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Riemannian manifold: Euclidean space E3

ds2 = dx21 + dx22 + dx23

Metric tensor:

Gij =

1 0 0
0 1 0
0 0 1


Isometry group:

Isom(H3,G) ∼= R3 o O(3)

Orthonormal frame:

X1 = ∂x1 , X2 = ∂x2 , X3 = ∂x3

Homogeneous Riemannian manifold

Invariant Riemannian structure on Abelian group R3
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Riemannian manifold: Heisenberg Group

ds2 = dx21 + dx22 − x2(dx1dx3 + dx3dx1) + (1 + x22 )dx23

Metric tensor:

Gij =

 1 0 −x2
0 1 0
−x2 0 1 + x22


Isometry group:

Isom(H3,G) ∼= H3 o O(2)

Orthonormal frame:
X1 = ∂x1

X2 = ∂x2

X3 = x2 ∂x1 + ∂x3
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Distribution on Heisenberg group

x1

x2

x3

Distribution D
g 7→ Dg ⊆ TgH3

(smoothly) assigns
subspace to tangent space
at each point

Example:
D = 〈∂x2 , x2 ∂x1 + ∂x3〉
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Sub-Riemannian manifold: Heisenberg Group

Orthonormal frame:

X2 = ∂
∂x2

X3 = x2
∂
∂x1

+ ∂
∂x3

Distribution:

D = 〈X2,X3〉

Metric G on D:

Gg (Xi ,Xj) = δij i , j = 2, 3.

Isometry group

Isom(H3,D,G) ∼= H3 o O(2)
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Formalism

Left-invariant sub-Riemannian manifold (G,D,G)

Lie group G with Lie algebra g.

Left-invariant bracket generating distribution D
Dg is subspace of TgG
Dg = gD1

Lie(D1) = g.

Left-invariant Riemannian metric G on D
Gg is a symmetric positive definite inner product on Dg

Gg (gA, gB) = G1(A,B) for A,B ∈ g.

Remark

Structure (D,G) on G is fully specified by

subspace D1 of Lie algebra g

inner product G1 on D1.
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Isometries

Isometric

(G,D,G) and (G′,D′,G′) are isometic
if there exists a diffeomorphism φ : G→ G′ such that

φ∗D = D′ and G = φ∗G′

L-isometric

(G,D,G) and (G′,D′,G′) are L-isometic
if there exists a Lie group isomorphism φ : G→ G′ such that

φ∗D = D′ and G = φ∗G′

Remark [Hamenstädt 1990, Kishimoto 2003, Le Donne & Ottazzi (preprint)]

On Carnot groups these concepts coincide.
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Overview

Problem

Classify sub-Riemannian structures in 3D

Classified up to isometry

Strichartz 1986 — 3D symmetric sub-Riemannian structures

Falbel & Gorodski 1996 — 3D homogeneous sub-Riemannian
structures

Agrachev & Barilari 2012 — 3D left-invariant sub-Riemannian
structures

Up to L-isometry

We classify 3D left-invariant sub-Riemannian structures
(globally, on simply connected groups)
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The Bianchi-Behr classification

Classification (of real 3D Lie algebras)

There are eleven types of algebras (in fact, nine algebras and two
parametrized infinite families of algebras):

3g : R3 (I ,Abelian)

g2.1 ⊕ g1 : aff (R)⊕ R (III )

g3.1 : h3 (II , nilpotent)

g3.2 (IV , solvable)

g3.3 (V , solvable)

g03.4 : se (1, 1) (VI0, solvable); gα3.4, α > 0, α 6= 1 (VIα)

g03.5 : se (2) (VII0, solvable); gα3.5, α > 0 (VIIα)

g03.6 : sl (2,R) (VIII , simple)

g03.7 : so (3) (IX , simple)
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Scalar Invariants [Agrachev & Barilari 2012]

Orthonormal frame:

(G, ω) is a 3D contact structure

D = 〈Y1,Y2〉 = kerω

G(Y1,Y2) = δij , dω(Y1,Y2) = 1

Reeb vector field Y0: ω(Y0) = 1 dω(Y0, ·) = 0

Lie algebra of vector fields:

[Y1,Y0] = c101Y1 + c201Y2

[Y2,Y0] = c102Y1 + c202Y2

[Y2,Y1] = c112Y1 + c212Y2 + Y0

Invariants:

χ = 1
2

√
(c102 + c201)2 − 4c101c

2
02

κ = Y2(c112)− Y1(c212)− (c112)2 − (c212)2 + 1
2(c201 − c102)
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Aff(R)× R

Aff(R)× R :

 1 0 0
x1 ex2 0
0 0 ex3


g2.1 ⊕ g1 :

 0 0 0
x1 x2 0
0 0 x3


-1 1

Κ

1

Χ

Normal form (Aff (R)× R,D,G) χ = 0, κ = −1

D1 = 〈X1 + X3,X2〉 G1 = λ

[
1 0
0 1

]
, λ > 0

X1 = e−x2∂x1
X2 = ∂x2

X3 = ∂x3
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Heisenberg group H3

H3 :

1 x2 x1
0 1 x3
0 0 1


h3 :

0 x2 x1
0 0 x3
0 0 0


-1 1

Κ

1

Χ

Normal form (H3,D,G) χ = 0, κ = 0

D1 = 〈X2,X3〉 G1 =

[
1 0
0 1

]

X1 = ∂x1

X2 = ∂x2

X3 = x2∂x1 + ∂x3
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Calculation of normal form on H3 1/4

Proposition

Structures (D,G) and (D′,G′) on a simply connected Lie group G
are L-isometric if and only if

there exists ψ ∈ Aut(g) such that
ψ · D1 = D′1 and G1(A,B) = G′1(ψ · A, ψ · B).

Proof

Suppose structures are L-isometric.

We have: φ ∈ Aut(G), φ∗D = D′, G = φ∗G′.
So: T1φ ∈ Aut(g), T1φ · D1 = D′1, G1(A,B) = G′1(T1φ · A,T1φ · B).

Suppose there exists ψ ∈ Aut(g) satisfying conditions.

As G is simply connected, there exists φ ∈ Aut(G) s.t. T1φ = ψ.

Tgφ · Dg = Tgφ · gD1 = T1Lφ(g) · T1φ · D1 = φ(g)D′1 = D′φ(g).
Likewise, Gg (gA, gB) = G′φ(g)(Tgφ · gA,Tgφ · gB).
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Calculation of normal form on H3 2/4

H3 :

1 x2 x1
0 1 x3
0 0 1

 h3 :

0 x2 x1
0 0 x3
0 0 0

 Aut(h3) :

yw − vz x u
0 y v
0 z w


Let (D,G) be an invariant SR structure on H3.

Step 1

There exists φ ∈ Aut(G) such that φ∗D = 〈X2,X3〉.
Hence (D,G) is L-equivalent to structure (〈X2,X3〉 ,G′), G = φ∗G′.

Let D1 = 〈a1X1 + a2X2 + a3X3, b1X1 + b2X2 + b3X3〉.

ψ =

a2b3 − b2a3 a1 b1
0 a2 b2
0 a3 b3

 is automorphism such that

ψ · 〈X2,X3〉 = D1.

Automorphism φ with T1φ = ψ−1 satisfies requirements.
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Calculation of normal form on H3 3/4

Step 2

There exists φ ∈ Aut(G) such that φ∗ 〈X2,X3〉 = 〈X2,X3〉 and
(φ∗G′)(Xi ,Xj) = δi ,j , i , j = 2, 3.

Hence (D,G) is L-equivalent to (〈X2,X3〉 ,G′′) with G′′1 =

[
1 0
0 1

]
.
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Calculation of normal form on H3 4/4

H3 :

1 x2 x1
0 1 x3
0 0 1

 h3 :

0 x2 x1
0 0 x3
0 0 0

 Aut(h3) :

yw − vz x u
0 y v
0 z w



Automorphisms preserving 〈X2,X3〉:

wy − vz 0 0
0 y v
0 z w

.

That is, Aut(h3)|〈X2,X3〉 = GL (2,R).

We have ψ =

 1√
a1
− b
√
a1
√

a1a2−b2

0
√
a1√

a1a2−b2

 ∈ Aut(h3)|〈X2,X3〉 and

ψ>
[
a1 b
b a2

]
ψ =

[
1 0
0 1

]
Thus G′′ = φ∗G′, where φ ∈ Aut(H3) and T1φ = ψ̂.
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G3.2

G3.2 :

 1 0 0
x2 ex3 0
x1 −x3ex3 ex3



g3.2 :

 0 0 0
x2 x3 0
x1 −x3 x3


-1 1

Κ

1

Χ

Normal form (G3.2,D,G) χ = 1
5
√
2
, κ = − 7

5
√
2

D1 = 〈X2,X3〉 G1 = λ

[
1 0
0 1

]
, λ > 0

X1 = ex3∂x1
X2 = −x3ex3∂x1 + ex3∂x2
X3 = ∂x3
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Semi-Euclidean group SE (1, 1)

SE (1, 1) :

 1 0 0
x1 cosh x3 − sinh x3
x2 − sinh x3 cosh x3


se (1, 1) :

 0 0 0
x1 0 −x3
x2 −x3 0


-1 1

Κ

1

Χ

Normal form (SE (1, 1),D,G) χ = 1√
2
, κ = − 1√

2

D1 = 〈X2,X3〉 G1 = λ

[
1 0
0 1

]
, λ > 0

X1 = cosh x3 ∂x1 − sinh x3 ∂x2
X2 = − sinh x3 ∂x1 + cosh x3 ∂x2
X3 = ∂x3
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Gα
3.4

Gα3.4 :

 1 0 0
x1 eαx3 cosh x3 −eαx3 sinh x3
x2 −eαx3 sinh x3 eαx3 cosh x3


gα3.4 :

 0 0 0
x1 αx3 −x3
x2 −x3 αx3


-1 1

Κ

1

Χ

Normal form (Gα
3.4,D,G) χ =

√ (
α2−1

)2
2+12α2+50α4 , κ = −1−7α2

√
2+12α2+50α4

D1 = 〈X2,X3〉 G1 = λ

[
1 0
0 1

]
, λ > 0

X1 = eαx3 cosh x3 ∂x1 − eαx3 sinh x3 ∂x2
X2 = −eαx3 sinh x3 ∂x1 + eαx3 cosh x3 ∂x2
X3 = ∂x3
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Euclidean group S̃E (2)

S̃E (2) :


1 0 0 0
x1 cos x3 − sin x3 0
x2 sin x3 cos x3 0
0 0 0 ex3



se (2) :


0 0 0 0
x1 0 −x3 0
x2 x3 0 0
0 0 0 x3


-1 1

Κ

1

Χ

Normal form (S̃E (2),D,G) χ = 1√
2
, κ = 1√

2

D1 = 〈X2,X3〉 G1 = λ

[
1 0
0 1

]
, λ > 0

X1 = cos x3 ∂x1 + sin x3 ∂x2
X2 = − sin x3 ∂x1 + cos x3 ∂x2
X3 = ∂x3
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Calculation of invariants χ, κ on S̃E (2) 1/4

Orthonormal frame:

(S̃E (2), ω) is a 3D contact structure

D = 〈X2,X3〉 = kerω

G(X2,X3) = δij , dω(X2,X3) = 1

Reeb vector field X0: ω(X0) = 1 dω(X0, ·) = 0

Lie algebra of vector fields:

[X2,X0] = c101X2 + c201X3

[X3,X0] = c102X2 + c202X3

[X3,X2] = c112X2 + c212X3 + X0

Invariants:

χ = 1
2

√
(c102 + c201)2 − 4c101c

2
02

κ = Y2(c112)− Y1(c212)− (c112)2 − (c212)2 + 1
2(c201 − c102)
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Calculation of invariants χ, κ on S̃E (2) 2/4

Representation in R3

Parametrization of S̃E (2):

m : R3 → S̃E (2), (x1, x2, x3) 7−→


1 0 0 0
x1 cos x3 − sin x3 0
x2 sin x3 cos x3 0
0 0 0 ex3


Calculate pullback m∗X L of left-invariant vector fields X L : g 7→ gA
i.e., (m∗X L)(x) = (Txm)−1 · X L(m(x)) :

X1 = cos x3 ∂x1 + sin x3 ∂x2
X2 = − sin x3 ∂x1 + cos x3 ∂x2
X3 = ∂x3
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Calculation of invariants χ, κ on S̃E (2) 3/4

Contact structure

Let ω = ω1 dx1 + ω2 dx2 + ω3 dx3.

ω(X2) = ω2 cos x3 − ω1 sin x3, ω(X3) = ω3

Hence, from kerω = 〈X2,X3〉, we get
ω = r cos x3 dx1 + r sin x3 dx2.

dω(X2,X3) = −r ; hence ω = − cos x3 dx1 − sin x3 dx2.

Reeb vector field

∃ X0 = a ∂x1 + b ∂x2 + c ∂x3 s.t. ω(X0) = 1 and dω(X0, ·) = 0.

ω(X0) = −a cos x3 − b sin x3; hence
X0 = − cos x3 ∂x1 − sin x3 ∂x3 + c ∂x3
ιX0 dω = c sin x3 dx1 − c cos x3 dx2; therefore
X0 = − cos x3 ∂x1 − sin x3 ∂x3
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Calculation of invariants χ, κ on S̃E (2) 4/4

Lie algebra of vector fields

We have
[X2,X0] = 0X2 + 0X3

[X3,X0] = −1X2 + 0X3

[X3,X2] = 0X2 + 0X3 + X0

Scalar invariants

Thus χ = 1
2 and κ = 1

2 , or normalized χ = 1√
2

and κ = 1√
2

.
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Gα
3.5

Gα3.5 :

 1 0 0
x1 eαx3 cos x3 −eαx3 sin x3
x2 eαx3 sin x3 eαx3 cos x3


gα3.5 :

 0 0 0
x1 αx3 −x3
x2 x3 αx3


-1 1

Κ

1

Χ

Normal form (Gα
3.5,D,G) χ =

√ (
1+α2

)2
2−12α2+50α4 , κ = 1−7α2√

2−12α2+50α4

D1 = 〈X2,X3〉 G1 = λ

[
1 0
0 1

]
, λ > 0

X1 = eαx3 cos x3 ∂x1 + eαx3 sin x3 ∂x2
X2 = −eαx3 sin x3 ∂x1 + eαx3 cos x3 ∂x2
X3 = ∂x3
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S̃L (2,R), case 1/2

SL (2,R) = {g ∈ R2×2 : det g = 1}

sl (2,R) :

[
x1
2

1
2 (x2 − x3)

1
2 (x2 + x3) − x1

2

]
-1 1

Κ

1

Χ

Normal form (S̃L (2,R),D,G) χ =
√

1
2
+ α

1+α2 , κ = −1+α√
2+ 2

α2 α

D1 = 〈X2,X3〉 G1 = λ

[
α 0
0 1

]
, α, λ > 0

X1 = ∂x1

X2 = − sinh x1 tanh x2 ∂x1 + (cosh x1 + sech x2 sinh x1) ∂x2 − sech x2 sinh x1 ∂x3

X3 = cosh x1 tanh x2 ∂x1 − (cosh x1 sech x2 + sinh x1) ∂x2 + cosh x1 sech x2 ∂x3
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S̃L (2,R), case 2/2

SL (2,R) = {g ∈ R2×2 : det g = 1}

sl (2,R) :

[
x1
2

1
2 (x2 − x3)

1
2 (x2 + x3) − x1

2

]
-1 1

Κ

1

Χ

Normal form (S̃L (2,R),D,G) χ =
√

1
2
− α

1+α2 , κ = − 1+α√
2+ 2

α2 α

D1 = 〈X1,X2〉 G1 = λ

[
α 0
0 1

]
, 0 < α ≤ 1, λ > 0

X1 = ∂x1

X2 = − sinh x1 tanh x2 ∂x1 + (cosh x1 + sech x2 sinh x1) ∂x2 − sech x2 sinh x1 ∂x3

X3 = cosh x1 tanh x2 ∂x1 − (cosh x1 sech x2 + sinh x1) ∂x2 + cosh x1 sech x2 ∂x3
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Calculation of normal form on S̃L (2,R)

Aut(sl (2)) = SO (2, 1) = {g ∈ R3×3 : g>Jg = g , det g = 1}
J = diag(1, 1,−1)

Step 2

Invariant scalar product (Killing form) A� B = a1b1 + a2b2 − a3b3

Automorphisms preserving 〈X1,X2〉 are those that preserve
〈X1,X2〉⊥ = 〈X3〉.

Automorphisms preserving 〈X3〉:

σ cos θ σ sin θ 0
− sin θ cos θ 0

0 0 σ

.

That is, Aut(h3)|〈X1,X2〉 = O (2).

From diagonalization by orthogonal matrices, there exists

ψ ∈ Aut(sl (2,R))|〈X1,X2〉 such that ψ> G1 ψ = λ

[
α 0
0 1

]
with λ > 0

and 0 < α ≤ 1.
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Space with orthogonal Lie algebra : SU (2)

SU (2) = {g ∈ C2×2 : gg † = 1, det g = 1}

su (2) :

[
i
2x1

1
2(ix3 + x2)

1
2(ix3 − x2) − i

2x1

]
-1 1

Κ

1

Χ

Normal form (SU (2),D,G) χ =
√

1
2
− α

1+α2 κ = 1+α√
2+ 2

α2 α

D1 = 〈X2,X3〉 G1 = λ

[
α 0
0 1

]
, 0 < α ≤ 1, λ > 0

X1 = cos x3 sec x2 ∂x1 + sin x3 ∂x2 − cos x3 tan x2 ∂x3
X2 = − sec x2 sin x3 ∂x1 + cos x3 ∂x2 + sin x3 tan x2 ∂x3
X3 = ∂x3
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Classification

suH2L

seH2L

g3.5
Α

slH2, RL
< E1, E2 >

slH2, RL
< E2, E3 >

slH2, RL
< E2, E3 >

seH1, 1L

g3.4
Α

h3affHRLÅR

g3.2

-1 1
Κ

1

Χ

Theorem [Agrachev & Barillari 2012]

If χ 6= 0, then two structures are locally isometric if and only if their Lie algebras
are isomorphic.
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Main result

Theorem

Two left-invariant structures on a simply connected 3D Lie group are
isometric if and only if they are L-isometric.

Let G, G′ be simply connected and let (G,D,G), (G′,D′,G′) be two
left-invariant sub-Riemannian manifolds with χ 6= 0.

Corollary

(G,D,G) and (G′,D′,G′) are isometric if and only if they are L-isometric.

Question

If φ : (G,D,G)→ (G,D′,G′) is an isometry, is it an L-isometry?
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Conclusion

Remarks

On any solvable simply connected 3D Lie group, there is at most one
sub-Riemannian structure (up to L-isometry and dilation).

(For the simple 3D Lie groups we have one-parameter families of structures.)

Apart from Aff (R)× T and quotients of R3, we have that
d Aut(G) = Aut(g) for any connected 3D Lie group.

Hence classification (under L-isometry) of structures on G is the
same as that on its universal cover G̃.

L-isometries preserve more structure than (general) isometries.

L-isometries are easy to construct explicitly.

Rory Biggs (Rhodes) Sub-Riemannian structures on Lie groups March 19, 2014 38 / 39



Conclusion

Outlook

calculation of isometry groups

geodesics (unified treatment)

Riemannian case

4D case

affine distributions (& optimal control)
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J. Differential Geom. 32(1990), 819–850.

I. Kishimoto

Geodesics and isometries of Carnot groups

J. Math. Kyoto Univ. 43(2003), 509–522.
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