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Invariant sub-Riemannian stucture (G, D, g)

@ G connected real Lie group with Lie algebra g

@ D is a left-invariant bracket-generating distribution
e D(g) is a subspace of T,G
o D(g) = Tilg - D(1)
o D(1) generates g

@ g is a left-invariant Riemannian metric on D

o g, is a positive definite billinear form on D(g)
o g,(Tilg-A Tilg - B) =g1(A,B) for A,Beg and g €G.

@ D-curve: an absolutely continuous curve g(-) such that
&(t) € D(g(t)).
o Length of a D-curve: ¢(g(+)) = fotl Vg(g,g)dt

@ Carnot-Carathéodory distance:
dec(80,81) = inf{£(g(")) : &(-) is D-curve,g(0) = go,8(t1) = &1}-
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Heisenberg group Hj,.1

@ Only simply connected two-step nilpotent Lie groups with
one-dimensional center.

@ Can be represented as R x R” x R” with group product

(z,x,y) (@, X,y)=(z+Z +L(xey =X oy), x+ X, y+ ).

Matrix Representation

1 n T
Xn Z+ 2 Zi:l XiYi

O O~

— m(ZaXh,Vl’ ..

Rory Biggs (Rhodes)

Structures on the Heisenberg Groups

University of Ostrava, 2015



Lie algebra of Hy, 1

Lie algebra bopi1

[0 X1 Xo -+ Xp z
0 0 O 0 wn
00 0 0 » 2
:ZZ+Z(X1XI+}/I\/I) : Xi;}/hZER
i=1
0 0 Yn
o 0 0]

e Commutators [X;, Yj] = 6;;Z
o Center: span(2)
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Isometries

Structures (G,D,g) and (G, D’,g’) are isometric if there exists a
diffeomorphism ¢ : G — G’ such that

0 ¢*D — D/
Q g=19¢'¢g.

Note

o Isometries preserve distance dcc, i.e., dec(0(g1), #(g2)) = dec(g1,82)-
@ Conversely, distance preserving diffeomorphisms are isometries.

| \

o If all geodesics are normal, then any homeomorphism preserving dc.
is smooth.
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Sub-Riemannian structures

Theorem

Any left-invariant sub-Riemannian structure on Hy,y1 is isometric to
exactly one of the structures (Hap+1, D, g)‘) specified by

D(1) = span(X1, Y1,..., Xn, Ya)
g1 = A = diag(A1, A1, A2, Aoy ooy A An)

i.e., with orthonormal frame

X1, Y1,

(W \ﬁ WX2’WY2""’fX"’WY)
Here 1 =Xy > Xy > --- > X\, > 0 parametrize a family of (non-isometric)

class representatives.

v
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Riemannian structures

Any left-invariant Riemannian structure on Hpni1 is isometric to exactly
one of the structures (Ha,11,8") specified by

gi:[(l) R] A = diag(A1, A1, A2, A2y -y Any An)

i.e., with orthonormal frame

(Z \/—Xl,\/—Y1,\/1—X2,\/—Y2, "a\/*Xnv\/*y)

Here Ay > X > --- > X\, > 0 parametrize a family of (non-isometric)
class representatives.
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Proof sketch

Isometries are Lie group automorphisms

Sub-Riemannian Carnot groups [Hamenstadt 1990, Kishimoto 2003]
Riemannian nilpotent case [Wilson 1982, Lauret 1999]

e (H2pt1,D,g) and (Hapt1, D, g) isometric if and only if there exists
¥ € Aut(hanp41) such that

$-D1)=D() and  g(AB)=g/(¥ A B)

@ Problem essentially reduces to normalizing PSD matrix Q € R?7%2"
under transformations

Q=g"Qg geSp(nR)

@ Williamson's theorem and symplectic spectrum: reduce to diagonal.

v
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Isometry group

The subgroup of isometries of (Hanyi1,D,g") and (Ha,i1,8") preserving
the identity are Lie group automorphims with linearizations given by
1 0 1 0
81 81
. . : gi € U(v)

0 8k 0 8k

Here
o U (I/,') =Sp (I/,', R) no (21/,')
@ o:Z——Z, Xi=Y:, Yi—= X
@ u; denote the respective multiplicities of distinct values in
(A1, A2, Ap). )

11/ 28
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Geodesics

Pontryagin Maximum Principle

o Length minimization problem

g(0) = go, g(t1) = g1, l(g(-)) — min

is equivalent to energy minimization problem.
@ Energy minimization problem can be reinterpreted as invariant
optimal control problem.

@ By PMP, normal geodesics are the projection of integral curves of a
certain Hamiltonian system on T*G.

@ There are no abnormal geodesics on the Heisenberg group.

N

Rory Biggs (Rhodes) Structures on the Heisenberg Groups University of Ostrava, 2015 12 /28



Normal geodesics

Using left-trivialization T*G = G x g*

The normal geodesics g(-) of (G,D,g) are given by

g=Tilg-("p)*,  p=H(p)

where
e H(p) = %( *p) - (¢*p)* is Hamiltonian on Lie-Poisson space g*
e b:D(1)" — ( ), A gi1(A,-) and £ =b"1:D(1) = D(1)*
@ +:D(1) —» g = T1G is inclusion map and * : g* — D(1)*.

Exponential map Exp: g* — G

Exp(t p(0)) = g(t)

where g(t) is normal geodesic through g(0) =1 associated to p(t).
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Exponential map for structures on Hj,.1

Exponential map for (Hz,.1,D,g")

Let p=p,Z* + > 71 p X+ py, Y7 and let
Exp(p) = m(z,x1, y1,- -, Xn, ¥n). Then

P
ZZle+py: ()\I_SI )

Ai
[x,} 1 [ sin &2 (1 — cos & )] [Px;]
Yi Pz |1 — cos ¢ sin 5 Py;
when p, # 0 and

P P B P
(Z7X1a}/1a"'7xn7yn):( 77)(1177};1a"'a )\Xn’ )\yn)

when p, = 0.

v
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Exponential map for structures on Hj,.1

Exponential map for (Hz,11,8&")

Let p=p,Z* + > 71 p X+ py, Y7 and let
Exp(p) = m(z,x1, y1,- -, Xn, ¥n). Then

Z p p
zZ = pZ 2 pX, + py, <Z - SI Z>
Pz 5 =1

Aj Aj
[x;] _ 1] sink (1 — cos & ) [Px;]
i Pz |1 — cos 2 sin &2 Py;
when p, # 0 and
_ Px1 Pyy Px, Pya
(Z7X1ayla"'7xn7yn) ( 7A17 >\1a"'a >\n’ )\n)

when p, = 0.
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Conjugate points (to identity)

@ Conjugate point: critical value of exponential map Exp.

e First conjugate point along geodesic t — Exp(t p): first point
Exp(t1 p), t1 > 0 conjugate to identity.

@ First conjugate locus: collection of all first conjugate points.

A geodesic t +— Exp(tp) is not minimizing after passing through a
conjugate point.
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Jacobian & of exponential map

r oz
op;
by,

b.Vl

by,

b)’i

by

n

L b}/n

i i
[311 312} _
1 1
dr1 9
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1 1
1 9
i i
1 1
dr1 9
0z 8X,'
Zy — — =
Yi X
' 8py,' ' 8Pz
ox; ox; Pz
%PX,- %Py,— _ i sin Aj
Qv O¥i | 1—cos £z
apX,' 8p,V,' pZ
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ZXn Z}’n_
n n
a1 a2
n n
1 axnl]
b, — Jyi
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Determinanat of £

In the sub-Riemannian case:

2" "1 2 2 Pz Pz . Pz Pz
detgzmzy(p&_—i—p},’.) 1_COSY_2)\-SmT H 1—cosx )
pz =1 i i i i \j
In the Riemannian case:
P ,
det& = 5 (1 — cos p)
pz" 2 Ai
i=1
+ 2 il(p2+p2) 1-cosPz - Pz gin Pz H 1 cos 2
2(n 1) L )\ Y i 2) Ai N

Observe
Positive for p, € [-27\,,0) U (0,27\,] and zero for p, = £27A,,.
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First conjugate point

In both the Riemannian and sub-Riemannian case:

@ if p, =0, then there are no conjugate points along the geodesic
t — Expy(t p);

Q if p, # 0, then the first conjugate point along the geodesic

t — Expy(tp) is attained at t = 2|7;)\‘n'
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First conjugate loci

@ Wehave \1 > X >---> X, > 0.
@ Here we assume A1 > Ao > --- > )\, > 0.

Theorem

The first conjugate locus of the identity for (Hapi1,D,g") is

2 (2 + 2 }

The first conjugate locus of the identity for (Hapy1, gA) is

CSR: {m(27X17y17~-~7Xn—17)’n—170 O |Z|

ooll—\

n—1
CR:{m(z,xl,yl,...,x,,_l,y,,_l,O,O) |z| > 2\, + = 2(5 X —l—y,)}
i=1
2X\pm—A; sin D;\"" .
Here 5,‘—W>0 i=12...,n—1.
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First conjugate loci

Sub-Riemannian

Riemannian

3D 5D (projection)
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Minimizing geodesics

Problem (Assuming Ay > Ao > -+ >\, > 0)

Given g = m(Z,X1, 71, X2, ¥2, - - -y Xn, ¥n) € Hony1, describe minimizing
geodesics from identity to g.

In the sub-Riemannian case, let:

I R 477 ( 52) 1~ R2+7?
Tn(s1,52) = — =L (s —Ajsin—= ], Ku(s)=- — =t
(st %2) 8 Z )\, sin’ 25)1\ 2 TN n(s) 4 ; \; sin? 2;_
In the Riemannian case, let:
1 %2 4 y2 S 1 x? + y?
Tn(s1, s S+ = ! ! SS—Ajsin— ], kn(s)=1+ - ! !
’7( 1 2) 2 8 — )\,‘SI 2 s 2 ! A’_ "( ) 421 )\;Sin22i
Furthermore, let
sin &t cos a(t—t) _sin a(t—t)
2t \j R R
(= Tn 12700 200, Ri(t,t1,0) = — 22 Lin ) el
2N 26N 2N
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Minimizing geodesics
(1/4)

o

Theorem
t

If z=0, then there exists a unique unit speed minimizing geodesic
07 Xl(t) = %ta Yi(t) =

z(t) =

where t; = \/27:1 >\r()_<,2 +}7i2)'
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Minimizing geodesics

Theorem

(2/4)
If Z#0 and g ¢ C (i.e., X2+ y2+#0 or 0< |Z| < (), then there exists
a unique unit speed minimizing geodesic

z(t) =Tp (a, %)

-] s

1

where sgn(Z)a is the unique solution to 7,(s,s) = |Z| on the interval

(0,27A,) and t1 = |a|y/kn(a).
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Minimizing geodesics

Theorem (3/4)

If g€0C (e, X2+ y2=0 and 0 < |Z| = (), then there exists a unique
unit speed minimizing geodesic

where a = 2sgn(Z)mA, and t1 = 27 \p\/Kn—1(27Ap).
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Minimizing geodesics

Theorem

(4/4)
If g €intC (i.e., X2+72 =0 and |Z| > ¢ > 0), then there exists a family
of unit speed minimizing geodesics

2(t) = a2t E=Cfat oot
= Tph—1 ) t]_ 27T )\n tl Antl
xi(t) _ p. Xi . B

|:Yi(t):| = Ri(t, t1, ) [}7] , i=1,...,n-1

]

| {Xn(t)] _ sgn(2)y/12[ = ¢ [cos@ —sinﬂ] [ sin 2L }

(

ya(t)| Nz sinf  cosf | |1 —cos

. Here o =2sgn(z)w\, and

parametrised by [Z?nsg —ngnee] €S0(2)

t1 = 2/ TV |Z] = €+ Thnkn_1(207A,).

4
Rory Biggs (Rhodes)

Structures on the Heisenberg Groups

University of Ostrava, 2015 26 / 28



Minimizing geodesics

Sub-Riemannian Riemannian

Figure: Some minimizing geodesics from identity in three dimensions,
corresponding to the same set of endpoints (on the x = y plane).
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Conclusion and outlook

Simple description of minimizing geodesics to any point.
@ Also, description of Carnot-Caratheodory metric.

@ Riemannian and sub-Riemannian cases closely related; does this hold
more generally?

Totally geodesic subgroups?

o Affine distributions (& optimal control).
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