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0 Heisenberg group Hj
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Heisenberg group Hj

Matrix representation

1 x x1
Hs = 0 1 x3 |X1,X2,X3€R
0 0 1

H3 is a matrix Lie group:
e closed subgroup of GL(3,R) c R3*3
— is a submanifold of R3*3
— group multiplication is smooth

@ can be linearized
— vyields Lie algebra h3 = T1H3
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Heisenberg Lie algebra b3

Matrix representation

Commutator relations

[Ez, E3l = E1, [E1,E2] =0, [Ei,E3]=0.
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The automorphism group of b3

Lie algebra automorphism

Map % : h3 — b3 such that
@ 1 is a linear isomorphism
@ 1) preserves the Lie bracket: ¢¥[X, Y] = [vX,¢Y].

The automorphism group of b3 is given by

Vow3 — \V3Wse Vi wWp
Aut(hg,) = 0 Vo Wp
0 Vi w3

V1, V2, V3, Wi, W2, W3 € R?

vowz — vz # 0
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Outline

© Invariant control systems
@ Classification
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Control systems

Left-invariant control affine system

g=g=(Lu)=g(A+wuBi+ - +uby), gecHs;, ueR,

A, Bi,...,Bs € bs.

o Admissible controls: u(-) : [0, T] — RE.
@ Trajectory: absolutely continuous curve
g() [0, T] = Hs
such that g(t) = g(t) = (1, u(t)) for almost every t € [0, T].
Parametrization map: =(1,-) : R¢ — bs.
Trace: T=A+T%= A+ (By,...,By).
Drift: A.

Homogeneous system: A € I,

@ Inhomogeneous system: A ¢ I,

v
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Controllability

Definition

A system is controllable if for any gp, g1 € H3 there exists a trajectory
g(-) : [0, T] — Hs such that

g(0)=g1 and g(T)=g.

Full-rank condition

Y = (H3,=) has full rank if its trace T = A+ T% = A4 (By, ..., By)
generates b3 i.e.
Lie(T) = bs.

Neccessary conditions for controllabilty

@ Hs3 is connected
@ [ has full rank.
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Left-invariant control affine system on Hs

1-input inhomogeneous system on Hs
g=g(A+uB), ucR, with

1 X2 X1 0 dy ai 0 b2 b1
g=10 1 x3| €H;, A=|0 0 a3|,B=1|0 0 b3| €bs,
0 0 1 0 0 O 0 0 O
0 X2 X1 1 X2 X1 0 d> ai 0 b2 b1
ie, [0 0 x3| =0 1 x3 0 0 a3f{+w|0 O b3
0 0 O 0 0 1 0 0 O 0 0 O

System of differential equations

X1 = a1+ asxp + uby + ubsxy
Xp = ap + ubp

x3=as+ubs, ueR.

v
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Equivalence classes

DF-equivalence, SDF-equivalence, S-equivalence

Y = (H3,=) and ¥’ = (H3,Z’) are detached feedback equivalent
(DF-equivalent) if there exists a diffeomorphism ¢ : H3 — H3 and an
affine isomorphism ¢ : R® — R’ such that

Tg(Z) : E(g’ U) = E/((Z)(g)v 90(”))’ \V/g € H3, uc Re-

@ ¥ = (H3,=) and X’ = (H3,Z=’) are strongly detached feedback
equivalent (SDF-equivalent) if ¢ : R — Rf is a linear map.

@ ¥ =(H3,Z) and X’ = (H3,Z’) are state space equivalent
(S-equivalent) if ¢ : R — R is the identity map.
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Algebraic characterization

Proposition (H3 simply connected)
Y and X' are
© DF-equivalent iff 3¢ € Aut(hs3) such that

T =T
@ SDF-equivalent iff 3¢ € Aut(h3) such that
-T=T" and ¢ -A=A.
© S-equivalent iff 3¢ € Aut(bh3) such that

v-=(1,)=='(1,).
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Two-input inhomogeneous systems

[ DF-equivalence ] [SDF—equivalence] [ S-equivalence ]

[51 +wmb + u253]—>[E1+ulE2+u2aE3]

E+ E +
E+E+ a1 By + wonks
nks + ks E1+Ex+ujon B3+

u(a2Ex +7)Es

Ei+ b+ wEs

Ex+uaEi+uwkEs

E> + u B3 +
(kb +vE3)

S
Er + uEr + wkEs Ex + w1 E1 + wEs
—_—

a,a1,a2 #0,7 € R
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DF-equivalence (¢ -T =

[ DF-equivalence ] [SDF—equivalence] [ S-equivalence ]

[51 +wmb + u253]—>[E1+ulE2+u2aE3]

E+ E +
E+E+ a1 By + wonks
nks + ks E1+Ex+ujon B3+

u(a2Ex +7)Es

Ei + B+ wEs

Ex+uaEi+uwkEs

E> + u B3 +
(kb +vE3)

—
Ex + wEl + wEs Ey + wE + wnE;s
—_—

a,a1,a2 #0,7 € R
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SDF-equivalence (¢p-T'=T"and ¢ -A=A')

[ DF-equivalence ] [SDF—equivalence] [ S-equivalence ]

[51 +wmb + U2E3]—>[E1+u152+u2aE3]

E + E +
—
Jiahs s Ei+Ex+uop B3+

u(a2Ex +7)Es

Ei + B+ wEs

Ex+uaEi+uwkEs

E> + u B3 +
(kb +vE3)

S
Er + uEr + wkEs Ex + w1 E1 + wEs
—_—

a,a1,a2 #0,7 € R
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Classification: SDF-equivalence

DF-equivalence class: E; + u1E> + unE3
@ Suppose X is DF-equivalent to E; + u1 Ey + upEs.
@ May assume X has trace

N=E+ (Ey E3).

Y is of the form A + u1E> + upE3 where A = E; + a1 E> + asEs.

e If ay = a, =0, X is SDF-equivalent to E; + u1 Ep + upE3.
@ Subgroup of automorphisms preserving I
1 00 v2, v3, w2, w3 € R
Autr([]3) = 0 v w
0 Vs ws Vow3 — V3Wp = 1
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DF-equivalence class: E; + u1Ey + urE3

o If a2 + a3 # 0, then

1 0 0
Y= 0 a{:}ag a;ﬁag EAUtr(b3)
0 —a dl

and Y- A= E + E.
@ Y is SDF-equivalent to E; + Ex + u1 E» + wrE3.

@ Two systems

(2/2)

Ey +wuEr+wkE3 and Ey + Ex + u1Ex + wpEs.

e Now v - Ey = E; for any ¢ € Autr(h3).

@ Hence E; + ui1Ey + upE3 is not SDF-equivalent to
Ei+ E+ un b + wEs.

v
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S-equivalence (¢ - =

[ DF-equivalence ] [SDF—equivalence] [ S-equivalence ]

[51 +u b+ U2E3]—>[51+U1E2+U20453]

E+ E +
E+E+ a1 By + wonks
nks + ks E1+Ex+ujon B3+

u(a2Ex +7)Es

Ei+ b+ wEs

Ex+uaEi+uwkEs

E> + u B3 +
(kb +vE3)

S
Er + uEr + wkEs Ex + w1 E1 + wEs
—_—

a,a1,a2 #0,7 € R

Catherine Bartlett (Rhodes) Control Systems on H3 Workshop 2015 18 /29



Classification: S-equivalence

SDF-equivalence class: E; + u1Ey + whE3

o May assume X has
M= E1+<E2,E3> and A= E;.

@ XY has matrix form

10 O
> 0 b2 ()
0 b3 C3

where bycz — cpbs # 0.

@ Subgroup of automorphisms preserving A and T:

1 0 O
v2,v3, w2, w3 € R,
Autar(bz) =14 |0 v w e e ]
0w W3 — WoV3 =

v
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SDF-equivalence class: E; + u1 B> + wEs3 (2/2)

o We have
1 0 0
Y= 0 b263i3b3c2 b2C3_f%J3C2 GAUtAvr(h?’)
0 —b3
such that
110 O 110 0
’(/J- 0 b2 C = 0|1 0
0 b3 C3 0|0 b2C3—b3C2

@ Thus X is S-equivalent to E; + u1 Er + waEs.

e Each « yields a distinct equivalence class, since if for ) € Auta r(h3),

1/0 0 1/0 O
Y- 01 0|=]01 O — a=d.
0|0 « 0|0 o
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Outline

© Cost-extended control systems
o Classification
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Cost-extended control systems

Optimal control problem

o ¥ = (Hs,3) - (
gzg:(l,u), g€H3aUGR-

o Boundary data

g(0) =go0, g(T)=g1, &o,8 €Hs, T>0.
@ Cost functional

-
J = / (u(t) — 1) " Q(u(t) — p)dt — min, p e R
0

Q positive definite £ x £ matrix.

Cost-extended system (X, x)
e ¥ =(Hs,=)
o Cost function x : R - R
x(u) = (u— )" Q(u— p)
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Cost equivalence

Cost equivalence
(X, x) and (X', x') are cost equivalent (C-equivalent) if 3¢ : H3 — H3 and
¢ : RY = R such that

Tep-=(g,u) =='(¢(g), p(u)) and rx=xo¢p

for some r > 0. )

Proposition

(Z,x) and (¥, x’) are C-equivalent if 3¢ € Aut(h3) and ¢ : R® — R’
such that

=/

$-Z(Lu)==(1,e(w) and ry=xogp

for some r > 0.

If (X, x) and (X', ') are C-equivalent then ¥ and ¥’ are DF-equivalent.
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Cost equivalence

Feedback transformations leaving ¥ = (H3, =) invariant

Ts = {p € Af(RY) : 3 € Aut(hz), v - =(1, u) = Z(1, ¢(u))}-

| \

Proposition

(X, x) and (X, x’) are cost equivalent iff 3p € Ty such that X' = ryo¢p
for some r > 0. )

r(xo@)(u)=r(u—p) o' Qp(u— )

for ' = o= (u).
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Classification

Any two-input homogeneous cost-extended system on Hj is C-equivalent
to exactly one of

(2(270) (1)) ( ? )(1 U) = U]_E2 aF U2E3
X 1) = ul +u2,

(2(270) (2)) ( ? )(1 U) = U]_E2 aF U2E3
x® = (ug — 1% + 3.

Proof sketch (1/4)

@ Any (2,0) system on Hs is detached feedback equivalent
¥ (20) = (H3,=(20),

@ Determine 75(2.0).

v
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Proof sketch (2/4)

@ In matrix form
wwz —vauwne vi wp| [0 O vi wy
P - 5(2’0)(1, u) = 0 vo wol| |1 O =|wv ws
0 v ws| [0 1 v ws
@ Also in matrix form
0 0 0 0
5(270)(1, SO(U)) =11 0 [i;i Z;z] = P11 P12
01 Y21 P2
°® w3z —vawe #0 = 11922 — 21912 # 0 = Tgo = GL(2,R).
@ Recall

xoo(u) = (u—p) o' Qp(u—p)

for p/ = o™ ().

v
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Proof sketch (3/4)

o Now
Q= [al b] with a1, ap, ajar — b? > 0.
b dan
@ And so
1 - 0
31—2—2
wY1=| b 1 | € Tzeo-
oy fn-2 V2
&
@ Such that
_ _ NnNT 10 / / 2
xi= o)) =(w—w) |y {|(u=n) weR"
o If /' =0, then (X, ) is C-equivalent to (X(20) y(1))
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Proof sketch (4/4)

@ Suppose ' # 0.
@ There exists & > 0 and 6 € R such that p} = acosf and

phH = asin@.
@ Hence
_ |acosf —asinf c T
Y27 1 asinf  acosd @0
and

xa() = = (x1 0 2)(u) = (un — 1)? + 2.

2

o Therefore (X, ) is C-equivalent to (£(29), x(2)

o (X9 (M) and (X9, x(?) are not C-equivalent as there is no
r >0 and ¢ € 750 such that

(1) ()

X
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Concluding remarks

@ The classification of cost-extended systems can be based on the
classification of the underlying control systems. Based on:
— DF-equivalence or
— SDF equivalence.

@ The classification of cost-extended systems can be reinterpreted as
the classification of the left-invariant metric-point affine structures.

.
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