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Introduction

The mathematics of (continuous, dynamic) optimisation

considered by Newton, Euler, Lagrange, Hamilton, Gauss, etc.

significant developments:

calculus of variations (18th & 19th century)
Pontrygin’s Maximum Principle (1950s)
modern geometric treatments (1930s–present)

Original motivation

“Nature does nothing in vain, and more is in vain when less will serve.”

– Newton

“If there occurs some change in nature, the amount of action necessary for
this change must be as small as possible.”

– Maupertuis’s Principle of Least Action

“Nature always acts in the shortest way.”

– Fermat
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Lagrangian systems on smooth manifolds

Ingredients

Configuration space M

n-dimensional smooth manifold

(qi ) coordinates on M; (qi , vi ) induced coordinates on TM

Lagrangian function L : TM→ R

assumed to be regular: velocity Hessian
[

∂2L
∂vi∂vj

]
is nonsingular

Action functional

L [γ] =

∫ b

a
L(γ(t), γ̇(t)) dt, where γ : [a, b]→ M
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Extremal curves

Hamilton’s Principle

A curve γ : [a, b]→ M is called

an extremal if δL [γ] ≡ 0

a minimiser if γ minimises L

Here δL [γ] = differential of L at γ

{minimisers} ⊆ {extremals}

Euler-Lagrange equations

d

dt

∂L

∂vi
(γ, γ̇)− ∂L

∂qi
(γ, γ̇) = 0, i = 1, . . . , n

system of second-order ODEs

necessary for minimisers; necessary and sufficient for extremals
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Example: brachistochrone problem

Γ

A

B

Description

a bead moves along a curve γ from A to B subject to gravity

what shape should γ be to minimise the travel time of the bead?

posed by Johann Bernoulli (1696)

solved by Newton, Leibniz, L’Hôpital, Jakob Bernoulli and
Tschirnhaus
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In terms of the calculus of variations

let ds = element of arclength along γ, v = ds
dt

we wish to minimise travel time along γ: T =
∫
γ dt

conservation of energy: 1
2mv2 = mgy ⇐⇒ v =

√
2gy

then v = ds
dt and ds2 = dx2 + dy2 gives

v dt = ds =
√
dx2 + dy2 =

√
1 + (dy/dx)2 dx

therefore

T =

∫
γ

ds

v
=

∫ xB

xA

√
1 + (dy/dx)2√

2gy
dx

Action functional for the brachistochrone problem

T [y ] =

∫ xB

xA

√
1 + (dy/dx)2√

2gy
dx (extremal curves are cycloids)
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Tangent bundle and second tangent bundle

G — Lie group

g = T1G — Lie algebra

Tangent bundle TG

trivialisable: TG ∼= G× g

natural projection:

τG : (g ,X ) 7→ g

TgG

τG

g

TG

G

Second tangent bundle T (TG)

trivialisable: T (TG) ∼= T (G× g) ∼= (G× g)× (g× g)

two natural projections:

τTG : (g ,A;X ,B) 7→ (g ,X )

T τG : (g ,A;X ,B) 7→ (g ,A)
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Second order differential equations

Semisprays

A smooth map Z : TG→ T (TG) is called a semispray if

τTG ◦ Z = id and T τG ◦ Z = id

geometric representation of second order ODE

Z (g ,X ) = (g ,X ;X , z(g ,X ))

if g(·) : [a, b]→ G, then

ġ(t) = (g(t),X (t)) (for some X (·) : [a, b]→ g)

g̈(t) = (g(t),X (t);X (t), Ẋ (t))

g(·) is a solution of a semispray Z if g̈(t) = Z (ġ(t)), i.e.,

Ẋ (t) = z(g(t),X (t))
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Symplectic structures on TG

A symplectic form on TG

ω : X(TG)× X(TG)→ C∞(TG)

C∞(TG)-bilinear

skew-symmetric: ω(W ,Z ) = −ω(Z ,W )

nondegenerate: if ω(W ,Z ) = 0 for every Z , then W = 0

Poincaré-Cartan 2-form ωL

induced by a Lagrangian function L

ωL symplectic ⇐⇒ L regular
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Invariant Lagrangian systems on Lie groups

Ingredients

Configuration space G

n-dimensional connected (matrix) Lie group

Lie algebra g = T1G

Lagrangian function L : TG→ R, L(g ,X ) = 1
2Gg ((g ,X ), (g ,X ))

G is a Riemannian metric:

Gg : TgG× TgG→ R

is a positive definite inner product on TgG, for every g ∈ G.

G is left invariant:

Gg ((g ,X ), (g ,Y )) = G1(X ,Y )

Left invariance =⇒ L(g ,X ) = L(X ) = 1
2G1(X ,X ).
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The Euler-Lagrange vector field

Ξ ∈ X(TG) is called an Euler-Lagrange vector field if

ωL(Ξ,Z ) = dL(Z ) for every Z ∈ X(TG)

unique (since ωL nondegenerate)

Ξ is a semispray: Ξ(g ,X ) = (g ,X ;X , ξ(g ,X ))

ξ is left invariant: ξ(g ,X ) = ξ(X )

g(·) is a solution of Ξ ⇐⇒ g(·) satisfies E-L equations
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Explicit expression for the E-L vector field

Adjoint map

adA : g→ g, adA B = [A,B] (A ∈ g)

[·, ·] is the Lie bracket in g

let ad>A be the G1-adjoint of adA, i.e.,

G1(ad>A B,C ) = G1(B, adA C ), A,B,C ∈ g

Euler-Lagrange vector field

Ξ(g ,X ) = (g ,X ;X , ad>X X )

let g(·) : [a, b]→ G with ġ(t) = (g(t),X (t))

g(·) is an extremal ⇐⇒ Ẋ (t) = ad>X (t) X (t).
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Example: motion of a rigid body

Lagrangian system

Configuration space G = SO(3)

SO(3) = {g ∈ R3×3 : g>g = 1}
Lie algebra: so(3) = {X ∈ R3×3 : X> + X = 0}

Lagrangian function L : TSO(3)→ R
L(X ) = 1

2(J1x
2
1 + J2x

2
2 + J3x

2
3 ) (Ji — “moments of inertia”)

Euler-Lagrange vector field

ad>X =

 0 J2x3
J1

−J3x2
J1

−J1x3
J2

0 J3x1
J2

J1x2
J3

−J2x1
J3

0

 =⇒ ξ(X ) =


J2−J3
J1

x2x3
J3−J1
J2

x1x3
J1−J2
J3

x1x2



Dennis Barrett (Rhodes) Lagrangian Systems on Lie Groups PG Sem. Math. 2014 16 / 19



Example: motion of a rigid body, cont’d

Finding the extremals

first solve the “reduced” equations of motion:
ẋ1 = J2−J3

J1
x2x3

ẋ2 = J3−J1
J2

x1x3

ẋ3 = J1−J2
J3

x1x2

need to recover the extremal g(·) from X (·)
this amounts to solving the “reconstruction” equation

ġ(t) = g(t)X (t)
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Constrained systems

What are constraints?

classically:
fk(g ,X ) = 0, k = 1, . . . ,m

geometrically:
m-dim submanifold of TG

Types

integrable: constraints on
position

nonintegrable: constraints
on velocity

Dynamics of systems with nonintegrable constraints

nonholonomic mechanics
Lagrange-D’Alembert Principle
extremals are “straightest” curves
correct approach for physical systems obeying Newton’s law

vakonomic mechanics
variational principle
extremals are “shortest” curves
main examples: sub-Riemannian geometry, optimal control theory
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