Cost-extended control systems on SO(3)

Ross M. Adams

Mathematics Seminar April 16, 2014

R.M. Adams (RU)

Cost-extended control systems on SO(3)

RU Maths Seminar 1 / 34

4 A N

Introduction

- 2 Control systems on SO(3)
- 3 Cost-extended systems
- 4 Hamilton-Poisson systems

< A >

Outline

Introduction

- 2 Control systems on SO(3)
- 3 Cost-extended systems
- 4 Hamilton-Poisson systems
- 5 Conclusion

$\mathrm{SO}(3) = \left\{ g \in \mathbb{R}^{3 imes 3} \ | \ g^ op g = \mathbf{1}, \ \det g = \mathbf{1} ight\}$

- Group of rotations
- Three-dimensional, connected, compact Lie group

Optimal control problems on SO(3)

- Detached feedback equivalence of control systems
- Classify cost-equivalent systems
- Solve optimal control problems
- Hamilton-Poisson systems

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

$$\mathfrak{so}\left(3
ight) =\left\{ extsf{A}\in \mathbb{R}^{3 imes3}\,\mid\, extsf{A}^{ op}+ extsf{A}= extsf{0}
ight\}$$

Basis:

$$E_1 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix} \quad E_2 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{bmatrix} \quad E_3 = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

• Commutator relations:

$$[E_2, E_3] = E_1$$
 $[E_3, E_1] = E_2$ $[E_1, E_2] = E_3$

• Lie algebra automorphisms:

 $\text{Aut}(\mathfrak{so}(3))\cong\text{SO}(3)$

Introduction

- 2 Control systems on SO(3)
- 3 Cost-extended systems
- 4 Hamilton-Poisson systems
- 5 Conclusion

LiCA systems

Left-invariant control affine system $\Sigma = (SO(3), \Xi)$

• The dynamics

$$\Xi: SO(3) \times \mathbb{R}^\ell \to TSO(3), \quad 1 \leq \ell \leq 3$$

are left invariant

$$(g, u) \mapsto \Xi(g, u) = g \Xi(\mathbf{1}, u)$$

• The parametrisation map

$$\Xi(\mathbf{1}, \cdot) : \mathbb{R}^{\ell} \to T_{\mathbf{1}} \mathrm{SO}(3) = \mathfrak{so}(3)$$

is affine

$$u \mapsto A + u_1 B_1 + \ldots + u_\ell B_\ell \in \mathfrak{so}(3)$$

• We assume B_1, \ldots, B_ℓ are linearly independent

• The trace Γ of the system Σ is

$$egin{aligned} & \Gamma = \operatorname{im}(\Xi(\mathbf{1},\cdot\,)) \subset \mathfrak{so}(\mathbf{3}) \ & = oldsymbol{A} + \Gamma^0 \ & = oldsymbol{A} + \langle oldsymbol{B}_1,\ldots,oldsymbol{B}_\ell
angle \end{aligned}$$

Σ is called

- homogeneous if $A \in \Gamma^0$
- inhomogeneous if $A \notin \Gamma^0$

 $\Sigma\,$ has full rank provided the Lie algebra generated by Γ equals the whole Lie algebra

$$Lie(\Gamma) = \mathfrak{so}(3)$$

Controllability

Trajectory

Absolutely continuous curve $g(\cdot) : [0, T] \rightarrow SO(3)$ satisfying a.e.

 $\dot{g}(t) = \Xi(g(t), u(t))$

Controllability

 $\Sigma = (SO(3), \Xi)$ is called controllable if for any $g_0, g_1 \in SO(3)$ exists a trajectory taking g_0 to g_1

Necessary conditions for controllability

- SO(3) is connected
- The trace Γ has full-rank

SO(3) is compact

 Σ has full-rank $\iff \Sigma$ is controllable

Let $\Sigma = (SO(3), \Xi)$ and $\Sigma' = (SO(3), \Xi')$

 Σ and Σ' are (locally) DF-equivalent if

- there exist $N, N' \ni \mathbf{1}$, and
- a (local) diffeomorphism Φ = φ × φ : N × ℝ^ℓ → N' × ℝ^ℓ, φ(1) = 1, such that

$$T_{g}\phi \cdot \equiv (g, u) = \equiv' (\phi(g), \varphi(u))$$

for all $g \in N$ and $u \in \mathbb{R}^{\ell}$

Characterization

Two full rank systems are DF-equivalent iff

 $\exists \psi \in \operatorname{Aut}(\mathfrak{so}(3))$ such that $\psi \cdot \Gamma = \Gamma'$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Proposition

Any full rank system on SO(3) is DF-equivalent to exactly one of the systems

$$\begin{split} \Xi_{\alpha}^{(1,1)}(\mathbf{1}, u) &= \alpha E_1 + u_1 E_2 \\ \Xi^{(2,0)}(\mathbf{1}, u) &= u_1 E_1 + u_2 E_2 \\ \Xi_{\alpha}^{(2,1)}(\mathbf{1}, u) &= \alpha E_1 + u_1 E_2 + u_3 E_3 \\ \Xi^{(3,0)}(\mathbf{1}, u) &= u_1 E_1 + u_2 E_2 + u_3 E_3 \end{split}$$

Here $\alpha > 0$ parametrizes families of non-equivalent class representatives

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

1 Introduction

- 2 Control systems on SO(3)
- 3 Cost-extended systems
- 4 Hamilton-Poisson systems
- 5 Conclusion

3 > 4 3

Let $\Sigma = (SO(3), \Xi)$

An (invariant) optimal control problem is specified by

$$\begin{split} \dot{g}(t) &= g(t) \exists (\mathbf{1}, u(t)) \\ g(0) &= g_0, \quad g(T) = g_1, \quad g_0, g_1 \in \mathrm{SO}(3), \quad T > 0 \text{ fixed} \\ \mathcal{T}(u(\cdot)) &= \int_0^T (u(t) - \mu) Q(u(t) - \mu)^\top dt \to \min, \quad \mu \in \mathbb{R}^\ell. \end{split}$$

Here *Q* is a positive definite $\ell \times \ell$ matrix.

Cost-extended system (Σ, χ)

•
$$\chi : \mathbb{R}^{\ell} \to \mathbb{R}, \ \boldsymbol{u} \mapsto (\boldsymbol{u} - \mu) \boldsymbol{Q} (\boldsymbol{u} - \mu)^{\top}$$

• Boundary data (g_0, g_1, T) specifies a unique problem

Cost-equivalence

 (Σ, χ) and (Σ', χ') are C-equivalent $\iff \exists \phi \in Aut(SO(3))$ and an affine isomorphism $\varphi : \mathbb{R}^{\ell} \to \mathbb{R}^{\ell'}$ such that

$$\mathcal{T}_{\mathbf{1}}\phi\cdot \Xi(\mathbf{1},u)=\Xi'(\mathbf{1},arphi(u)) \quad ext{and} \quad \chi'\circ arphi=r\chi$$

for some r > 0.

The diagrams

commute

R.M. Adams (RU)

\mathcal{T}_{Σ}

Given $\Sigma = (SO(3), \Xi)$, let \mathcal{T}_{Σ} denote the group of feedback transformations leaving Σ invariant

$$\mathcal{T}_{\Sigma} = \left\{ \varphi \in \mathsf{Aff}(\mathbb{R}^{\ell}) \ : \ \exists \psi \in d \operatorname{Aut}(\mathsf{SO}(3)), \ \psi \cdot \Xi(\mathbf{1}, u) = \Xi(\mathbf{1}, \varphi(u)) \right\}.$$

Proposition

 (Σ, χ) and (Σ, χ') are *C*-equivalent iff $\exists \varphi \in \mathcal{T}_{\Sigma}$ such that $\chi' = r\chi \circ \varphi$ for some r > 0.

For
$$\chi : u \mapsto (u - \mu)^{\top} Q(u - \mu)$$
 and $\varphi : u \mapsto Ru + x$ we have
 $(\chi \circ \varphi)(u) = (u - \mu')^{\top} R^{\top} Q R(u - \mu')$
where $\mu' = R^{-1}(x - \mu) \in \mathbb{R}^{\ell}$.

Proposition

Every (2,0) system is C-equivalent to $(\Sigma^{(2,0)}, \chi^1_{\alpha\beta})$ or $(\Sigma^{(2,0)}, \chi^2_{\alpha})$, where $\Sigma^{(2,0)} = (SO(3), \Xi^{(2,0)})$ and

$$\begin{split} \chi^1_{\alpha\beta} &= (u_1 - \alpha_1)^2 + \beta (u_2 - \alpha_2)^2, \qquad \alpha_1, \alpha_2 \geq 0, \quad 0 < \beta < 1, \\ \chi^2_{\alpha} &= (u_1 - \alpha)^2 + u_2^2, \qquad \qquad \alpha \geq 0. \end{split}$$

Proof sketch

• Every (2,0) system is DF-equivalent to $\Sigma^{(2,0)} = (SO(3), \Xi^{(2,0)})$ where

$$\Xi^{(2,0)}(\mathbf{1},u) = u_1 E_1 + u_2 E_2$$

• Calculate feedback transformations $\mathcal{T}_{\Sigma^{(2,0)}}$

3

• In matrix form
$$\Xi^{(2,0)}(\mathbf{1}, u) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$$

• Checking the condition $\psi \cdot \Xi^{(2,0)}(\mathbf{1}, u) = \Xi^{(2,0)}(\mathbf{1}, \varphi(u))$ gives

$$\begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \varphi_{11} & \varphi_{12} \\ \varphi_{21} & \varphi_{22} \end{bmatrix}$$

• Thus $c_1 = c_2 = 0$

• As $\psi \in SO(3) \implies a_3 = b_3 = 0$ and $c_3 = \pm 1$

Therefore

$$\mathcal{T}_{\Sigma^{(2,0)}} = \{ \varphi \ | \ \varphi \in \mathsf{O}(2) \}$$

イロト 不得 トイヨト イヨト ニヨー

• In matrix form
$$\Xi^{(2,0)}(\mathbf{1}, u) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$$

• Checking the condition $\psi \cdot \Xi^{(2,0)}(\mathbf{1}, u) = \Xi^{(2,0)}(\mathbf{1}, \varphi(u))$ gives

$$\begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ 0 & 0 & c_3 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \varphi_{11} & \varphi_{12} \\ \varphi_{21} & \varphi_{22} \end{bmatrix}$$

• Thus $c_1 = c_2 = 0$

• As $\psi \in SO(3) \implies a_3 = b_3 = 0$ and $c_3 = \pm 1$

Therefore

$$\mathcal{T}_{\Sigma^{(2,0)}} = \{ \varphi \ | \ \varphi \in \mathsf{O}(2) \}$$

イロト 不得 トイヨト イヨト ニヨー

• In matrix form
$$\Xi^{(2,0)}(\mathbf{1}, u) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$$

• Checking the condition $\psi \cdot \Xi^{(2,0)}(\mathbf{1}, u) = \Xi^{(2,0)}(\mathbf{1}, \varphi(u))$ gives

$$\begin{bmatrix} a_1 & a_2 & 0 \\ b_1 & b_2 & 0 \\ 0 & 0 & \pm 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \varphi_{11} & \varphi_{12} \\ \varphi_{21} & \varphi_{22} \end{bmatrix}$$

• Thus $c_1 = c_2 = 0$

• As $\psi \in SO(3) \implies a_3 = b_3 = 0$ and $c_3 = \pm 1$

Therefore

$$\mathcal{T}_{\Sigma^{(2,0)}} = \{ \varphi \ | \ \varphi \in \mathsf{O}(2) \}$$

イロト 不得 トイヨト イヨト ニヨー

• (Σ, χ) is C-equivalent to $(\Sigma^{(2,0)}, \chi_0)$, for some

$$\chi_0: \mathbf{u} \mapsto (\mathbf{u} - \mu)^\top \mathbf{Q} (\mathbf{u} - \mu), \qquad \mathbf{Q} = \begin{vmatrix} \mathbf{a}_1 & \mathbf{b} \\ \mathbf{b} & \mathbf{a}_2 \end{vmatrix}$$

• $\exists \varphi_1 \in O(2)$ such that $\varphi_1^\top Q \varphi_1 = \text{diag}(\gamma_1, \gamma_2), \ \gamma_1 \ge \gamma_2 > 0$ • Therefore

$$\chi_1(u) = \frac{1}{\alpha_1} (\chi_0 \circ \varphi_1)(u) = (u - \mu')^\top \operatorname{diag}(1, \beta) (u - \mu')$$

where $0 < \beta \leq 1$, $\mu' \in \mathbb{R}^2$.

If β ≠ 1, then diag (σ₁, σ₂) ∈ O(2), σ₁, σ₂ ∈ {-1, 1}, are the only transformations left preserving the quadratic form diag (1, β).

• Thus
$$\chi^{1}_{\alpha\beta} = (u_1 - \alpha_1)^2 + \beta (u_2 - \alpha_2)^2, \ \alpha_1, \alpha_2 \ge 0, \ 0 < \beta < 1$$

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- If $\beta = 1$, then any $\varphi \in O(2)$ preserves diag(1, 1)
- $\exists \alpha \geq 0$ and $\theta \in \mathbb{R}$ such that $\mu'_1 = \alpha \cos \theta$ and $\mu'_2 = \alpha \sin \theta$

• Thus for $\varphi_2 = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ we have $\chi_3(u) = (\chi_2 \circ \varphi_2)(u) = \left(u - \begin{bmatrix} \alpha \\ 0 \end{bmatrix}\right)^\top \left(u - \begin{bmatrix} \alpha \\ 0 \end{bmatrix}\right)$

• Therefore, every such system is C-equivalent to

$$(\Sigma^{(2,0)},\chi^2_{\alpha}): \begin{cases} \Xi^{(2,0)}(\mathbf{1},u) = u_1 E_1 + u_2 E_2 \\ \chi^2_{\alpha}(u) = (u_1 - \alpha)^2 + u_2^2, \quad \alpha \ge \mathbf{0}. \end{cases}$$

• Each value of α defines a distinct equivalence class

< ロ > < 同 > < 回 > < 回 >

Introduction

- 2 Control systems on SO(3)
- 3 Cost-extended systems
- 4 Hamilton-Poisson systems

5 Conclusion

Question

How do we solve a given optimal control problem? We have

- A family $(\Xi(\cdot, u))_{u \in \mathbb{R}^{\ell}}$ of dynamical systems
- A cost function $\chi: u \mapsto (u \mu)^\top Q(u \mu)$ we want to minimize

Consider (Σ, χ)

• Construct a family of Hamiltonian functions on T*SO(3)

$$H_u^{\lambda}(\xi) = \lambda \chi(u) + \xi(\Xi(g, u)), \qquad \lambda \in \{-\frac{1}{2}, 0\}$$

Left-trivialize cotangent bundle, i.e., T*SO(3) ≈ SO(3) × so(3)*
Then

$$H_u^{\lambda}(g,p) = \lambda \chi(u) + p(\Xi(\mathbf{1},u))$$

which is an element of $C^{\infty}(\mathfrak{so}(3)^*)$.

Pontryagin maximum principle (PMP)

Let $(\bar{g}(\cdot), \bar{u}(\cdot))$ be a solution of an optimal control problem on [0, T]. Then $\exists \xi(\cdot) : [0, T] \to T^*SO(3)$, with $\xi(t) \in T^*_{\bar{g}(t)}SO(3)$ and $\lambda \leq 0$ such that

$$(\lambda,\xi(t)) \neq (0,0) \tag{1}$$

$$\dot{\xi}(t) = \vec{H}^{\lambda}_{\bar{\nu}(t)}(\xi(t)) \tag{2}$$

$$H^{\lambda}_{\overline{u}(t)}(\xi(t)) = \max_{u} H^{\lambda}_{u}(\xi(t)) = ext{constant.}$$

• Trajectory $\bar{g}(\cdot)$ is a projection of the integral curve $\xi(\cdot)$ of $\vec{H}_{\bar{u}(t)}^{\lambda}$

- Any pair $(g(\cdot), u(\cdot))$ satisfying the PMP is called a trajectory-control pair
- We only consider the case when $\lambda = -\frac{1}{2}$ (normal extremals)

(3)

Structure on $\mathfrak{so}(3)^*$

•
$$p = p_1 E_1^* + p_2 E_2^* + p_3 E_3^* = \begin{bmatrix} p_1 & p_2 & p_3 \end{bmatrix} \in \mathfrak{so}(3)^*$$

• Lie-Poisson bracket of $F, G \in C^{\infty}(\mathfrak{so}(3))$:

$$\{F,G\}(p) = -p([dF(p), dG(p)])$$

• Hamiltonian vector field: $\vec{H}[F] = \{F, H\}$

Quadratic Hamilton-Poisson system $(\mathfrak{so}(3)_{-}^{*}, H)$

•
$$H: \ p \mapsto pA + pQp^{ op}, \ A \in \mathfrak{so}(3)$$

• Equations of motion:
$$\dot{p}_i = -p([E_i, dH(p)])$$

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Example

• Consider the family of cost-extended systems

$$(\Sigma^{(2,0)},\chi^2_{\alpha}): \begin{cases} \Xi^{(2,0)}(\mathbf{1},u) = u_1 E_1 + u_2 E_2 \\ \chi^2_{\alpha}(u) = (u_1 - \alpha)^2 + u_2^2, \quad \alpha \ge 0. \end{cases}$$

• We have
$$H_u(p) = -\frac{1}{2} \left((u_1 - \alpha)^2 + u_2^2 \right) + p(u_1 E_1 + u_2 E_2)$$

• Then

$$\frac{\partial H}{\partial u_1} = -(u_1 - \alpha) + p_1 = 0 \implies u_1 = p_1 + \alpha$$
$$\frac{\partial H}{\partial u_2} = -u_2 + p_2 = 0 \implies u_2 = p_2$$

• The optimal Hamiltonian is given by

$$H(p) = \alpha p_1 + \frac{1}{2}(p_1^2 + p_2^2)$$

Relation to Hamilton-Poisson systems

• Recall that
$$\Xi(\mathbf{1}, u) = \mathbf{A} + \sum_{i=1}^{\ell} u_i B_i$$

• Let **B** be the $3 \times \ell$ matrix where the *i*th column of **B** is the coordinate vector of B_i in the basis $\{E_1, E_2, E_3\}$. Then $\Xi(\mathbf{1}, u) = A + \mathbf{B}u$

Proposition

Any ECT $(g(\cdot), u(\cdot))$ of (Σ, χ) is given by $\dot{g} = \Xi(g(t), u(t))$ and

$$u(t) = Q^{-1} \boldsymbol{B}^{\top} \boldsymbol{p}(t)^{\top} + \mu$$

Here $p(\cdot) : [0, T] \to \mathfrak{so}(3)^*$ is an integral curve of the Hamilton-Poisson system on $\mathfrak{so}(3)^*_{-}$ specified by

$$H(p) = p(A + \boldsymbol{B}\mu) + \frac{1}{2}p\boldsymbol{B}Q^{-1}\boldsymbol{B}^{\top}p^{\top}.$$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Definition

Systems *G* and *H* are A-equivalent if \exists affine automorphism ψ such that $\psi_* \vec{G} = \vec{H}$

Proposition

The following systems are equivalent to *H*:

- $H \circ \psi$: where ψ linear Poisson automorphism
- $H'(p) = pA + p(rQ)p^{\top}$: where $r \neq 0$
- H + C: where C Casimir function

3

$$H(p) = pQp^{\top}$$

• $\frac{1}{2}p_1^2$
• $p_1^2 + \frac{1}{2}p_2^2$

Conditions

• $\alpha_1, \alpha_2 > 0$

•
$$\alpha_1 \geq \alpha_3 > 0$$

•
$$\alpha_1 > |\alpha_4| > 0$$
 or $\alpha_1 = \alpha_4 > 0$

 $H(p) = pA + pQp^{\top}$

- α₁**p**₁
- $\frac{1}{2}p_1^2$

•
$$p_2 + \frac{1}{2}p_1^2$$

•
$$p_1 + \alpha_1 p_2 + \frac{1}{2} p_1^2$$

•
$$\alpha_1 p_1 + p_1^2 + \frac{1}{2} p_2^2$$

•
$$\alpha_1 p_2 + p_1^2 + \frac{1}{2} p_2^2$$

• $\alpha_1 p_1 + \alpha_2 p_2 + p_1^2 + \frac{1}{2} p_2^2$

•
$$\alpha_1 p_1 + \alpha_3 p_3 + p_1^2 + \frac{1}{2} p_2^2$$

•
$$\alpha_1 p_1 + \alpha_2 p_2 + \alpha_4 p_3 + p_1^2 + \frac{1}{2} p_2^2$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Example

Consider $(\Sigma^{(2,0)}, \chi^2_{\alpha})$ for $\alpha > 0$

• The optimal Hamiltonian $H(p) = \alpha p_1 + \frac{1}{2}(p_1^2 + p_2^2)$ is equivalent to

$$H_1^1(p) = p_2 + \frac{1}{2}p_1^2$$

Indeed, let

$$\psi: \boldsymbol{\rho} \mapsto \boldsymbol{\rho} \begin{bmatrix} \mathbf{0} & \mathbf{0} & \mathbf{1} \\ -\alpha & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \alpha & \mathbf{0} \end{bmatrix} + \begin{bmatrix} \mathbf{0} \\ \mathbf{1} - \alpha^2 \\ \mathbf{0} \end{bmatrix}$$

• Then we have $\psi_* \vec{H} = \vec{H}_1^1$; or more specifically,

$$(T\psi \cdot \vec{H})(p) = \begin{bmatrix} -\alpha p_2 \\ \alpha p_2 p_3 \\ \alpha (\alpha + p_1) p_3 \end{bmatrix} = (\vec{H}_1^1 \circ \psi)(p)$$

э

Proposition

$$(\Sigma, \Xi)$$
 and (Σ', Ξ') are C-equivalent

∜

associated H and H' are A-equivalent

Remark

- The converse is not true
- However, we can still solve for the optimal controls of any given cost-extended system

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Counter example

$(\Sigma^{(2,0)}, \chi_0^2)$

• $\Xi^{(2,0)}(\mathbf{1}, u) = u_1 E_1 + u_2 E_2$ • χ_0^2 : $\int_0^T (u_1(t)^2 + u_2(t)^2) dt \to \min$

:
$$H^2(p) = \frac{1}{2}(p_1^2 + p_2^2)$$

$(\overline{\Sigma^{(3,0)}},\chi^1_\beta)$

•
$$\Xi^{(3,0)}(\mathbf{1},u) = u_1 E_1 + u_2 E_2 + u_3 E_3$$

•
$$\chi_{\beta}^{1}$$
 : $\int_{0}^{T} (u_{1}(t)^{2} + u_{2}(t)^{2} + \beta u_{3}(t)^{2}) dt \rightarrow \min, \ 0 < \beta < 1$

$$\therefore H^{3}(p) = \frac{1}{2}(p_{1}^{2} + p_{2}^{2} + \frac{1}{\beta}p_{3}^{2})$$

 H^2 and H^3 are both equivalent to $H(p) = \frac{1}{2}p_1^2$

R.M. Adams (RU)

Introduction

- 2 Control systems on SO(3)
- 3 Cost-extended systems
- 4 Hamilton-Poisson systems

3 > 4 3

Summary

Related the notions of

DF-equivalence, C-equivalence, and A-equivalence

Obtained each type of classification for SO(3)

Related work

- Final integration procedure on SO(3)
- Control systems on SO(4)
- Note that $\mathfrak{so}(4) \cong \mathfrak{so}(3) \oplus \mathfrak{so}(3)$

< ロ > < 同 > < 回 > < 回 >