Invariant Lagrangian Systems on Lie Groups

Dennis Barrett

Geometry and Geometric Control (GGC) Research Group Department of Mathematics (Pure and Applied) Rhodes University, Grahamstown 6140

Eastern Cape Postgraduate Seminar in Mathematics NMMU, Port Elizabeth, 12–13 September 2014

Introduction

The mathematics of (continuous, dynamic) optimisation

- considered by Newton, Euler, Lagrange, Hamilton, Gauss, etc.
- significant developments:
 - calculus of variations (18th & 19th century)
 - Pontrygin's Maximum Principle (1950s)
 - modern geometric treatments (1930s-present)

Original motivation

- "Nature does nothing in vain, and more is in vain when less will serve."
 - Newton
- "If there occurs some change in nature, the amount of action necessary for this change must be as small as possible."
 - Maupertuis's Principle of Least Action
- "Nature always acts in the shortest way."
 - Fermat

2 Geometric approach: invariant Riemannian structures on Lie groups

2) Geometric approach: invariant Riemannian structures on Lie groups

Ingredients

Configuration space M

- *n*-dimensional smooth manifold
- (q_i) coordinates on M; (q_i, v_i) induced coordinates on TM

Lagrangian function $L: TM \rightarrow \mathbb{R}$

• assumed to be regular: velocity Hessian $\left|\frac{\partial^2 L}{\partial v_i \partial v_i}\right|$ is nonsingular

Action functional

$$\mathscr{L}[\gamma] = \int_{a}^{b} \mathcal{L}(\gamma(t), \dot{\gamma}(t)) dt, \quad \text{where } \gamma : [a, b] \to \mathsf{M}$$

Extremal curves

Hamilton's Principle

A curve $\gamma : [a, b] \to \mathsf{M}$ is called

- an extremal if $\delta \mathscr{L}[\gamma] \equiv 0$
- \bullet a minimiser if γ minimises $\mathscr L$

Here $\delta \mathscr{L}[\gamma] = \text{differential of } \mathscr{L} \text{ at } \gamma$

 $\{\mathsf{minimisers}\} \subseteq \{\mathsf{extremals}\}$

Euler-Lagrange equations

$$\frac{d}{dt}\frac{\partial L}{\partial v_i}(\gamma,\dot{\gamma}) - \frac{\partial L}{\partial q_i}(\gamma,\dot{\gamma}) = 0, \quad i = 1, \dots, n$$

- system of second-order ODEs
- necessary for minimisers; necessary and sufficient for extremals

Example: brachistochrone problem

Description

- a bead moves along a curve γ from A to B subject to gravity
- what shape should γ be to minimise the travel time of the bead?
- posed by Johann Bernoulli (1696)
- solved by Newton, Leibniz, L'Hôpital, Jakob Bernoulli and Tschirnhaus

In terms of the calculus of variations

- let ds = element of arclength along γ , $v = \frac{ds}{dt}$
- we wish to minimise travel time along γ : $T = \int_{\gamma} dt$
- conservation of energy: $\frac{1}{2}mv^2 = mgy \iff v = \sqrt{2gy}$

• then
$$v = \frac{ds}{dt}$$
 and $ds^2 = dx^2 + dy^2$ gives

$$v dt = ds = \sqrt{dx^2 + dy^2} = \sqrt{1 + (dy/dx)^2} dx$$

therefore

$$T = \int_{\gamma} \frac{ds}{v} = \int_{x_A}^{x_B} \frac{\sqrt{1 + (dy/dx)^2}}{\sqrt{2gy}} dx$$

Action functional for the brachistochrone problem

$$\mathscr{T}[y] = \int_{x_A}^{x_B} \frac{\sqrt{1 + (dy/dx)^2}}{\sqrt{2gy}} dx$$

(extremal curves are cycloids)

Dennis Barrett (Rhodes)

2 Geometric approach: invariant Riemannian structures on Lie groups

Tangent bundle and second tangent bundle

Second tangent bundle T(TG)

- trivialisable: $T(TG) \cong T(G \times \mathfrak{g}) \cong (G \times \mathfrak{g}) \times (\mathfrak{g} \times \mathfrak{g})$
- two natural projections:

$$au_{\mathsf{T}\mathsf{G}}:(g,A;X,B)\mapsto (g,X)$$

 $au_{\mathsf{T}\mathsf{G}}:(g,A;X,B)\mapsto (g,A)$

Semisprays

A smooth map $Z : TG \rightarrow T(TG)$ is called a semispray if

$$au_{\mathsf{T}\mathsf{G}} \circ Z = \mathsf{id}$$
 and $T\tau_{\mathsf{G}} \circ Z = \mathsf{id}$

geometric representation of second order ODE

•
$$Z(g,X) = (g,X;X,z(g,X))$$

• if
$$g(\cdot) : [a, b] \to G$$
, then
 $\dot{g}(t) = (g(t), X(t))$ (for some $X(\cdot) : [a, b] \to \mathfrak{g}$)
 $\ddot{g}(t) = (g(t), X(t); X(t), \dot{X}(t))$

• $g(\cdot)$ is a solution of a semispray Z if $\ddot{g}(t) = Z(\dot{g}(t))$, *i.e.*, $\dot{X}(t) = z(g(t), X(t))$

A symplectic form on TG

$$\omega:\mathfrak{X}(\mathsf{TG})\times\mathfrak{X}(\mathsf{TG})\to\mathcal{C}^\infty(\mathsf{TG})$$

• $\mathcal{C}^{\infty}(TG)$ -bilinear

- skew-symmetric: $\omega(W, Z) = -\omega(Z, W)$
- nondegenerate: if $\omega(W, Z) = 0$ for every Z, then W = 0

Poincaré-Cartan 2-form ω_L

- induced by a Lagrangian function L
- ω_L symplectic $\iff L$ regular

Invariant Lagrangian systems on Lie groups

Ingredients

Configuration space ${\sf G}$

- *n*-dimensional connected (matrix) Lie group
- Lie algebra $\mathfrak{g} = T_1 G$

Lagrangian function $L: TG \rightarrow \mathbb{R}$, $L(g, X) = \frac{1}{2}\mathcal{G}_g((g, X), (g, X))$

• G is a Riemannian metric:

$$\mathcal{G}_g: T_g \mathsf{G} \times T_g \mathsf{G} \to \mathbb{R}$$

is a positive definite inner product on T_gG , for every $g \in G$.

• *G* is left invariant:

$$\mathcal{G}_g((g,X),(g,Y)) = \mathcal{G}_1(X,Y)$$

Left invariance

 \implies $L(g,X) = L(X) = \frac{1}{2}\mathcal{G}_1(X,X).$

Dennis Barrett (Rhodes)

 $\Xi \in \mathfrak{X}(TG)$ is called an Euler-Lagrange vector field if

$$\omega_L(\Xi, Z) = \mathbf{d}L(Z)$$
 for every $Z \in \mathfrak{X}(TG)$

• unique (since ω_L nondegenerate)

- \equiv is a semispray: $\equiv (g, X) = (g, X; X, \xi(g, X))$
- ξ is left invariant: $\xi(g, X) = \xi(X)$

 $g(\cdot)$ is a solution of $\Xi \iff g(\cdot)$ satisfies E-L equations

Adjoint map

$$\mathsf{ad}_A:\mathfrak{g} o\mathfrak{g},\qquad\mathsf{ad}_AB=[A,B]\qquad(A\in\mathfrak{g})$$

- $\bullet~[\cdot,\cdot]$ is the Lie bracket in $\mathfrak g$
- let $\operatorname{ad}_{A}^{\top}$ be the \mathcal{G}_{1} -adjoint of ad_{A} , *i.e.*,

$$\mathcal{G}_{\mathbf{1}}(\mathsf{ad}_{A}^{\top}B, C) = \mathcal{G}_{\mathbf{1}}(B, \mathsf{ad}_{A}C), \quad A, B, C \in \mathfrak{g}$$

Euler-Lagrange vector field

$$\Xi(g,X) = (g,X;X,\operatorname{ad}_X^\top X)$$

• let $g(\cdot) : [a, b] \to \mathsf{G}$ with $\dot{g}(t) = (g(t), X(t))$ • $g(\cdot)$ is an extremal $\iff \dot{X}(t) = \mathsf{ad}_{X(t)}^\top X(t).$

Lagrangian system

Configuration space G = SO(3)

•
$$SO(3) = \{g \in \mathbb{R}^{3 \times 3} : g^{\top}g = 1\}$$

• Lie algebra: $\mathfrak{so}(3) = \{X \in \mathbb{R}^{3 \times 3} : X^\top + X = 0\}$

Lagrangian function $L: TSO(3) \rightarrow \mathbb{R}$

•
$$L(X) = \frac{1}{2}(J_1x_1^2 + J_2x_2^2 + J_3x_3^2)$$
 (J_i — "moments of inertia")

Euler-Lagrange vector field

$$\mathsf{ad}_{X}^{\top} = \begin{bmatrix} 0 & \frac{J_{2X_{3}}}{J_{1}} & -\frac{J_{3X_{2}}}{J_{1}} \\ -\frac{J_{1X_{3}}}{J_{2}} & 0 & \frac{J_{3X_{1}}}{J_{2}} \\ \frac{J_{1X_{2}}}{J_{3}} & -\frac{J_{2X_{1}}}{J_{3}} & 0 \end{bmatrix} \implies \xi(X) = \begin{bmatrix} \frac{J_{2}-J_{3}}{J_{1}} & x_{2}x_{3} \\ \frac{J_{3}-J_{1}}{J_{2}} & x_{1}x_{3} \\ \frac{J_{1}-J_{2}}{J_{3}} & x_{1}x_{2} \end{bmatrix}$$

Finding the extremals

• first solve the "reduced" equations of motion:

$$\begin{cases} \dot{x}_1 = \frac{J_2 - J_3}{J_1} x_2 x_3 \\ \dot{x}_2 = \frac{J_3 - J_1}{J_2} x_1 x_3 \\ \dot{x}_3 = \frac{J_1 - J_2}{J_3} x_1 x_2 \end{cases}$$

- need to recover the extremal $g(\cdot)$ from $X(\cdot)$
- this amounts to solving the "reconstruction" equation $\dot{g}(t) = g(t) X(t)$

2) Geometric approach: invariant Riemannian structures on Lie groups

Constrained systems

What are constraints?

- classically: $f_k(g, X) = 0, \ k = 1, \dots, m$
- geometrically: *m*-dim submanifold of *T*G

Types

- integrable: constraints on position
- nonintegrable: constraints on velocity

Dynamics of systems with nonintegrable constraints

nonholonomic mechanics

- Lagrange-D'Alembert Principle
- extremals are "straightest" curves
- correct approach for physical systems obeying Newton's law

vakonomic mechanics

- variational principle
- extremals are "shortest" curves
- main examples: sub-Riemannian geometry, optimal control theory