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Outline

@ Hamilton-Poisson formalism
© Case study: se(1,1)*
© Case study: (se(1,1)*, Hy)

@ Three-dimensional Lie-Poisson spaces
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Introduction

Context

Study a class of Hamilton-Poisson systems relating to optimal control
problems on Lie groups.

Objects
@ quadratic Hamilton-Poisson systems on duals of Lie algebras

Equivalence

@ equivalence under affine isomorphisms

| A

Problem
o classify Hamilton-Poisson systems under affine equivalence
@ investigate stability nature of equilibria

o find integral curves of systems

v
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HP formalism

Hamilton-Poisson formalism

(Minus) Lie-Poisson space g* = (g%, {-,-})

{F,G}(p) = —p-[dF(p),dG(p)],  F,G € C™(g")

| A\

Hamiltonian vector fields
To every Hamiltonian H € C*°(g*) we associate the vector field

HIFl={F.H},  FeC(g")

@ equations of motion: p; = —p - [E;,dH(p)]
o Casimir functions: C =0

e integral curves evolve on H=1(ho) N C~1(cp)
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HP formalism

Stability of equilibria

Equilibria

An equilibrium point of H is a point pe € g* such that I:I(pe) =0.

v

Lyapunov stability nature of p,

@ stable if for every neighbourhood N of pe there exists a
nei%hbourhood N" C N of pe such that, for every integral curve p(+)
of H with p(0) € N/, we have p(t) € N for all t >0

@ unstable if it is not stable

N N /
N N EaN

\\) */\
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N
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HP formalism

Standard results

Energy-Casimir method (Ortega, Planas-Bielsa & Ratiu 2005)
Suppose there exist Ag, A1 € R such that

o d(AoH + A1 C)(pe) =0

o d?(M\oH + A1 C)( pe)’W W is positive definite, where

W = kerdH(pe) N kerdC(pe).

Then pe is stable.

Spectral instability

If there exists an eigenvalue of DI:I(pe) with a positive real part, then p. is
unstable.

v
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HP formalism

Quadratic Hamilton-Poisson systems

QHP system (g, Ha o)

Ha,o(p) = La(p) + Ho(p)
=p(A)+Q(p), Acg

e @ is a quadratic form on g*
@ in coordinates: Ha o(p) = pA+ %prT

@ Hj g is homogeneous if A = 0; otherwise, inhomogeneous

Restriction

@ QO is positive semidefinite
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HP formalism

Equivalence of systems

Affine equivalence (A-equivalence)

(9%, Ha o) and (b* , Hgr) are A-equivalent if there exists an affine
isomorphism ) : g* — b*, p — 1o(p) + g such that

(O FIA,Q = F/B,R o 1.

(For homogeneous systems: affinely equiv. <= linearly equiv.)

Sufficient conditions

| \

(g, Ha o) is A-equivalent to the following systems on g* :
@ Hpg o1, wheret : g* — g* is a linear Poisson automorphism
@ Hp o+ C, where C is a Casimir function
] HAJQ, where r > 0

v
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Case study: se(1,1)*

Case study: the semi-Euclidean Lie-Poisson space

se(1,1) = 'x,y,0 €R

< X O
Sl el
o T o

Standard basis

0 0O 0 0O 0 0O
Ez={1 0 O E;=1{0 0 O Es=1|0 0 1
0 0O 1 00 010

v

[E2, B3] = —E1 [Es, E1] = E2 [E1,E2] =0

v
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Case study: se(1,1)*

Hamilton-Poisson systems on se(1,1)*

Equations of motion

With respect to the dual basis (Ef, E5, E3):
. OH
P1= 7—P2
op3
. OH
p2= 7—p1
op3
oH OH
| p3 = o1 P2 o2 p1

C : (p1,p2, p3) = P — P>
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Case study: se(1,1)*

Homogeneous systems

Representatives

Ho(p) =0 Hi(p) = 3pi
Ha(p) = 3(p1 + p2)? H3(p) = 3P3
Ha(p) = 3(p3 + P3) Hs(p) = 3[(p1 + p2)* + pP3]
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Case study: se(1,1)*

Homogeneous systems

Representatives

Ho(p) =0 Hi(p) = 3%
Ha(p) = 3(p1 + p2)? Hs(p) = 1p3
Ha(p) = 3(pi + P3) Hs(p) = 3[(p1 + p2)* + pP3]

v

Types of systems

@ ruled systems: integral curves contained in lines

@ planar systems: integral curves contained in planes, not ruled

@ nonplanar systems: not ruled or planar
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Case study: se(1,1)*

Homogeneous systems, cont'd

Proposition

Let Ho be a homogeneous system. There exists a linear Poisson
automorphism v and real numbers r > 0, k € R such that
H,g o1 + kC = H; for exactly one i € {0,...,5}

Corollary

| A\

Let Ha,0 = La + Hg be an inhomogeneous system. Then Hy ¢ is
A-equivalent to the system Lg + H;, for some B € se(1,1) and exactly one
ief{0,...,5}.

v

Six disjoint classes of inhomogeneous systems

-
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Case study: se(1,1)*

Inhomogeneous systems

H (p) = pr + 5%
H(p) = p1+ p2 + 1p3 HE® (p) = ap1 + 1(p} + P3)
H) (p) = aps + 1p} HY) o (P) = a1p1 + azps + (P} + P3)
HP(p) = p1 + (p1 + p2)? HP) (p) = apr + [(p1 + p2)° + p3]
HP(p) = pr+ p2 + 2(p1 + p2)? HP(p) = p1 — p2 + 3[(p1 + p2)° + pi]
HZ)(p) = 6p3 + L(p1 + p2)’ H® (p) = alpr + p2) + L(p1 + p2)* + Pl
a>0 ay > ax >0 0#0 J
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Case study: se(1,1)*

Inhomogeneous systems

HY (p) = pr + 1pi
HY (p) = p1 + p2 + pi

H) (p) = aps + 1p}

H (p) = ap1 + 1(p} + P3)

Héfil,az(p) = a1p1 + azp2 + %(pf + pg)

HP(p) = p1 + (pr + p2)?
H?(p) = p1 + p2 + L(p1 + p2)?
Hfg(l’) =6ps + 3(pL+ p2)°

HE.(p) = ap1 + 2[(py + p2)* + pi]
H(p) = p1 = P2 + 3l(p1 + p2)° + A3

)

v

H (p) = a(pr + p2) + L[(p1 + p2)* + p3]

ruled planar

nonplanar, type | nonplanar, type Il
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Case study: (se(1,1)* , Hy)

Case study: (se(1,1)", Ha), Ha(p) = 5(pi + p3)

Equations of motion Equilibria (1 € R, v # 0)
p1 = p2p3 e] = (v,0,0)
p2 = p1p3 ey = (0,1,0)
p3 = —p2 e5 = (0,0,v)

(b) €(p) =0
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Case study: (se(1,1)* , Hy)

Stability

The states e/ = (1,0,0) and €5 = (0, , 0) are stable

Consider the states e}. Let Hy = AoHs + A1 C, where Ao =1 and
A1 = —3. Then dH,(e}) = 0 and d?H,(e}) = diag(0,1,1). Since

W = kerdHa(e]) NkerdC(e]) = span{E;, E3}

we have d?Hy(e})| . 4 Positive definite. Hence the states e} are
(Lyapunov) stable.

(Similarly for the states e5.)

The states e = (0,0, v) are unstable

The eigenvalues of DI:I4(e§) are {0,v,—v}. As v # 0, the states €} are
(spectrally) unstable.
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Case study: (se(1,1)* , Hy)

Jacobi elliptic functions

Let k € (0,1) be the modulus. The basic Jacobi elliptic functions sn(-, k),
cn(-, k) and dn(-, k) are the solutions to the initial value problem

x=yz sn(0, k) =x(0) =0
- en(0, k) = y(0) = 1
7= —k’xy dn(0, k) = z(0) = 1
sn(t, k) —sint cn(t, k) — cost dn(t, k) — 1
sn(t, k) — tanht cn(t, k) — secht dn(t, k) — secht
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Case study: (se(1,1)* , Hy)

Jacobi elliptic functions, cont'd

cn(t, k)
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Case study: (se(1,1)* , Hy)

Integration

Integral curves p(-) of Hy
Let Ha(p(0)) = hp > 0 and C(p(0)) = co > 0.
o If ¢g > 0, then there exist tp € R and o € {—1,1} such that
p(t) = p(t + to) for every t
o If ¢g =0, then there exist ty € R and 0,5 € {—1,1} such that

p(t) = g(t + to) for every t
p1(t) = oQ2dn(Q2t, k) Gi(t) = 0Qsech(Qt)
p2(t) = —okQcen(Q2t, k) G2(t) = —osQ sech(Qt)
p3(t) = kQsn(Qt, k) gs(t) = ¢Qtanh(Qt)

Q:m k:\/l—Co/Q J
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Case study: (se(1,1)* , Hy)

Proof sketch

Finding expression for p(-)

e from p; = pop3, we get

b= yfCho - ) = [

(2ho—p7)

@ the formula f;m 2’ a

CE / dt

= %dn_l(5 Va=by h < x < avyields

p1(t) = 0Qdn(Qt, k), Q=+/2hy, k= /1— c/Q

o from 2hy = p1(t)? + p3(t)?, we get

[33(!‘) = kQ sn(Qt, k)

v
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Case study: (se(1,1)* , Hy)

Proof sketch, cont’d

@ integrate pp = p13, to get
p2(t) = —okQcen(Q2t, k)

o lastly, verify that p(t) = FI;;(ﬁ(t))

e find g(-) by taking the limit ¢ — 0 of p(+) and allowing for changes

of sign

¢ > 0: p(t) = p(t + to)
@ let 0 = sgn(p1(0))
@ from IVT and constants of motion, there exists tyg € R such that
p(to) = p(0)
o therefore t — p(t) and t — p(t + tp) solve the same Cauchy
problem, hence are identical

v
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3D Lie-Poisson spaces

Three-dimensional Lie-Poisson spaces

Restriction
@ Lie-Poisson spaces admitting global Casimir functions

’ Lie-Poisson space Casimir

R3 Abelian all

(b3)- Heisenberg p1

(aff(R) & R)™ P3

se(1,1)% Semi-Euclidean p? — p3
se(2)* Euclidean p3 + P}
s0(2,1)% Pseudo-orthogonal | p? + p3 — p3
s0(3)" Orthogonal p? + p3 + p3
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3D Lie-Poisson spaces

Classification of homogeneous systems (Biggs & Remsing 2013)

| 0. | @i®eRr): | se(1,1)t | s | s0(21)r | so(3)" |

P3 (p1 + ps)? pi P

p? (p1 + p2)?

p3

P3 pi
p3 + p3 P3 P pi
p? + p3
p5 + (p1 + p3)°
(p2+p3)°
pi+ p3 P+ p3 pi+ p3 pi + 3Pt
(pr+ p2)* + pP3 P> + (p1 + p3)’
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3D Lie-Poisson spaces

Classification of homogeneous systems (Biggs & Remsing 2013)

| 0. | @i®eRr): | se(1,1)t | s | s0(21)r | so(3)" |

P3 (p1 + p3)? pi p3

pi (pL+p2)°

P

P3 pi
p3 + p3 P3 P3 pi
pi+ P>
p5 + (p1 + p3)°
(p2 + p3)’?
pi+ p3 P+ p3 pi+ p3 pi + 3pi
(pr+ p2)> + p3 p3 + (p1+ p3)’
ruled planar nonplanar J

Dennis Barrett (Rhodes) Quadratic HP Systems May 2014 25 /29



3D Lie-Poisson spaces

Extending this classification

(Biggs & Remsing, to be published)
@ classification extended to all 3D Lie-Poisson spaces
@ complete stability analysis performed for each system

@ integral curves for all systems with global Casimirs obtained

v
Further extensions

@ relax condition: Q positive semidefinite

@ stepping stone to classification of inhomogeneous systems
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Conclusion

Some related work

@ QHP systems on s0(3)* (Adams, et al. 2014; see also D3nias3, et al. 2011)

o free rigid body dynamics (Tudoran 2013; see also Tudoran & Tudoran 2009)

@ stability and numerical integration of QHP systems (Aron, Craioveanu,
Dinias3, Pop, Puta 2007-2010)

@ cost-extended systems (Biggs & Remsing 2012)
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