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Geometric control theory

began in the early 1970s
study control systems using methods from differential geometry
blend of differential equations, differential geometry, and analysis

R.W. Brockett, C. Lobry, A.J. Krener, H.J. Sussmann, V. Jurdjevic,
B. Bonnnard, J.P. Gauthier, A.A. Agrachev, Y.L. Sachkov, U. Boscain

Smooth control systems

o family of vector fields, parametrized by controls
@ state space, input space, control (or input), trajectories
@ characterize set of reachable points: controllability problem

@ reach in the best possible way: optimal control problem
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Invariant control systems on Lie groups

@ rich in symmetry

o first considered in 1972 by Brockett and by Jurdjevic and Sussmann

@ natural geometric framework for various (variational) problems in
mathematical physics, mechanics, elasticity, and dynamical systems

@ Last few decades: invariant control affine systems evolving on matrix
Lie groups of low dimension have received much attention.
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Invariant control affine systems

Left-invariant control affine system

() o ==(g,u)=g(A+wB1+ -+ uBy), geG uelR!

@ state space: G is a connected (matrix) Lie group with Lie algebra g
e input set: R¢
@ dynamics: family of left-invariant vector fields =, = =(-, u)

@ parametrization map: =(1,:):R¢ =g, wur A+ B+ -+ By
is an injective (affine) map

o trace: T=A+T%= A+ (By,...,By) is an affine subspace of g

When the state space is fixed, we simply write

P A—i—ulBl—i---'—FUng.
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Trajectories, controllability, and full rank

admissible controls: piecewise continuous curves u(-) : [0, T] — R*

=(g(t), u(t))

trajectory: absolutely continuous curve s.t. g(t)

@ controlled trajectory: pair (g(-), u(+))

@ controllable: exists trajectory from any point to any other

otrace T=A4+T%=A+(By,..
@ homogeneous: A € 0
@ inhomogeneous: A ¢ I
@ drift-free: A=0

R. Biggs, C.C. Remsing (Rhodes)

full rank: Lie(I') = g; necessary condition for controllability

> A+wmB+- -+ wBy

., By) is an affine subspace of g
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Simple example (simplified model of a car)

Euclidean group SE (2)

1 0 0

x cosf —sinf| : x,y,0 €R
y sinf cosf
Y B+ wmEs l

In coordinates

X =—uisinf@ y=ujcosf 6=u

5¢ (2) : [Ez, E3] =EK [E3, E1] =65 [El, E2] =0 J
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The plate-ball problem

Kinematic situation

@ ball rolls without slipping
between two horizontal plates

@ through the horizontal
movement of the upper plate

o transfer ball from initial position
and orientation to final position
and orientation

@ along a path which minimizes

Jo v ()t

A\
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The plate-ball problem

As invariant optimal control problem

Can be regarded as invariant optimal control problem on 5D group
xx 0 O
RZxSO(3)=< [0 x 0| :x,xeR, ReSO(3)
0 0 R
specified by
1000 O 0 00O O
0 00O O 0100 O
g=g|w|0 000 -1|+uw|0 000 O
0 00O O 0000 —1
0010 O 0001 O
T
g(0) =g, &(T)=eg, / (v 4 u2) dt — min.
0
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Control of Serret-Frenet systems

Consider curve (t) in E2 with moving frame (v1(t), va(t))

W) =w(t),  wa(t) =w()w(t),  w(t) = —r(t)v(t).

Here k(t) is the signed curvature of ~(t).

Lift to group of motions of FE?
1 0 0

SE (2) = Y1
72

R :’yl,’}/QGR,RESO(2)
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Control of Serret-Frenet systems

@ Interpreting the curvature k(t) as a control function, we have:
inhomogeneous invariant control affine system

0 0O 00 O
g=g| |1 0 Ol +~x(t)|0O O —1] |, g € SE(2).
0 0O 01 O
@ Many classic variational problems in geometry become problems in
optimal control.
o Euler's elastica: find curve ~(t) minimizing fOT x2(t) dt such that
7(0)=a, 4(0) =4, ¥(T)=b, ¥(T)=0b.
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Equivalence of control systems

Overview

@ state space equivalence: equivalence up to coordinate changes in the
state space; well understood

@ establishes a one-to-one correspondence between the trajectories of
the equivalent systems

o feedback equivalence: (feedback) transformations of controls also
permitted

@ extensively studied; much weaker than state space equivalence

@ we specialize to left-invariant systems on Lie groups
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State space equivalence

Definition

Y and Y’ are state space equivalent if
there exists a diffeomorphism ¢ : G — G’ such that ¢,=, ==/

—u-

Full-rank systems ¥ and ¥’ are state space equivalent if and only if there
exists a Lie group isomorphism ¢ : G — G’ such that

Tio-=(1,-) =='(1,").
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Example: classification on the Euclidean group

Result

On the Euclidean group SE(2), any inhomogeneous full-rank system
YA+ B+ wbBs
is state space equivalent to exactly one of the following systems

2170457 © aEs3 + U1(E1 -+ ")/1E2) -+ U2(5E2), a>0, >0, v,€R
22’,13.7 : BE1 + 7B+ vEs+ ul(aE3) 4+ upEpy, a>0,8>0,v,eR
23,(167 : BE1 + 7B+ vEs+ u1(E2 aF ”)/3E3) aF UQ(OzEg,), a>0, 3>0, vi€R.

v

X y v
d Aut (SE (2)) : —oy ox w|, o=+1,x2+y2#0
0 0 1

R. Biggs, C.C. Remsing (Rhodes)
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Concrete cases covered (state space equivalence)

Classifications on

@ Euclidean group SE(2)

semi-Euclidean group SE(1,1)
pseudo-orthogonal group SO (2,1)g (resp. SL(2,R))

@ many equivalence classes

limited use
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Detached feedback equivalence

Y and Y’ are detached feedback equivalent if there

exist diffeomorphisms ¢ : G — G/, ¢ : R* — R’ such that ¢,=, = E:p(u)-

v

@ one-to-one correspondence between trajectories

@ specialized feedback transformations

@ ¢ preserves left-invariant vector fields

Full-rank systems ¥ and ¥’ are detached feedback equivalent if and only
if there exists a Lie group isomorphism ¢ : G — G’ such that

Tip-T=T
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Detached feedback equivalence

Proof sketch (equivalent <= Typ-T =1T")

@ Suppose ¥ and Y’ equivalent.
@ We may assume ¢(1) =1’; hence T1¢-=(1,u) = ='(1/,¢o(u)) and
so Tio- T =1T".

o Full-rank implies elements =(1,u) € g, u € R’ generate g.

@ Also push-forward of left-invariant vector fields =, = =(-, u) are
left-invariant.

o It follows that ¢ is a group homomorphism.

@ Conversely, suppose ¢ - =1T".

@ There exists a unique affine isomorphism ¢ : RY — R’ such that
T1¢-Z(1,u) = Z' (1, ().

@ By left-invariance (and the fact that ¢ is a homomorphism) it then
follows that Tz¢ - =(g, u) = ='(¢(g), p(v)).
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Example: classification on the Euclidean group

Result

On the Euclidean group SE(2), any inhomogeneous full-rank system
YA+ By + ubBs
is detached feedback equivalent to exactly one of the following systems

Y1 BB+ wub+ wEs
Zz’a  aEs+u B+ wE,, a>0.

X y v
dAut (SE(2)) : —oy ox w|, o==41,x>+y2#0
0 0 1
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Classification of 3D Lie algebras

Eleven types of real 3D Lie algebras

03 —R? Abelian
@ go1dg1 — aff R)®R cmpl. solvable
@ g31 — Heisenberg b3 nilpotent
@ g32 cmpl. solvable
@ g33 — book Lie algebra cmpl. solvable
e g3, — semi-Euclidean se(1,1) cmpl. solvable
@934, a>0,a#1 cmpl. solvable
o g3 — Euclidean se(2) solvable
@935, a>0 exponential
o g3 — pseudo-orthogonal s0(2,1), s[(2,R) simple
e g3, — orthogonal s0(3), su(2) simple
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Classification of 3D Lie groups

3D Lie groups

@3g; — R3 R2xT, RxT, T3 Abelian
® go1Dg1 — Aff(R)o x R, Aff(R)o x T cmpl. solvable
e g31 — Hs, H3 =Hs/Z(Hs3(Z)) nilpotent
@ g32 — G32 cmpl. solvable
@ g33 — G33 cmpl. solvable
e g3, — SE(1,1) cmpl. solvable
g3, — G3, cmpl. solvable
° 9275 — SE(2), n-fold cov. SE,(2), univ. cov. §Iv5(2) solvable
° 935 — G35 exponential
@ g36 — SO(2,1)p, n-fold cov. A(n), univ. cov. A simple
e g3z — SO(3), SU(2) simple

v

Only H3, A, n>3, and A are not matrix Lie groups.

R. Biggs, C.C.
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Solvable case study: Heisenberg group Hs

1 yv x
01 z
0 01

Hsz :

b3 : = xE1 + yEp + zE3

o oo
o o<
O N X

Theorem

On the Heisenberg group Hs, any full-rank system is detached feedback
equivalent to exactly one of the following systems

s B+ uks

¥ (20) . w1 B> + wEs

2(12’1) D Er 4+ u By + wEs
TPV B4 uE + b

¥ (3.0) . i E1 + wE + u3Es.
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Solvable case study: Heisenberg group Hs

Proof sketch (1/2)

yW—vz X U
dAut(H3) = Aut(f)3) = 0 y Vv
0 zZ w

X, y,z,u,v,w € R
yw — vz # 0

@ single-input system X with trace I = Z?:l a;E; + <Z?:1 b,-E,->;

32b3 — a3b2 al b1
UES 0 a by| € Aut(hs), Y- (E2+(E3))=T;
0 as b3

so ¥ is equivalent to ¥(1:1)

@ two-input homogeneous system with trace I = (A, B); similar
argument holds
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Solvable case study: Heisenberg group Hs

Proof sketch (2/2)
@ two-input inhomogeneous system ¥ with trace [ = A+ (By, Ba)

o if £1 € (B, By), then T = A+ (Eq, BY); like single-input case there
exists automorphism ¢ such that ¢ - = E3 + (Eq, E)

e if Ey ¢ (Bj, By), construct automorphism v such that
¢-r:E1+<E2,E3>

° 252’1) and Zgz’l) are distinct as E; is eigenvector of every
automorphism

@ three-input system: trivial
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Semisimple case study: orthogonal group SO (3)

SO(3)={gcR¥3 : gg" =1, detg =1}

Theorem

0 —z vy
z 0 —x| =xE1+yE+ zE;3

-y x 0

On the orthogonal group SO (3), any full-rank system is detached
feedback equivalent to exactly one of the following systems

2&1,1) :

2(2»0)
2&2,1)
y (3.0

aby +uE,, a>0

. U1E1 aF U2E2
b +mE 4+ wE, a>0
B + wEy + uskEs.

R. Biggs, C.C. Remsing (Rhodes)
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Semisimple case study: orthogonal group SO (3)

Proof sketch

d Aut(SO (3)) = Aut(so (3)) = SO (3)

@ product Ae B = a1by + apby + azbs is preserved by automorphisms

e critical point €*(I') at which an inhomogeneous affine subspace is
tangent to a sphere S, = {A€s0(3) : Ae A= q} is given by

AeB

“M=4-5.5

B

() =A—[B B]|Br*B 31.32}‘1 [AoBl}

BieB, BreB; Ae By

@ 1€ =¢*-T) for any automorphism 1 € SO (3)

e scalar a® = @*(I') e €*(I") invariant under automorphisms
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Some controllability criteria for invariant systems

Sufficient conditions for full-rank system to be controllable

system is homogeneous
state space is compact
the direction space % generates g, i.e., Lie([?) =g
there exists C € I' such that t +— exp(tC) is periodic

the identity element 1 is in the interior of the attainable set
A ={g(t1) : g(-) is a trajectory such that g(0) =1, t; > 0}

[Jurdjevic and Sussmann 1972]

Systems on simply connected completely solvable groups

condition Lie (M%) = g is necessary and sufficient [Sachkov 2004]
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Characterization for 3D groups

o On Aff (R)o X R, H3, G3.2, G3.3, SE(].,].), and G§.4,
a full-rank system is controllable if and only if Lie (I'°) = g.

@ On SE,(2), SO(3), and SU (2),
all full-rank systems are controllable.

@ On Aff(R) x T, SL(2,R), and SO(2,1)o,
a full-rank system is controllable if and only if it is homogeneous
or there exists A € [ such that t — exp(tA) is periodic.

© On SE(2) and G35,
a full-rank system is controllable if and only if E;(I'°) # {0}.
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Characterization for 3D groups

Proof sketch (1/2)
© completely solvable simply connected groups; characterization known

@ the groups SO (3) and SU(2) are compact, hence all full-rank
systems are controllable

SE,(2) decomposes as semidirect product of vector space and
compact subgroup; hence result follows from [Bonnard et al. 1982]

v
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Characterization for 3D groups

Proof sketch (2/2)

© study normal forms of these systems obtained in classification

o full-rank homogeneous systems are controllable

e for each full-rank inhomogeneous system we either explicitly find
A €T such that t — exp(tA) is periodic

e or prove that some states are not attainable by inspection of
coordinates of g = =(g, u)

e as properties are invariant under equivalence, characterization holds
@ study normal forms of these systems obtained in classification

e condition invariant under equivalence

o similar techniques with extensions; however for one system on G35 we
could only prove controllability by showing 1 € int A
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Classification beyond three dimensions

Homogeneous systems

e four-dimensional central extension of SE(2) — oscillator group
e four-dimensional central extension of SE(1,1)

@ all simply connected four-dimensional groups

@ six-dimensional orthogonal group SO (4)

Controllable systems

@ (2n + 1)-dimensional Heisenberg groups
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Example: controllable systems on Hy,.1

0 x1 x X, Z
0 0 O 0 »n
0 0 O 0 wm n
bn . _ Tl =2Z4)) (X +yiYi), z.xi,yi €R
: : : i=1
0 0 yn
0 0 0]

Every controllable system on the Heisenberg group Hany1 is detached
feedback equivalent to exactly one of the following three systems
Z(Zn,O) Xyt upn X+ upaYi+ oo+ unYa
Z(Zn,l) . Z+U1X1+...+uan+un+1Y1+-..+u2nyn
z(2n+1,0) . u1X1 + ...+ uan + Upt1 Y]_ + .-+ Uzn Yn aF U2n+1Z'

30 / 83
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Invariant optimal control problems

Minimize cost functional J = fOT x(u(t)) dt
over controlled trajectories of a system X
subject to boundary data.

v

Formal statement LiCP

g=g(A+wmBi+---+wB), geG, uek
g(0)=g0, &(T)=g

J = / )T Q (u(t) — i) dt —» min.

peR Qe RX s positive definite.
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Invariant optimal control problems

@ optimal path planning for airplanes

motion planning for wheeled mobile robots
spacecraft attitude control

control of underactuated underwater vehicles

control of quantum systems

dynamic formation of DNA
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Pontryagin Maximum Principle

Associate Hamiltonian function on 7T*G =G x g*:

H2 () = Ax(u) + €(=(g, u))

A
—ax(w) +p E(Lu), €=(g.p)€Gxg"

Maximum Principle Pontryagin et al. 1964

|
| A\

If (g(-),a(:)) is a solution, then there exists a curve

£(-) : [0, T] = T*G, £(t) € T;yG, t [0, T]

and X\ <0, such that (for almost every t € [0, T]):

OF é(t))
f( ) = t)

0,0)

(
(&)

Hé‘(t) (&(t)) = max H>‘ (&(t)) = constant.

R. Biggs, C.C. Remsing (Rhodes) Invariant Control Systems on Lie Groups
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Pontryagin Maximum Principle

A pair (£(+), u(-)) is said to be an extremal pair if, for some A\ <0,

(A, €(1)) # (0,0)
&(t) = Hypy(£(0))
Hj‘(t) (&(p) = max H) (&(t)) = constant

e extremal trajectory: projection to G of curve £(-) on T*G

@ extremal control: component u(-) of extremal pair (§(-), u(-))

An extremal is said to be

@ normal if A <0

@ abnormal if A=0
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Cost-extended system

Definition

Cost-extended system is a pair (X,x) where
> A4+ wuBi+---4+ wbBy
xX(u) = (u(t) = )" Q (u(t) — ).

(X,x) + Dboundary data = optimal control problem J

e VOCT — virtually optimal controlled-trajectory (g(-), u(+)):
solution of some associated optimal control problem

e ECT — extremal controlled-trajectory (g(-), u(-)):
extremal CT for some associated optimal control problem

R. Biggs, C.C. Remsing (Rhodes) Invariant Control Systems on Lie Groups Palermo 2014



Cost equivalence

(Z,x) and (X', x’) are cost equivalent if there exist

@ a Lie group isomorphism ¢ : G — G/
@ an affine isomorphism ¢ : R — Rf

such that
$Zu=Zp) and  Tmo X op=rx.
GXRK&GIXRE R % LR
T
76— T R———R
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Relation of equivalences

(X,x) and (X', X) N Y and ¥’
cost equivalent detached feedback equivalent
Y and ¥’ . (X, x) and (¥, x)
state space equivalent cost equivalent for any x
Y and Y’ ,
detached feedback equivalent — Céi’? Zis\f; /;’;dfo(ri;,X)
w.r.t. ¢ € Aff (RY) Y =

A\
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Preservation of VOCTs and ECTs

If (X,x) and (¥’,Y) are cost equivalent w.r.t. ¢ X p, then

o (g(-),u(-)) isa VOCT if and only if (¢ o g(-),pou(-)) isa VOCT;
o (g(+),u(-)) isan ECT if and only if (¢ o g(-),pou(-)) isan ECT.
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Classification under cost equivalence

Algorithm

@ classify underlying systems under detached feedback equivalence

@ for each normal form X%;,
o determine transformations 7y, preserving system X;
e normalize (admissible) associated cost x by dilating by r > 0 and
composing with ¢ € Ty,

- . Y edAut(G), v-T=T
Tx = { p € Aff (RY) : W -Z(1,u) = Z(1, p(u)) }
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Example: structures on SE(2)

1 0 0 0 0 O
SE(2) : |x cosf —sinf se(2) : |x 0 —0| =xEi+yEx+0E;3
y sinf  cosf y 6 0

Result

On the Euclidean group SE(2), any full-rank cost-extended system
Y i B+ wbBo x(u) = u' Qu
is cost equivalent to

(2(2,0) X(2,o)) : Y b+ wks
x(v)

:uf—i-u%

R. Biggs, C.C. Remsing (Rhodes) Invariant Control Systems on Lie Groups Palermo 2014
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Example: structures on SE(2)

Proof sketch

e Y is detached feedback equivalent to ¥(20) : 1 E, + w5

o thus (X, x) is cost equivalent to (X(39), x’) for some
X :u u' Q u (feedback transformation linear)

X w

07'2(2,0)={un—>[0 §:|U:X§£O,W€R’§=j:]_}

o let Q' = [al b]

b32
b

1 —= .
o 41— [o fl] € Ts, and (¥ 0 p1)(u) = u” diag(ar, a) u

e = diag( %71) € Tx, and
(X' 0 (10 92))(u) = ayu’

u=a, x®0(v)

. Biggs, C.C. Remsing (Rhodes) Invariant Control Systems on Lie Groups Palermo 2014



Example: structures on Heisenberg group Hj,.1

On the Heisenberg group Hz,11, any controllable cost-extended system
Y:iwnmBi+--+uBy x(u)=u"Qu

is cost-equivalent to exactly one of the following systems:

(x(@n0) ,(2m0)y {2(2"’0) D i (UiXi £ upgiY))
s X\ ’ n i
K ) = SN (2 + 2)

(£@r+10) , 2n+10)y { T S (X + Ui Vi) + wan41Z
AN : 2n+1,0 n
XE\ - )(U) =D i (”,2 + ”121+i) + “§n+1-

I=M2XA2>--2X>0]

Commutators: [X;, Yj] = 6;;Z
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Outline

© Invariant optimal control
@ Pontryagin Maximum Principle

@ Equivalence of cost-extended systems
@ Classification

@ Pontryagin lift
@ Sub-Riemannian structures
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Pontryagin lift

Reduction of LiCP (normal case, i.e., A <0)

@ maximal condition
Hoey (£(t)) = max H; (£(t)) = constant

eliminates the parameter u
@ obtain a smooth G-invariant function H on T*G =G x g*

@ reduced to Hamilton-Poisson system on Lie-Poisson space g* :

{F, G} = —p([dF(p), dG(p)])

(here F,G € C*>*(g*) and dF(p),dG(p) € g** = g)
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Hamiltonian system and normal extremals

Coordinate representation

aE1+ - +asEy € g H S
pLEf + -+ poE; € g e pr -+ pn)
Let (X, x) be a cost-extended system with
=.(1)=A+Bu, B=[B - B, x(u)=(u—p)"Qu-p).

Theorem
Any normal ECT (g(-),u(:)) of (X,x) is given by

(1) ==(g(t),u(t)),  u(t)=Q "B p(t) +p

where p(-) : [0, T] — g* is an integral curve for the Hamilton-Poisson
system on g* specified by

H(p)=p(A+Bu)+3pBQ 'B' p'.

v
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Cost equivalence and linear equivalence

Definition

Hamilton-Poisson systems (g*, G) and (h*, H)
are linearly equivalent if there
exists linear isomorphism ) : g* — h* such that .G = H.

Theorem
If two cost-extended systems are cost equivalent, then their associated
Hamilton-Poisson systems are linearly equivalent.

@ one shows that r(T3¢)* is the required linear isomorphism

@ converse of theorem does not hold )
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Outline

© Invariant optimal control
@ Pontryagin Maximum Principle

@ Equivalence of cost-extended systems
@ Classification

@ Pontryagin lift
@ Sub-Riemannian structures
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Invariant sub-Riemannian manifolds

Left-invariant sub-Riemannian manifold (G, D, g)

@ Lie group G with Lie algebra g

@ left-invariant bracket-generating distribution D
o D(g) = Tilg-D(1)
o Lie(D(1)) =g

@ left-invariant Riemannian metric g on D

o g, is a symmetric positive definite bilinear form on D(g)
o g(Tilg-A Tilg-B)=g1(A,B) for A, Beg

@ horizontal curve: a.c. curve g(-) s.t. g(t) € D(g(t)) J

Structure (D, g) on G is fully specified by

@ subspace D(1) of Lie algebra g
@ inner product g3 on D(1).
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Geodesics

Relation to cost-extended systems

Length minimization problem

]
&(t) € D(g(t)), 2(0) = g0, &(T) = &, /0 V2@, 2(0) — min

is equivalent to the energy minimization problem

.
&==ulg), £(0)=go, g(T)= g1, /0 x(u(t)) dt — min

with
o =,(1)=wB1+ -+ uBy such that (By,...,B;) =D(1);
x(u(t)) = u(t) " Qu(t) = 81(Zu((1), Zu(n)(1))
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SR structures and cost-extended systems

@ VOCTs <— minimizing geodesics
o ECTs +— geodesics J

SR structure + parametrizarion map = cost-extended syst.

To a cost-extended system (X, x) on G
Y unBr+- 4+ wBy, x(u) = u' Qu
we associate the SR structure (G, D, g)

D(1) = (By..... By}
gl(ulBl + -+ wBy, By + -+ UZBg) = X(u).
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Cost equivalence reinterpreted

Let (G,D,g), (G,D',g’) be SR structures associated to (X, x), (X', x').

(X,x) and (X', X') are cost equivalent if and only if there exists a Lie
group isomorphism ¢ : G — G’ and r > 0 such that

oD =D and g =ro'g.

cost equivalence =  isometric up to rescaling )

At least for

@ invariant Riemannian structures on nilpotent groups  [Wilson 1982]

@ sub-Riemannian Carnot groups [Capogna et al. 2014]

isometric — cost equivalence.
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Example: sub-Riemannian structures on SE (2)

Normal form for drift-free systems on SE (2) (recalled)

(2(2,0) X(2,0)) : 2wk + wks
’ x(u) = v3 + u3

Result

On the Euclidean group SE(2), any left-invariant sub-Riemannian
structure (D, g) isometric (up to rescaling) to the structure (D, g)
specified by

| \

D(1) = (E, E3)

- (1.0
g1_01

i.e., with orthonormal basis (Ey, E3).

A\
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Example: sub-Riemannian structures on Hy,.1

On the Heisenberg group Hap11, any left-invariant sub-Riemannian
structure (D, g) is isometric to exactly one of the structures (D, g*)
specified by
D(l) = <X17 Y1,y Xns Yn>
g1 = diag(A1, A1, A2, Ao, oy Any An)

i.e., with orthonormal basis

Yi, L X, LY, ..., L X Y,).

= T T

Here 1 =X; > X2 > --- > X\, > 0 parametrize a family of class
representatives.

(=% 70 7%
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Example: Riemannian structures on Hj,.1

On the Heisenberg group Hz,11, any left-invariant Riemannian structure
g is isometric to exactly one of the structures

gl = [(1) R] ;. N=diag(A1, A1, A2, A2, ..., Ap, An)

i.e., with orthonormal basis

X17 Yl) L X27

W \/*Y2,~--a\/* n:\/* )

Here A\ > Ao > --- > A, > 0 parametrize a family of class
representatives.

(2. 7% 7%
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Lie-Poisson spaces

Overview

@ dual space of a Lie algebra admits a natural Poisson structure

@ one-to-one correspondence with linear Poisson structures

@ many dynamical systems are naturally expressed as quadratic
Hamilton-Poisson systems on Lie-Poisson spaces

@ prevalent examples are Euler’s classic equations for the rigid body, its
extensions and its generalizations
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Lie-Poisson structure

(Minus) Lie-Poisson structure

{F,G}(p) = —p([dF(p),dG(p)]), pEg", F,GeC¥(g")

e Hamiltonian vector field: H[F] = {F, H}
@ Casimir function: {C,F} =0

@ quadratic system: Ha o(p) = pA+p Qp'

Equivalence

Systems (g*, G) and (h*,H) are linearly equivalent if
there exists a linear isomorphism 1 : g* — b* such that w*é =H.
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Outline

@ Quadratic Hamilton-Poisson systems

@ Classification in three dimensions
@ Homogeneous systems
@ Inhomogeneous systems

@ On integration and stability
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Classification algorithm

Proposition

The following systems are linearly equivalent to Ha q:
©Q Hago, where ¢ : g* — g* is a linear Poisson automorphism;
@ Haq + C, where C is a Casimir function;
© Ha,rq, where r #0.

Algorithm

@ Normalize as much as possible at level of Hamiltonians (as above).

@ Normalize at level of vector fields, i.e., solve ¥, H; = H;.

In some cases, only step 1 is required to obtain normal forms. J
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Classification of Lie-Poisson spaces

Lie-Poisson spaces admitting global Casimirs [Patera et al. 1976]
o R3 C>®(R3)
o (h3)- C(p) =p
o (aff (R) & R)* C(p) = p3
° se(1,1)* C(p) = P} — P
° se(2)r C(p) = p} +p3
° s50(2,1)" C(p) = p? + P3 — P3
° 50(3)~ C(p) = pi +p5 + P3
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Coadjoint orbits (spaces admitting global Casimirs)
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Classification by Lie-Poisson space

(aff (R) © R)™

pi
P>
pi + P
(p1+ p3)?
p3 + (p1 + p3)’

v

se(1,1)"
pi
p3
Pt + P3
(p1 + p2)?
(p1+ p2)> + pP3

s0(2,1)*
P
p3
pi + p3
(P2 + p3)?
p3 + (p1 + p3)?

vy

p3
p3 + p3

R. Biggs, C.C. Remsing (Rhodes)

p?

pi + 3P5

Invariant Control Systems on Lie Groups

Palermo 2014



General classification

@ Consider equivalence of systems on different spaces
— direct computation with MATHEMATICA

Types of systems

@ linear: integral curves contained in lines
(sufficient: has two linear constants of motion)

@ planar: integral curves contained in planes, not linear
(sufficient: has one linear constant of motion)

@ otherwise: non-planar
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Classification by Lie-Poisson space

(aff (R) © R)™

pi
P>
pi + P
(p1+ p3)?
p3 + (p1 + p3)’

v

se(1,1)"
pi
p3
Pt + P3
(p1 + p2)?
(p1+ p2)> + pP3

s0(2,1)*
P
p3
pi + p3
(P2 + p3)?
p3 + (p1 + p3)?

vy

p3
p3 + p3

R. Biggs, C.C. Remsing (Rhodes)
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Linear systems

AT
pi pi

P

(p1 + p3)? (p1 + p2)?
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Linear systems (3 classes)

(aff (R) ® R)
pi pi
P
(p1+ P3)2 (p1+ ,02)2

p3 P | \
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Linear systems
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Planar systems

(off (R) & R)"
P

p? p?

pi + p3
(Pz + P3)2

p3 + (p1 + p3)?

p?
p3 + p3 p?
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Planar systems (5 classes)

(aff (R) ® R)~ ;1) s50(2,1)*
pi
p3 p3
pi + P
(P2 + p3)?
p5+ (pr+ ps) | )
pi
P+ p3 p3
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Planar systems

(aff (R) ® R)~ 1) s50(2,1)*
pi
3: p% Pg
1: pf+p3
5: (p2+ p3)’
2: 05+ (pr+ p3) | J
pi
p5 + P 4:p3
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Non-planar systems

(aff (R) & R)* se(1,1)* s0(2,1)*

p? + p3 p? + p3

(p1+ p2)* + p3 p3 + (p1 + p3)?

\ pi + 3P5
P + P3

vy
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Non-planar systems (2 classes)

(aff (R) & R)* se(1,1)*

Pt + p3 Pt + p3

(p1+ Pz)2 + P% p3 + (p1+ /33)2

< vy

\ pi + 3P
P>+ p3
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Non-planar systems Np(1), Np(2)

(0 (R) © R)*

P+ p3 pi + P
| ‘13(P1+P2)2+P§‘ p§+(p1+p3)2 |
(b3)* s50(3)*
| pi+3p |
2: p5+p3
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Interesting features

@ systems on (h3)* or so(3)"

— equivalent to ones on se (2)*

e systems on (aff(R) @ R)* or (h3)*
— planar or linear
@ systems on (h3)*, se(1,1)*, se(2)* and so0(3)"

— may be realized on multiple spaces
(for s0(2,1)* exception is P (5))

v
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Inhomogeneous systems

Any (strictly) inhomogeneous quadratic system (so (3)*,H) is affinely
equivalent to exactly one of the systems:
H:(l),a(p) =ap;, a>0
Ho(p) = 3pi
Hi(p) = p2 + 3p1
H} o(p) = p1+ap2+3pf, a>0
H:o(p) = ap1 +pi +3p3, a>0
H5o(p) = apa+ pi + 3p3, @ >0
H32,a(P) = a1p1 + a2p2 + pf o %p%, ai,an >0
Hia(p) = a1p1 + a3p3 + pf + %p%, ay > a3 >0
HZ o(P) = a1p1 + 2p2 + a3p3 + P + 3P3,  ar>0.a1>lag]>0 or a3>0, ag=a3>0

v
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Outline

@ Quadratic Hamilton-Poisson systems

o Classification in three dimensions
@ Homogeneous systems
@ Inhomogeneous systems

@ On integration and stability
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Overview: 3D Lie-Poisson spaces

Integration

@ homogeneous systems admitting global Casimirs — integrable by
elementary functions; exception Np(2) : (se(2)*, p3 + p3) which is
integrable by Jacobi elliptic functions

@ inhomogeneous systems — integrable by Jacobi elliptic functions (at
least some)

v

Stability of equilibria

@ instability — usually follows from spectral instability

@ stability — usually follows from the energy Casimir method or one of
its extensions [Ortega et al. 2005]
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Example: inhomogeneous system on se (2)*

Ho(p) = p1 + 5 (@p3 + p3)
Equations of motion:
pP1 = p2pP3
p2 = —p1pP3
p3 = (ap1 — 1) po.
Equilibria:
ef = (11,0,0), e =(%,10), & =(0,0,v)

a’

where p,v € R, v #0.
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Stability

eiL = (1, 0,0) E3
& = (.1,0)
\
eg = (07 07 V) E; \\\ _— B
N T E
Theorem

© The states e, 0 < u < % are spectrally unstable.
Q The state e}, p= % is unstable.
© The states €/, 1 € (—00,0]U (L, 00) are stable.

© The states ey are spectrally unstable.

© The states e3 are stable.

R. Biggs, C.C. Remsing (Rhodes) Invariant Control Systems on Lie Groups Palermo 2014



Stability

Proof (1/2)

e States e, 0 < u < é are spectrally unstable.
Linearization of H, at e[ has eigenvalues \; =0,

A3 = E+4/p(1 — ap). Hence for 0 < p < é spectrally unstable.

@ States e5 are spectrally unstable — follows similarly.

e State e, pu= i is unstable. We have an integral curve

_ (= 2 2y/a
p(t) - <a(tt2+aa)7 \/&(tg—f—a)’ t2+i)

such that lime—, oo p(t) = e)/* and [e}/™ — p(0)|| = 2,/12 > 0.
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Stability

Proof (2/2)

e States e}, p € (—00,0]U (L, 00) are stable.
For energy function G = A\iH + X\ C, A\ = —p, Ap = 242

—2u 0 0
dG(e})=0 and  d°G(ef)=| 0 2u(-l4+au) 0
0 0 212

Restriction of d?G(e]') to
ker dH(ef') N ker dC(e]) = {(p1,0,0) : p1 € R}

is PD for 4 <0 and p > é — stable.
o Intersection C~1(0) N H,1(0) is a singleton €?; stable.

@ States ef are stable — follows similarly.
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Integration

Basic Jacobi elliptic functions

Given a modulus k € [0,1],

sn(x, k) = sinam(x, k)

cn(x, k) = cosam(x, k)

dn(x, k) = \/1 — k2sin? am(x, k)
where am(-, k) = F(-, k)™* and F(p, k) = [ 5.

@ k=0/1 <«— circular / hyperbolic functions.

o K =F(%,k);
sn(+, k), cn(-, k) are 4K periodic; dn(-, k) is 2K periodic.
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Integration

First problem

Several cases (usually corresponding to qualitatively different cases)

Let p(-) be integral curve, co = C(p(0)), and hg = H,(p(0)).
We consider case ¢y > é and hg > %

Figure: Intersection of C!(cy) and H,'(ho).
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Integration

Theorem

Let p(-): (—e,e) — se(2)* be an integral curve of H, and let
ho = H(p(0)), co = C(p(0)). If co > alQ and hg > Ha =20 then there

exists to € R and o € {—1,1} such that p(t) = p(t + to) for
t € (—¢,¢e), where

) Vho =3 — v/ho + 8 cn (Qt, k)
pi(t) = Vo Vho +06 —/ho — 6 cn(Qt, k)
o sn(Qt, k)
pa(t) = o1/2c00 Vho +0 —ho — 0 cn (Qt, k)
pa(t) = 206 oy

Vho +0 —v/ho — 0 cn (Qt, k)

Here § = \/h§ — co, Q=25 and k = —=\/(ho — 0) (aho + ad —1).
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Integration

Proof sketch (1/3)

Equations of motion:

P1 = p2p3
p2 = —p1p3
p3 = (ap1 — 1) pa.

@ By squaring first equation, we obtain pf = p%p%.

@ By constants of motion ¢y = p% + p% and hg = p1 + % (ozp% + p%)
eliminate p% and p%.

@ Obtain separable differential equation

i Il:\/(CO — p12) (ho — 2p1 — (co — p12) ).
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Integration

Proof sketch (2/3)

@ Integral
dp1

V/(co — p12) (ho — 2p1 — (co — p12) @)

transformed into a standard form; elliptic integral formula applied.

a a a 2
@ Above is nontrivial; also, depends on ¢y > % and hg > H%ac"

@ After simplification, we obtain

_ ho—90 —~/hg+6cn(Qt, k
\/h0+5—\/h0—5cn(§2t, k)

e Coordinates pp(t) and ps3(t) are recovered by means of the identities
co=p?+p}and hg=p1+ 3 (ap3 +p3).

o Verify p(t) = Ha(p(t)) (& determine choices of sign).
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Integration

Proof sketch (3/3)

@ Remains to be shown: p(-) is p(-) up to a translation in t.

We have p1(0) = —/co and p1(3F) = \/ao.
Also, as p? + p3 = cg, we have that —/a < p1(0) < \/co.
Exists t; € [0, 2X] such that py(t1) = p1(0).

Choosing o € {—1,1} appropriately and using constant of motions,
we get p(0) = p(tp) where tg = t; or to = —ti.

Curves t > p(t) and t+— p(t+ tg) solve the same Cauchy problem
and therefore are identical.
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Conclusion

o effective means of classifying systems (at least in lower dimensions)

@ natural extension to optimal control problems

o relates to equivalence of Hamilton-Poisson systems

@ point affine distributions and strong detached feedback equivalence

@ systematic study of homogeneous cost-extended systems in low
dimensions (i.e., Riemannian and sub-Riemannian structures)

e (invariant) nonholonomic structures
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