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Background

Optimal control problem on the Heisenberg group Hs.

Relate to quadratic Hamilton-Poisson (QHP) system on the
Heisenberg Lie-Poisson space h3_.

Determine integral curve of QHP system.

Obtain extremal controls of optimal control problem.
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Outline

@ Lie-Poisson spaces
© Quadratic Hamilton-Poisson systems
© Affine equivalence

@ Classification of systems
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Heisenberg Lie algebra h3 and dual Lie algebra b3

Lie algebra b,

@ Matrix representation

0 x x1
hs = 0 0 x3 | X1,X2,x3 €ER
0 0 O
@ Standard basis
0 01 010 0 0O
Et=1(0 0 0Of, E;,=|(0 0 0Of, Es=(0 0 1
0 0O 0 0O 0 0O

@ Commutator relations
[Ela E2] = 07 [E17 E3] = 0, [E27 E3] = El

Dual Lie algebra b3
Dual basis denoted by (E})?_;. Each E; defined by (E}, E;)=6j;,

ij=1,2,3.
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Lie-Poisson spaces

Lie-Poisson structure

A Lie-Poisson structure on b} is a bilinear operation {-, -} on C*°(h3) such
that:

Q (C>(h3%), {-,-}) is a Lie algebra

@ {-,-} is a derivation in each factor.

Minus Lie Poisson structure

{F,G} (p) = —<p, [dF(p),dG(p)]>

for pe b3 and F,G € C*=(h3).

| A\

Heisenberg Poisson space
Poisson space (b3, {-,-}) denoted h3_.
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Hamiltonian vector fields and Casimir functions

Hamiltonian vector field H

To each H € C*°(h3), we associate a Hamiltonian vector field H on b3
specified by .
H[F] = {F, H}.

Casimir function

A function C € C*°(h3) is a Casimir function if {C, F} = 0 for all
F € C>(b3).

| A

A

Proposition

C(p) = p1 is a Casimir function on b3_.
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linear Poisson automorphisms of h3_

Linear Poisson automorphism
A linear Poisson automorphism is a linear isomorphism W : h3 — b3 such
that

{F,G}oV ={FoVW GoV}
for all F, G € C*(bh3).

Proposition
The group of linear Poisson automorphisms of h3_ is

Vow3 — V3w Vi W
pp 0 oo w| vy, Vo, v3, Wi, we, w3 € Ry vows — vaws #£ 0
0 vz W3
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Quadratic Hamilton-Poisson systems

Quadratic Hamilton-Poisson systems on b3_

A quadratic Hamilton-Poisson system is a pair (h3_, Ha g) where
Hag b3 =R, pr— p(A)+ Q(p).

Here A € g and Q is a positive semidefinite quadratic form on h3_.

@ Elements of h3, A= a1E1 + axE» + azEs, written as [al a» 33]T
o Elements of b3, p = p1Ef + poES + p3E3, written as [pl p2 p3].
A system Hz o on h3_ becomes
1 T
Hao(p) = pA+5pQp

where @ is a positive semidefinite 3 x 3 matrix.
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Homogenous and inhomogenous systems

1
Ha,o(p) = PA+ §prT

=La+ Ho.
@ Homogenous if A= 0. Denote system as Hg.

@ Inhomogenous if A # 0.
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Equivalence of Hamilton-Poisson systems

Affine equivalence

Ha o and Hg on bh3_ are affinely equivalent (A-equivalent) if 3 an affine
isomorphism W : b5 — b3, p— Wo(p) + g s.t.

Yy - HA7Q = /‘7333 oV,

A\

@ One-to-one correspondence between integral curves and equilibrium
points.

| .

Proposition

Ha o on b3_ is A-equivalent to
©Q Hap ooV, for any linear Poisson automorphism W : h3 — b3.
@ Ha o + C, for any Casimir function C: h3 — R.
© Ha,o, forany r #0.

\
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Homogeneous systems

Any Hg on b3_ is A-equivalent to exactly one of the following systems

1
p3.  Ha(p) = =(p3 + p3).

Ho(p) =0, Hi(p) = = :

2

\

Proof sketch (1/3)
@ Recall Ho(p) = 5pQp" where

air b1 b
R=|b a b3
b2 b3 a3

a1,a2,a3 >0, apa3 — b3 >0, aja3—b3>0, aja— bi >0,
@ Suppose a3 =0 — bz = bp = 0. Suppose a, = 0 then b; = 0 and

1

1 1 1 1
Ha(p)—521C%(p) = 5pQp' —5a1p = Sa1p —5a1p} = 0 = Ho(p)-

v
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Proof sketch (2/3)

@ Suppose a; # 0. Then

Va2 _bT 0
Vitp=pY, 1= 0 V= 0
0 0 ar
is a linear Poisson automorphism such that
aiar — b% 00
1@y = 0 10
0 0 0

@ Since Hg o Wy(p) = %Pwl Qi{ p we have

1 1
Hg o W1(p) — 5(a122 — b7)C3(p) = §P§ = Hi(p).

@ Similarly for case a3 # 0
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Proof sketch (3/3)

@ Three systems

1 1
Ho(p) =0, Hi(p) = 5p3, Ha(p) = (P + p3)-

Suppose H; is A-equivalent to H,.
@ 3 a linear isomorphism VW : p = p1), ¢ = [¢);] s.t.

(V- H2)(p) = (HpoW)(p).

@ That is
Y13p1p2 — Y12p1P3 T 0 T
Ya3p1p2 — Y22 P1P3 = 0
Y33p1p2 — Y32p1P3 (Y11p1 + Yo1p2 + Ya1p3) (Y12p1 + Yo2p2 + Y32p3)

Equating coefficients yields 13 = Y10 = W3 = 10 =0
—> dety = 0. The two systems are therefore not A-equivalent.
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Homogeneous and inhomogeneous systems

Proposition

Let Ha o be a inhomogeneous quadratic Hamilton-Poisson system on h3_.
Ha,o is A-equivalent to the system Lg + H; for some B € h3 and exactly
one i € {0,1,2}.

| A

Proof
HA’Q =La+ HQ.

3 a linear Poisson automorphism ¥ : p — pi), kK € R and exactly one
i €{0,1,2} s.t. HgoW + kC? = H;. Therefore

HaooW +kC?=LpaoW + HgoW +kC? = Lg + H;

where B = 9 A.
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Linear Poisson symmetries of each H;, i € {0,1,2}

Linear Poisson symmetry

A linear Poisson symmetry for a Hamilton-Poisson system Hg on h3_ is a
linear Poisson automorphism W : p — pw such that

HooW = H,o + kC?, r#0,k eR.

Proposition

| A\,

The linear Poisson symmetries of H; for each i € {0, 1,2} are the linear
Poisson automorphisms W() : p — py()) where

[vows —vawn v wy wwy 0 wy
Ho . '(p(o) = 0 Vo  Wo H1 . 1/)(1) = 0 Vo  Wo
L 0 vy w3 0 0 w3
-:Fv22 F vg 0 O
H2 . '(p(2) = 0 Vo :|:V3
. 0 i Fv2
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Proof (Hy : 1)

o Let Hi(p) = %prT where

Q=

o O O
o = O
o O O

@ Apply an arbitrary linear Poisson automorphism W : p — p1),
Vowsz — v3Wo Vi Wi
P = 0 vo wo| to Hi:
0 vz W3
2
Il T 1 | 1oaR s
(H1O‘U)(P):§P’¢H1¢ P =5P |2 V3 vavs|p
ViV Wov3 v32

e — vi=v3=0and V2W37£0.
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Inhomogeneous systems

Any inhomogeneous positive semidefinite quadratic Hamilton-Poisson
system Hja g on h3_ of the form

@ La+ Hp is A-equivalent to exactly one of

@ La+ Hj is A-equivalent to exactly one of

1 1
HO(p) = P2+ 5p3, HSY(p) = p3 + 5 3.

1 2
’ 2 2

Hi(p) = 5P

@ Lp+ H> is A-equivalent to exactly one of

1 1
Ha(p) = §(p§ +p3), HIp)=p+ §(p§ + p3).
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Proof sketch (L4 + H1) (1/2)

@ We have

(La+ H1) o WD (p) = Ly o WD(p) + Hy 0 WD (p)
= P'L/)(I)A 4F gp% -+ kp% forsomer #0, ke R
dl
@ Now A= |ax| € b3, A#O.

a3
@ Suppose a3 = 0 and a» = 0 then

(La+ H1)(p) — a1C(p) = Hi(p).
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Proof sketch (La + H1) (2/2)

@ Suppose a3 = 0 and a» # 0 then

= 00
\Ugl) p— p¢§1), gl) =10 % 0
0 0 1
a
is a linear Poisson symmetry of H; such that wgl) A= af and
0

a
puiVA— ZLp = p,.
an

@ We have that the system is A-equivalent to

1
HO (p) = pa + §p§.

@ Similarly for az # 0.
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Conclusion

@ Complete classification
— homogeneous and inhomogeneous.

@ Stability of Hamilton-Poisson systems.

@ Integration of Hamilton-Poisson systems.

@ Obtain extremal controls and optimal trajectories for optimal control
problems on Hs.
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