Quadratic Hamilton-Poisson Systems <u>Equivalence</u>, Stability and Integration

Dennis Barrett

Geometry and Geometric Control (GGC) Research Group
Department of Mathematics (Pure & Applied)
Rhodes University
South Africa

Department of Mathematics The University of Ostrava 7 May 2014

HP formalism

- Hamilton-Poisson formalism
- 2 Case study: $\mathfrak{se}(1,1)_{-}^{*}$
- 3 Case study: $(\mathfrak{se}(1,1)^*_-, H_4)$
- 4 Three-dimensional Lie-Poisson spaces

Introduction

Context

HP formalism

Study a class of Hamilton-Poisson systems relating to optimal control problems on Lie groups.

Objects

quadratic Hamilton-Poisson systems on duals of Lie algebras

Equivalence

equivalence under affine isomorphisms

Problem

- classify Hamilton-Poisson systems under affine equivalence
- investigate stability nature of equilibria
- find integral curves of systems

Hamilton-Poisson formalism

(Minus) Lie-Poisson space $\mathfrak{g}_-^*=(\mathfrak{g}^*,\{\cdot,\cdot\})$

$$\{F,G\}(p)=-p\cdot[\mathbf{d}F(p),\mathbf{d}G(p)],\qquad F,G\in C^{\infty}(\mathfrak{g}^*)$$

Hamiltonian vector fields

To every Hamiltonian $H \in C^{\infty}(\mathfrak{g}^*)$ we associate the vector field

$$\vec{H}[F] = \{F, H\}, \qquad F \in C^{\infty}(\mathfrak{g}^*)$$

- equations of motion: $\dot{p}_i = -p \cdot [E_i, \mathbf{d}H(p)]$
- Casimir functions: $\vec{C} = 0$
- integral curves evolve on $H^{-1}(h_0) \cap C^{-1}(c_0)$

Stability of equilibria

Equilibria

An equilibrium point of \vec{H} is a point $p_e \in \mathfrak{g}^*$ such that $H(p_e) = 0$.

Lyapunov stability nature of p_e

- stable if for every neighbourhood N of p_e there exists a neighbourhood $N' \subseteq N$ of p_e such that, for every integral curve $p(\cdot)$ of \vec{H} with $p(0) \in N'$, we have $p(t) \in N$ for all t > 0
- unstable if it is not stable

Standard results

Energy-Casimir method (Ortega, Planas-Bielsa & Ratiu 2005)

Suppose there exist $\lambda_0, \lambda_1 \in \mathbb{R}$ such that

- $\mathbf{d}(\lambda_0 H + \lambda_1 C)(p_e) = 0$
- $\mathbf{d}^2(\lambda_0 H + \lambda_1 C)(p_e)|_{W \times W}$ is positive definite, where

$$W = \ker \mathbf{d}H(p_e) \cap \ker \mathbf{d}C(p_e).$$

Then p_e is stable.

Spectral instability

If there exists an eigenvalue of $\mathbf{D}\vec{H}(p_e)$ with a positive real part, then p_e is unstable.

Quadratic Hamilton-Poisson systems

QHP system $(\mathfrak{g}_{-}^*, H_{A,Q})$

$$H_{A,Q}(p) = L_A(p) + H_Q(p)$$

= $p(A) + Q(p), A \in \mathfrak{g}$

- Q is a quadratic form on g*
- in coordinates: $H_{A,O}(p) = pA + \frac{1}{2}pQp^{\top}$
- $H_{A,O}$ is homogeneous if A=0; otherwise, inhomogeneous

Restriction

Q is positive semidefinite

Affine equivalence (A-equivalence)

 $(\mathfrak{g}_{-}^*, H_{A,\mathcal{Q}})$ and $(\mathfrak{h}_{-}^*, H_{B,\mathcal{R}})$ are A-equivalent if there exists an affine isomorphism $\psi: \mathfrak{g}^* \to \mathfrak{h}^*$, $p \mapsto \psi_0(p) + q$ such that

$$\psi_0 \cdot \vec{H}_{A,\mathcal{Q}} = \vec{H}_{B,\mathcal{R}} \circ \psi.$$

(For homogeneous systems: affinely equiv. ← linearly equiv.)

Sufficient conditions

 $(\mathfrak{g}_{-}^*, H_{A,\mathcal{Q}})$ is A-equivalent to the following systems on \mathfrak{g}_{-}^* :

- $H_{A,Q} \circ \psi$, where $\psi : \mathfrak{g}^* \to \mathfrak{g}^*$ is a linear Poisson automorphism
- $H_{A,O} + C$, where C is a Casimir function
- $H_{A,rO}$, where r > 0

Case study: the semi-Euclidean Lie-Poisson space

Lie algebra

$$\mathfrak{se}(1,1) = \left\{ egin{bmatrix} 0 & 0 & 0 \ x & 0 & heta \ y & heta & 0 \end{bmatrix} : x,y, heta \in \mathbb{R}
ight\}$$

Standard basis

$$E_1 = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \qquad E_2 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix} \qquad E_3 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

Commutators

$$[E_2, E_3] = -E_1$$
 $[E_3, E_1] = E_2$ $[E_1, E_2] = 0$

Dennis Barrett (Rhodes)

Hamilton-Poisson systems on $\mathfrak{se}(1,1)_{-}^{*}$

Equations of motion

With respect to the dual basis (E_1^*, E_2^*, E_3^*) :

$$\begin{cases} \dot{p}_1 = \frac{\partial H}{\partial p_3} p_2 \\ \dot{p}_2 = \frac{\partial H}{\partial p_3} p_1 \\ \dot{p}_3 = -\frac{\partial H}{\partial p_1} p_2 - \frac{\partial H}{\partial p_2} p_1 \end{cases}$$

Casimir function

$$C: (p_1, p_2, p_3) \mapsto p_1^2 - p_2^2$$

Dennis Barrett (Rhodes)

Homogeneous systems

Representatives

$$H_0(p) = 0 H_1(p) = \frac{1}{2}p_1^2 H_2(p) = \frac{1}{2}(p_1 + p_2)^2 H_3(p) = \frac{1}{2}p_3^2 H_4(p) = \frac{1}{2}(p_1^2 + p_3^2) H_5(p) = \frac{1}{2}[(p_1 + p_2)^2 + p_3^2]$$

Homogeneous systems

Representatives

$$H_{0}(p) = 0 H_{1}(p) = \frac{1}{2}p_{1}^{2}$$

$$H_{2}(p) = \frac{1}{2}(p_{1} + p_{2})^{2} H_{3}(p) = \frac{1}{2}p_{3}^{2}$$

$$H_{4}(p) = \frac{1}{2}(p_{1}^{2} + p_{3}^{2}) H_{5}(p) = \frac{1}{2}[(p_{1} + p_{2})^{2} + p_{3}^{2}]$$

Types of systems

- ruled systems: integral curves contained in lines
- planar systems: integral curves contained in planes, not ruled
- nonplanar systems: not ruled or planar

Homogeneous systems, cont'd

Proposition

Let $H_{\mathcal{O}}$ be a homogeneous system. There exists a linear Poisson automorphism ψ and real numbers r > 0, $k \in \mathbb{R}$ such that $H_{rO} \circ \psi + kC = H_i$ for exactly one $i \in \{0, \dots, 5\}$.

Corollary

Let $H_{A,O} = L_A + H_O$ be an inhomogeneous system. Then $H_{A,O}$ is A-equivalent to the system $L_B + H_i$, for some $B \in \mathfrak{se}(1,1)$ and exactly one $i \in \{0, \ldots, 5\}.$

Six disjoint classes of inhomogeneous systems

Inhomogeneous systems

$$H_1^{(0)}(p) = p_1$$

 $H_{2,\alpha}^{(0)}(p) = \alpha p_3$

$$H_1^{(1)}(p) = p_1 + \frac{1}{2}p_1^2$$

 $H_2^{(1)}(p) = p_1 + p_2 + \frac{1}{2}p_1^2$
 $H_{3,\alpha}^{(1)}(p) = \alpha p_3 + \frac{1}{2}p_1^2$

$$H_1^{(2)}(p) = p_1 + \frac{1}{2}(p_1 + p_2)^2$$

$$H_2^{(2)}(p) = p_1 + p_2 + \frac{1}{2}(p_1 + p_2)^2$$

$$H_{3,\delta}^{(2)}(p) = \delta p_3 + \frac{1}{2}(p_1 + p_2)^2$$

$$H_1^{(3)}(p) = p_1 + \frac{1}{2}p_3^2$$

 $H_2^{(3)}(p) = p_1 + p_2 + \frac{1}{2}p_3^2$
 $H_3^{(3)}(p) = \frac{1}{2}p_3^2$

$$H_{1,\alpha}^{(4)}(p) = \alpha p_1 + \frac{1}{2}(p_1^2 + p_3^2)$$

$$H_{2,\alpha_1,\alpha_2}^{(4)}(p) = \alpha_1 p_1 + \alpha_2 p_2 + \frac{1}{2}(p_1^2 + p_3^2)$$

$$H_{1,\alpha}^{(5)}(p) = \alpha p_1 + \frac{1}{2}[(p_1 + p_2)^2 + p_3^2]$$

$$H_2^{(5)}(p) = p_1 - p_2 + \frac{1}{2}[(p_1 + p_2)^2 + p_3^2]$$

$$H_{3,\alpha}^{(5)}(p) = \alpha(p_1 + p_2) + \frac{1}{2}[(p_1 + p_2)^2 + p_3^2]$$

 $\alpha > 0$

 $\alpha_1 > \alpha_2 > 0$

 $\delta \neq 0$

Dennis Barrett (Rhodes)

Inhomogeneous systems

$$H_1^{(0)}(p) = p_1$$

 $H_{2,\alpha}^{(0)}(p) = \alpha p_3$

$$H_1^{(1)}(p) = p_1 + \frac{1}{2}p_1^2$$

$$H_2^{(1)}(p) = p_1 + p_2 + \frac{1}{2}p_1^2$$

$$H_{3,\alpha}^{(1)}(p) = \alpha p_3 + \frac{1}{2}p_1^2$$

$$H_1^{(2)}(p) = p_1 + \frac{1}{2}(p_1 + p_2)^2$$

$$H_2^{(2)}(p) = p_1 + p_2 + \frac{1}{2}(p_1 + p_2)^2$$

$$H_{3,\delta}^{(2)}(p) = \delta p_3 + \frac{1}{2}(p_1 + p_2)^2$$

$$H_1^{(3)}(p) = p_1 + \frac{1}{2}p_3^2$$

 $H_2^{(3)}(p) = p_1 + p_2 + \frac{1}{2}p_3^2$
 $H_3^{(3)}(p) = \frac{1}{2}p_3^2$

$$H_{1,\alpha}^{(4)}(p) = \alpha p_1 + \frac{1}{2}(p_1^2 + p_3^2)$$

$$H_{2,\alpha_1,\alpha_2}^{(4)}(p) = \alpha_1 p_1 + \alpha_2 p_2 + \frac{1}{2}(p_1^2 + p_3^2)$$

$$H_{1,\alpha}^{(5)}(p) = \alpha p_1 + \frac{1}{2}[(p_1 + p_2)^2 + p_3^2]$$

$$H_2^{(5)}(p) = p_1 - p_2 + \frac{1}{2}[(p_1 + p_2)^2 + p_3^2]$$

$$H_{3,\alpha}^{(5)}(p) = \alpha(p_1 + p_2) + \frac{1}{2}[(p_1 + p_2)^2 + p_3^2]$$

ruled

planar

nonplanar, type I

nonplanar, type II

Case study: $(\mathfrak{se}(1,1)_-^*, H_4)$, $H_4(p) = \frac{1}{2}(p_1^2 + p_3^2)$

Equations of motion

$$\begin{cases} \dot{p}_1 = p_2 p_3 \\ \dot{p}_2 = p_1 p_3 \\ \dot{p}_3 = -p_2 \end{cases}$$

Equilibria ($\mu \in \mathbb{R}, \ \nu \neq 0$)

$$e_1^{
u} = (
u, 0, 0)$$

$$\mathsf{e}_2^\mu = (\mathsf{0}, \mu, \mathsf{0})$$

$$\mathsf{e}_3^\nu = (\mathsf{0},\mathsf{0},\nu)$$

(b) C(p) = 0

Stability

The states $e_1^{\nu} = (\nu, 0, 0)$ and $e_2^{\mu} = (0, \mu, 0)$ are stable

Consider the states e_1^{ν} . Let $H_{\lambda} = \lambda_0 H_4 + \lambda_1 C$, where $\lambda_0 = 1$ and $\lambda_1 = -\frac{1}{2}$. Then $\mathbf{d}H_{\lambda}(\mathbf{e}_1^{\nu}) = 0$ and $\mathbf{d}^2H_{\lambda}(\mathbf{e}_1^{\nu}) = \mathrm{diag}(0,1,1)$. Since

$$W = \ker \mathbf{d}H_4(\mathsf{e}_1^{\nu}) \cap \ker \mathbf{d}C(\mathsf{e}_1^{\nu}) = \operatorname{span}\{E_2^*, E_3^*\}$$

we have $\mathbf{d}^2 H_{\lambda}(\mathbf{e}_1^{\nu})|_{W \times W}$ positive definite. Hence the states \mathbf{e}_1^{ν} are (Lyapunov) stable.

(Similarly for the states e_2^{μ} .)

The states $e_3^{\nu} = (0, 0, \nu)$ are unstable

The eigenvalues of $\mathbf{D}\vec{H}_4(e_3^{\nu})$ are $\{0,\nu,-\nu\}$. As $\nu\neq 0$, the states e_3^{ν} are (spectrally) unstable.

Definition

Let $k \in (0,1)$ be the modulus. The basic Jacobi elliptic functions $\operatorname{sn}(\cdot, k)$, $\operatorname{cn}(\cdot, k)$ and $\operatorname{dn}(\cdot, k)$ are the solutions to the initial value problem

$$\begin{cases} \dot{x} = yz \\ \dot{y} = -xz \\ \dot{z} = -k^2xy \end{cases} \begin{cases} sn(0, k) = x(0) = 0 \\ cn(0, k) = y(0) = 1 \\ dn(0, k) = z(0) = 1 \end{cases}$$

Limit $k \rightarrow 0$

 $\operatorname{sn}(t,k) \to \sin t$ $\operatorname{cn}(t,k) \to \cos t$ $\operatorname{dn}(t,k) \to 1$

$\overline{\mathsf{Limit}\ k o 1}$

 $\mathsf{sn}(t,k) \to \mathsf{tanh}\,t \qquad \mathsf{cn}(t,k) \to \mathsf{sech}\,t \qquad \mathsf{dn}(t,k) \to \mathsf{sech}\,t$

Integration

Integral curves $p(\cdot)$ of H_4

Let $H_4(p(0)) = h_0 > 0$ and $C(p(0)) = c_0 \ge 0$.

• If $c_0 > 0$, then there exist $t_0 \in \mathbb{R}$ and $\sigma \in \{-1, 1\}$ such that $p(t) = \bar{p}(t + t_0)$ for every t

Case study: $(\mathfrak{se}(1,1)^*_-, H_4)$

• If $c_0 = 0$, then there exist $t_0 \in \mathbb{R}$ and $\sigma, \varsigma \in \{-1, 1\}$ such that $p(t) = \bar{q}(t + t_0)$ for every t

$$\begin{cases} \bar{p}_1(t) = \sigma\Omega \operatorname{dn}(\Omega t, k) \\ \bar{p}_2(t) = -\sigma k\Omega \operatorname{cn}(\Omega t, k) \\ \bar{p}_3(t) = k\Omega \operatorname{sn}(\Omega t, k) \end{cases}$$

$$\left\{egin{aligned} ar{q}_1(t) &= \sigma\Omega \operatorname{sech}(\Omega t) \ ar{q}_2(t) &= -\sigma arsigma \Omega \operatorname{sech}(\Omega t) \ ar{q}_3(t) &= arsigma \Omega anh(\Omega t) \end{aligned}
ight.$$

$$\Omega = \sqrt{2h_0}$$
 $k = \sqrt{1 - c_0/\Omega}$

Proof sketch

Finding expression for $\bar{p}(\cdot)$

• from $\bar{p}_1 = \bar{p}_2\bar{p}_3$, we get

$$\dot{\bar{p}}_1 = \sqrt{(2h_0 - \bar{p}_1^2)(\bar{p}_1^2 - c_0)} \quad \Longleftrightarrow \quad \int \frac{d\bar{p}_1}{\sqrt{(2h_0 - \bar{p}_1^2)(\bar{p}_1^2 - c_0)}} = \int dt$$

Case study: $(\mathfrak{se}(1,1)^*, H_4)$

• the formula $\int_{x}^{a} \frac{dt}{\sqrt{(a^2-t^2)(t^2-b^2)}} = \frac{1}{a} \operatorname{dn}^{-1}(\frac{x}{a}, \frac{\sqrt{a^2-b^2}}{a}), \ b \leq x \leq a$ yields

$$ar{p}_1(t) = \sigma \Omega \operatorname{dn}(\Omega t, k), \quad \Omega = \sqrt{2h_0}, \ k = \sqrt{1 - c_0/\Omega}$$

• from $2h_0 = \bar{p}_1(t)^2 + \bar{p}_3(t)^2$, we get

$$\bar{p}_3(t) = k\Omega \operatorname{sn}(\Omega t, k)$$

roof sketch, cont a

ullet integrate $\dot{ar{p}}_2=ar{p}_1ar{p}_3$, to get

$$\bar{p}_2(t) = -\sigma k \Omega \operatorname{cn}(\Omega t, k)$$

- lastly, verify that $\dot{\bar{p}}(t) = \vec{H}_4(\bar{p}(t))$
- find $\bar{q}(\cdot)$ by taking the limit $c_0 \to 0$ of $\bar{p}(\cdot)$ and allowing for changes of sign

$c_0 > 0$: $p(t) = \bar{p}(t + t_0)$

- let $\sigma = \operatorname{sgn}(p_1(0))$
- from IVT and constants of motion, there exists $t_0 \in \mathbb{R}$ such that $\bar{p}(t_0) = p(0)$
- therefore $t \mapsto p(t)$ and $t \mapsto \bar{p}(t+t_0)$ solve the same Cauchy problem, hence are identical

Three-dimensional Lie-Poisson spaces

Restriction

• Lie-Poisson spaces admitting global Casimir functions

Lie-Po	Casimir	
\mathbb{R}^3	Abelian	all
$(\mathfrak{h}_3)^*$	Heisenberg	p_1
$(\mathfrak{aff}(\mathbb{R})\oplus\mathbb{R})_{-}^{*}$		<i>p</i> ₃
$\mathfrak{se}(1,1)^*$	Semi-Euclidean	$p_1^2 - p_2^2$
se(2)*_	Euclidean	$p_1^2 + p_2^2$
$\mathfrak{so}(2,1)^*$	Pseudo-orthogonal	$p_1^2 + p_2^2 - p_3^2$
so(3)*_	Orthogonal	$p_1^2 + p_2^2 + p_3^2$

Classification of homogeneous systems (Biggs & Remsing 2013)

$(\mathfrak{h}_3)^*$	$(\mathfrak{aff}(\mathbb{R})\oplus\mathbb{R})^*$	$\mathfrak{se}(1,1)^*$	$\mathfrak{se}(2)_{-}^{*}$	$\mathfrak{so}(2,1)^*$	so(3) ₋
p_3^2	$(p_1+p_3)^2$	p_1^2	p_{2}^{2}		
	$ ho_1^2$	$(p_1+p_2)^2$			
	p_2^2				
		p_3^2		p_1^2	
$p_2^2 + p_3^2$			p_3^2	p_3^2	p_1^2
	$p_1^2 + p_2^2$				
	$p_2^2 + (p_1 + p_3)^2$				
				$(p_2+p_3)^2$	
		$\rho_1^2+\rho_3^2$	$p_2^2 + p_3^2$	$p_1^2+p_3^2$	$p_1^2 + \frac{1}{2}p_1^2$
		$(p_1+p_2)^2+p_3^2$		$p_2^2 + (p_1 + p_3)^2$	

Dennis Barrett (Rhodes)

Classification of homogeneous systems (Biggs & Remsing 2013)

$(\mathfrak{h}_3)^*$	$(\mathfrak{aff}(\mathbb{R})\oplus\mathbb{R})^*$	$\mathfrak{se}(1,1)^*$	se(2)*_	$\mathfrak{so}(2,1)^*$	so(3) ₋ *
p_3^2	$(p_1+p_3)^2$	p_1^2	p_{2}^{2}		
	$ ho_1^2$	$(p_1+p_2)^2$			
	p_2^2				
		p_3^2		p_1^2	
$p_2^2 + p_3^2$			p_3^2	p_3^2	p_1^2
	$p_1^2+p_2^2$				
	$p_2^2 + (p_1 + p_3)^2$				
				$(p_2+p_3)^2$	
		$p_1^2 + p_3^2$	$p_2^2 + p_3^2$	$p_1^2 + p_3^2$	$p_1^2 + \frac{1}{2}p_1^2$
		$(p_1+p_2)^2+p_3^2$		$p_2^2 + (p_1 + p_3)^2$	

ruled

planar

nonplanar

Extending this classification

(Biggs & Remsing, to be published)

- classification extended to all 3D Lie-Poisson spaces
- complete stability analysis performed for each system
- integral curves for all systems with global Casimirs obtained

Further extensions

HP formalism

- ullet relax condition: $\mathcal Q$ positive semidefinite
- stepping stone to classification of inhomogeneous systems

Conclusion

HP formalism

Some related work

- QHP systems on $\mathfrak{so}(3)^*$ (Adams, et al. 2014; see also Dăniasă, et al. 2011)
- free rigid body dynamics (Tudoran 2013; see also Tudoran & Tudoran 2009)
- stability and numerical integration of QHP systems (Aron, Craioveanu, Dăniasă, Pop, Puta 2007–2010)
- cost-extended systems (Biggs & Remsing 2012)

References

HP formalism

- A. Aron, C. Dăniasă and M. Puta, Quadratic and homogeneous Hamilton-Poisson system on \$0(3)*, Int. J. Geom. Methods Mod. Phys. 4 (2007), 1173?1186.
- A. Aron, M. Craioveanu, C. Pop and M. Puta, Quadratic and homogeneous Hamilton-Poisson systems on A**_{3.6,-1}, Balkan J. Geom. Appl., 15 (2010), 1–7.
- A. Aron, C. Pop and M. Puta, Some remarks on $(\mathfrak{sl}(2,\mathbb{R}))^*$ and Kahan?s Integrator, An. Şt. Univ. "A.I. Cuza" laşi. Ser. Mat., 53(suppl.)(2007), 49-60.
- R. Biggs and C.C. Remsing, On the equivalence of cost-extended control systems on Lie groups, in H. Karimi, editor, Recent Researches in Automatic Control, Systems Science and Communications, Porto, 2012. WSEAS Press, 60-65.
 - R. Biggs and C.C. Remsing, A classification of quadratic Hamilton-Poisson systems in three dimensions, Geometry, Integrability and Quantization, June 7-12, 2013, Varna, Bulgaria.

References

C. Dăniasă, A. Gîrban and R.M. Tudoran, New aspects on the geometry and dynamics of quadratic Hamiltonian systems on $(\mathfrak{so}(3))^*$, Int. J. Geom. Methods Mod. Phys., 8 (2011), 1695-1721.

J-P. Ortega, V. Planas-Bielsa and T.S. Ratiu, Asymptotic and Lyapunov stability of constrained and Poisson equilibria, J. Differential Equations, 214 (2005), 92-127.

R.M Tudoran, The free rigid body dynamics: generalized versus classic, J. Math. Phys., 54 (2013), 072704.

R.M. Tudoran and R.A. Tudoran, On a large class of three-dimensional Hamiltonian systems, *J. Math. Phys.*, 50 (2009), 012703.