}_2 = 2p_1(p_1 + p_3) \\ \dot{p}_3 = 0 \end{cases}$$

• Coadjoint orbits:

Quadratic Hamilton-Poisson Systems

Example: P(2) — Qualitative cases

Figure: Planar system P(2)

Example: P(2) — Stability

$e_1^{\eta,\mu} = (0,\eta,\mu) \neq 0, \ \eta < 0$

Linearization $D\vec{H}$ has eigenvalues $\{0, 0, -2\eta\}$. Spectrally unstable.

$\mathsf{e}_1^{\eta,\mu}=(\mathsf{0},\eta,\mu),\;\eta>\mathsf{0},\mu eq\mathsf{0}$

•
$$H_{\lambda} = F$$
, $F = p_1^2$

•
$$\vec{H}[F](p) = -4p_1^2p_2 \le 0$$
 for p in some nhd of $(0, \eta, \mu)$

- $d H_{\lambda}(e_1^{\eta,\mu}) = 0$ and $d^2 H_{\lambda}(e_1^{\eta,\mu}) = diag(2,0,0)$
- $d H(e_1^{\eta,\mu}) = \begin{bmatrix} 2\mu & 2\eta & 2\mu \end{bmatrix}$ and $d C^2(e_1^{\eta,\mu}) = \begin{bmatrix} 0 & 0 & \mu \end{bmatrix}$
- $d^2 H_{\lambda}(\mathbf{e}_1^{\eta,\mu})$ is PD on $W = \ker d H(\mathbf{e}_1^{\eta,\mu}) \cap \ker d C^2(\mathbf{e}_1^{\eta,\mu})$
- Weakly asymptotically stable

(Case $\mu = 0$ similar.)

Example: P(2) — Stability (cont.)

$$e_{2}^{\mu} = (\mu, 0, -\mu), \ \mu \neq 0 \qquad (Case \ \mu = 0 \ similar.)$$

$$H_{\lambda} = H, \qquad dH_{\lambda}(e_{2}^{\mu}) = 0, \qquad d^{2}H_{\lambda}(e_{2}^{\mu}) = \begin{bmatrix} 2 & 0 & 2 \\ 0 & 2 & 0 \\ 2 & 0 & 2 \end{bmatrix}$$

$$\bullet \ dC^{2}(e_{2}^{\mu}) = \begin{bmatrix} 0 & 0 & -2\mu \end{bmatrix}$$

$$\bullet \ d^{2}H_{\lambda}(e_{2}^{\mu}) \text{ is PD on } W = \ker dC^{2}(e_{2}^{\mu}) - \text{ stable}$$

$e_1^{0,\mu} = (0,0,\mu), \ \mu \neq 0$

•
$$p(t) = \left(\frac{-2\mu}{1+4\mu^2t^2}, \frac{4\mu^2t}{1+4\mu^2t^2}, \mu\right)$$
 is integral curve

•
$$\forall$$
 nhd N of $e_1^{0,\mu} \exists t_0 < 0$ s.t. $p(t_0) \in N$

•
$$\|p(0) - e_1^{0,\mu}\| = 2|\mu|$$

Unstable

Example: P(2) — Integration

Proposition

Suppose $p(\cdot)$ is a integral curve of \vec{H} .

(a) If $c_0^2 > h_0 > 0$, then there exists $t_0 \in \mathbb{R}$ such that $p(t) = \overline{p}(t + t_0)$, where

$$\begin{cases} \bar{p}_1(t) = -\frac{\delta^2}{c_0 - \sqrt{h_0}\cos(2\delta t)}\\ \bar{p}_2(t) = \frac{\delta\sqrt{h_0}\sin(2\delta t)}{c_0 - \sqrt{h_0}\cos(2\delta t)}\\ \bar{p}_3(t) = c_0 \end{cases}$$

Here $\delta = \sqrt{c_0^2 - h_0}$.

Example: P(2) — Integration (cont.)

Proposition (cont.)

(b) If
$$c_0^2 = h_0 > 0$$
, then there exists $t_0 \in \mathbb{R}$ such that $p(t) = \bar{p}(t + t_0)$, where

$$\left\{egin{array}{l} ar{p}_1(t) = -rac{2c_0}{1+4c_0^2\,t^2} \ ar{p}_2(t) = rac{4c_0^2\,t}{1+4c_0^2\,t^2} \ ar{p}_3(t) = c_0 \end{array}
ight.$$

Proposition (cont.)

(c) If
$$c_0^2 < h_0$$
, then there exists $t_0 \in \mathbb{R}$ and $\sigma \in \{-1, 1\}$ such that $p(t) = \overline{p}(t + t_0)$, where

$$\begin{cases} \bar{p}_1(t) = \frac{\sigma \, \operatorname{sgn}(c_0) \, \delta^2}{\sigma |c_0| - \sqrt{h_0} \, \cosh(2\delta \, t)} \\ \bar{p}_2(t) = \frac{-\sqrt{h_0} \, \delta \, \sinh(2\delta \, t)}{\sigma |c_0| - \sqrt{h_0} \, \cosh(2\delta \, t)} \\ \bar{p}_3(t) = c_0 \end{cases}$$

$$E_{1}^{0} = 2$$

 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2

Here
$$\delta = \sqrt{h_0 - c_0^2}$$
.

Example: Np(2)

Lie-Poisso	n space :	$\mathfrak{se}(2)^*$	
Casimir	:	$C(p)=p_1^2+p_2^2$	
Hamiltonia	an :	$H(p)=p_2^2+p_3^2$	

• Equations of motion \vec{H} :

$$\begin{cases} \dot{p}_1 = 2p_2p_3\\ \dot{p}_2 = -2p_1p_3\\ \dot{p}_3 = 2p_1p_2 \end{cases}$$

• Coadjoint orbits:

Quadratic Hamilton-Poisson Systems

Example: Np(2) — Qualitative cases

Figure: Planar system Np(2)

Example: Np(2) — Stability

The equilibrium states are

$$\begin{split} \mathsf{e}_1^{\mu} &= (\mu, 0, 0), \ \mu \in \mathbb{R} \\ \mathsf{e}_2^{\nu} &= (0, \nu, 0), \ \nu \neq 0 \\ \mathsf{e}_3^{\nu} &= (0, 0, \nu), \ \nu \neq 0 \end{split}$$

Proposition

The equilibrium states have the following behaviour:

① The states
$$e_1^\mu$$
, $\mu \in \mathbb{R}$ are stable

- 2) The states e_2^{ν} , $\nu \neq 0$ are (spectrally) unstable
- **③** The states e_3^{ν} , $\nu \neq 0$ are stable

Proposition

Suppose $p(\cdot)$ is a integral curve of \vec{H} .

(a) If $c_0 > h_0 > 0$, then there exists $t_0 \in \mathbb{R}$ and $\sigma \in \{-1, 1\}$ such that $p(t) = \bar{p}(t + t_0)$, where

$$\begin{cases} \bar{p}_1(t) = \sigma \sqrt{c_0} \, \operatorname{dn}(2\sqrt{c_0} t, \sqrt{\frac{h_0}{c_0}}) \\ \bar{p}_2(t) = \sqrt{h_0} \, \operatorname{sn}(2\sqrt{c_0} t, \sqrt{\frac{h_0}{c_0}}) \\ \bar{p}_3(t) = -\sigma \sqrt{h_0} \, \operatorname{cn}(2\sqrt{c_0} t, \sqrt{\frac{h_0}{c_0}}) \end{cases}$$

Example: Np(2) — Integration (cont.)

Proposition (cont.)

(b) If
$$c_0 = h_0 > 0$$
, then there exists $t_0 \in \mathbb{R}$ and $\sigma_1, \sigma_2 \in \{-1, 1\}$ such that $p(t) = \overline{p}(t + t_0)$, where

$$\begin{cases} \bar{p}_1(t) = \sigma_1 \sigma_2 \sqrt{c_0} \operatorname{sech}(2\sqrt{c_0} t) \\ \bar{p}_2(t) = \sigma_1 \sqrt{c_0} \operatorname{tanh}(2\sqrt{c_0} t) \\ \bar{p}_3(t) = -\sigma_2 \sqrt{c_0} \operatorname{sech}(2\sqrt{c_0} t) \end{cases}$$

Example: Np(2) — Integration (cont.)

Proposition (cont.)

(c) If
$$h_0 > c_0 > 0$$
, then there exists $t_0 \in \mathbb{R}$ and $\sigma \in \{-1,1\}$ such that $p(t) = \bar{p}(t + t_0)$, where

$$\begin{cases} \bar{p}_1(t) = \sigma \sqrt{c_0} \, \operatorname{cn}(2\sqrt{h_0} \, t, \, \sqrt{\frac{c_0}{h_0}}) \\ \bar{p}_2(t) = \sqrt{c_0} \, \operatorname{sn}(2\sqrt{h_0} \, t, \, \sqrt{\frac{c_0}{h_0}}) \\ \bar{p}_3(t) = -\sigma \sqrt{h_0} \, \operatorname{dn}(2\sqrt{h_0} \, t, \, \sqrt{\frac{c_0}{h_0}}) \end{cases}$$

1 Introduction

2 Classification

3 Stability & Integration

5 Extended class

6 Conclusion

Equilibria and invariants

\mathcal{E} -equivalence

Systems $(\mathfrak{g}_{-}^{*}, H)$ and $((\mathfrak{g}')_{-}^{*}, H')$ are \mathcal{E} -equivalent if there exists a linear isomorphism $\psi : \mathfrak{g}_{-}^{*} \to (\mathfrak{g}')_{-}^{*}$ such that $\psi \cdot \mathcal{E}_{s} = \mathcal{E}'_{s}$ and $\psi \cdot \mathcal{E}_{u} = \mathcal{E}'_{u}$

Proposition

- Non-planar systems equivalent $\iff \mathcal{E}$ -equivalent
- Planar systems equivalent $\iff \mathcal{E}$ -equivalent
- Linear systems equivalent $\iff \mathcal{E}$ -equivalent

Equilibrium index

Set of equilibria is union of i lines and j planes. Pair (i, j): equilibrium index

Rory Biggs (Rhodes)

Quadratic Hamilton-Poisson Systems

Taxonomy

Space	Class	Equilibrium Index (lines, planes)	Normal Form(s)	
$\mathfrak{se}(1,1)^*$	lincor	(0,1)	L(2)	
	linear	(0,2)	L(3)	
	planar	(1,1)	P(3)	
	non-planar	(2,0)	Np(1)	
		(3,0)	Np(2)	
se (2)*	linear	(0,2)	L(3)	
	planar	(1,1)	P(4)	
	non-planar	(3,0)	Np(2)	
50 (2,1) <u>*</u>	planar	(1,1)	P(3); P(4)	
	pianar	(0,1)	P(5)	
	non-planar	(2,0)	Np(1)	
		(3,0)	Np(2)	
\$0 (3) <u>*</u>	planar	(1,1)	P(4)	
	non-planar	(3,0)	Np(2)	

Rory Biggs (Rhodes)

1 Introduction

2 Classification

3 Stability & Integration

Invariants

6 Conclusion

Classification (2/2) [Mubarakzyanov 1963, Krasiński et al 2003, Patera et al 1976]

Any three-dimensional (minus) Lie-Poisson space *not* admitting a global Casimir function is isomorphic to one of the following

•
$$(\mathfrak{g}_{3.2})^*_-$$
 (*IV*, completely solvable)
• $(\mathfrak{g}_{3.3})^*_-$ (*V*, completely solvable)
• $(\mathfrak{g}_{3.4})^*_-$ (*V*, completely solvable)
• $(\mathfrak{g}_{3.4}^{\alpha})^*_-$ (*VI*_{\alpha}, completely solvable)
 $C(p) = \frac{p_2}{p_1}$
 $C(p) = \frac{p_2}{p_1}$
 $C(p) = \frac{1}{2}p_1 + \frac{1}{2}p_2}{(\pm \frac{1}{2}p_1 + \frac{1}{2}p_2)^{\frac{\alpha-1}{\alpha+1}}}$

• $(\mathfrak{g}_{3,5}^{\alpha})_{-}^{*}$ (VII_{α}, exponential) $C(p) = (p_1^2 + p_2^2) \left(\frac{p_1 - ip_2}{p_1 + ip_2}\right)^{\prime \alpha}$

Coadjoint orbits (spaces admitting *only* local Casimirs)

g3.3

 E_1^*

Lie-Poisson space	:	$(\mathfrak{g}^lpha_{3.5})^*$
Casimir	:	${\cal C}({\it p})=({\it p}_1^2+{\it p}_2^2)\left(rac{{\it p}_1-i{\it p}_2}{{\it p}_1+i{\it p}_2} ight)^{ilpha}$
Hamiltonian	:	$H(p) = eta p_1^2 + p_2^2 + p_3^2$
Restriction	:	$0 < \beta < \kappa_\alpha^- = 1 + 2\alpha^2 - 2\alpha\sqrt{\alpha^2 + 1}$

Equations of motion
$$\vec{H}$$
:

$$\begin{cases} \dot{p}_1 = 2(\alpha \, p_1 + p_2) p_3 \\ \dot{p}_2 = -2(p_1 - \alpha \, p_2) p_3 \\ \dot{p}_3 = -2(\alpha \beta \, p_1^2 + (\beta - 1) p_1 p_2 + \alpha \, p_2^2) \end{cases}$$

Example: Np(8b) — Qualitative cases

Figure: Non-planar system Np(8b)

Example: Np(8b) — Stability

The equilibrium states are

$$\begin{split} \mathbf{e}_{1}^{\nu} &= (0,0,\nu), \quad \nu \in \mathbb{R} \\ \mathbf{e}_{2}^{\nu} &= (\nu, \frac{1-\beta+\sqrt{1-2\beta-4\alpha^{2}\beta+\beta^{2}}}{2\alpha}\nu, \mathbf{0}), \quad \nu \neq \mathbf{0} \\ \mathbf{e}_{3}^{\mu} &= (\mu, \frac{1-\beta-\sqrt{1-2\beta-4\alpha^{2}\beta+\beta^{2}}}{2\alpha}\mu, \mathbf{0}), \quad \mu \in \mathbb{R} \end{split}$$

Proposition

The equilibrium states have the following behaviour

- **1** The states e_1^{ν} , $\nu < 0$ are (weakly asymptotically) stable
- 2 The states e_1^{ν} , $\nu > 0$ are (spectrally) unstable
- **③** The states e_2^{ν} , $\nu \neq 0$ are (spectrally) unstable
- The states e_3^{μ} , $\mu \in \mathbb{R}$ are stable

Introduction

2 Classification

3 Stability & Integration

Invariants

5 Extended class

Conclusion

Summary

- Classification of PSD quadratic systems in 3D
- Integration
- Behaviour of equilibria
- Invariants & taxonomy

Outlook

- Relax restriction: PSD
- Affine case: $H_{A,Q} = p(A) + Q(p)$
- 4D case

• Optimal control / sub-Riemannian geometry

R.M. Adams, R. Biggs and C.C. Remsing On some quadratic Hamilton-Poisson systems Appl. Sci. **15**(2013), (to appear).

A. Aron, C. Dăniasă and M. Puta

Quadratic and homogeneous Hamilton-Poisson system on $\mathfrak{so}(3)^*$ Int. J. Geom. Methods Mod. Phys. 4(2007), 1173–1186.

A. Aron, M. Craioveanu, C. Pop and M. Puta Quadratic and homogeneous Hamilton-Poisson systems on $A^*_{3,6,-1}$

Balkan J. Geom. Appl. 15(2010), 1-7.

A. Aron, C. Pop and M. Puta

Some remarks on $(\mathfrak{sl}(2,\mathbb{R}))^*$ and Kahan's Integrator An. Stiint. Univ. Al. I. Cuza lasj. Mat. **53**(suppl.)(2007), 49–60.

J. Biggs and W. Holderbaum

Integrable quadratic Hamiltonian on the Euclidean group of motions

J. Dyn. Control Syst. 16(3)(2010), 301–317.

R. Biggs and C.C. Remsing

On the equivalence of cost-extended control systems on Lie groups

In Recent Researches in Automatic Control, Systems Science and Communications (H.R. Karimi, ed.). WSEAS Press (2012) 60–65.

A. Krasiński et al

The Bianchi classification in the Schücking-Behr approach Gen. Relativ. Gravit. **35**(2003), 475–489.

G.M. Mubarakzyanov

On solvable Lie algebras (in Russian) Izv. Vyssh. Uchebn. Zaved. **32**(1)(1963), 114–123.

J-P. Ortega, V. Planas-Bielsa and T.S. Ratiu Asymptotic and Lyapunov stability of constrained and Poisson equilibria J. Diff. Equations **214** (2005), 92–127.

J. Patera, R.T. Sharp, P. Wintemitz, H. Zassenhaus Invariants of low dimensional Lie algebras

J. Math. Phys. 17(1976), 986–994.

R.M. Tudoran

The free rigid body dynamics: generalized versus classic.

arXiv:1102.2725v5 [math-ph].

R.M. Tudoran and R.A. Tudoran

On a large class of three-dimensional Hamiltonian systems

J. Math. Phys. 50(2009) 012703.