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Heisenberg Lie algebra h3 and dual Lie algebra b3

Lie algebra b,

@ Matrix representation

0 x x1
hs = 0 0 x3| =x1E1+xE +x3E3 @ x1,x0,x3 €ER
0 0 O

. T
@ Element A = x1 E1 + xoE» + x3E3, written as [xl X2 Xg]

@ Commutator relations

[E17 E2] - 07 [E17 E3] = Oa [E27 E3] = E]-'

Dual Lie algebra b3

o Dual basis denoted by (E*)3_,. Each E* defined by (E, E;)=0;,
ij=1,2,3.
@ An element p = p1Ef + poE5 + p3E3 of b3 written p = [pl P2 pg]
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Lie-Poisson spaces

Lie-Poisson structure

A Lie-Poisson structure on b} is a bilinear operation {-,-} on C>°(h%) such
that:

Q@ (C>(h%), {-,-}) is a Lie algebra.
@ {-,-} is a derivation in each factor.

(Minus) Lie Poisson structure

{F.G}(p) = —p ([dF(p).dG(p)])
for p € b3 and F, G € C*=(h3).

Heisenberg Poisson space
Poisson space (b3, {-,-}) denoted b3.
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Hamiltonian vector fields, Casimir functions and equations

of motion

Hamiltonian vector field H

To each H € C*°(h3), we associate a Hamiltonian vector field H on b3
specified by

H[F] = {F, H}.

Casimir function

A function C € C*°(h3) is a Casimir function if {C, F} = 0 for all
F € C>(b3).
e C(p) = p1 is a Casimir function on h3.

|

Equations of motion

p = H(p) for any Hamiltonian H € C>°(h3) are given by

OH OH
p1 =0, P2 = —p15—, p3 = p15—-
ps op2
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Linear Poisson automorphisms of b3

Linear Poisson automorphism

A linear Poisson automorphism is a linear isomorphism ) : h3 — b3 such
that

{F,Gloyp={Foy,Goy}
for all F, G € C*(bh3).

| A\,

Proposition
The group of linear Poisson automorphisms of b3 is

Vow3 — v3wp Vi W
p—p 0 2w
0 vy W3

Vi, V2, v3, Wy, W, w3 € R,

Vow3 — V3Wp 75 0
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Quadratic Hamilton-Poisson systems

Quadratic Hamilton-Poisson systems on b3

A quadratic Hamilton-Poisson system is a pair (h3, Ha o) where

Hao: b3 =R, p— La(p)+ Q(p),

where A € g, La(p) = p(A) and Q is a quadratic form on b3. In
coordinates

1
Hao(p) = pA+5pQp .

Here @ is a positive semidefinite 3 x 3 matrix.

A system is

@ Homogenous if A= 0. Denote system as Hog.
@ Inhomogenous if A # 0.
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Equivalence of Hamilton-Poisson systems

Affine equivalence

Ha,o and Hgr on b} are affinely equivalent (A-equivalent) if 3 an affine
isomorphism ) : b5 — b3, p — Yo(p) + g s.t.

To - Hao(p) = FiB,R o Y(p).

A\

@ One-to-one correspondence between integral curves and equilibrium
points.

| .

Proposition

Ha o on b} is A-equivalent to
© Hj g o, for any linear Poisson automorphism ¢ : b3 — b3.
@ Ha o + C, for any Casimir function C: h3 — R.
© Ha,o, forany r #0.

\
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Homogeneous systems

Any Hg on b3 is A-equivalent to exactly one of the following systems

1 1
Ho(p) =0, Hi(p) = §p§, Ha(p) = §(p§ + p3).

Let Hg be a positive semidefinite quadratic Hamilton-Poisson system on
b3. There exists a linear Poisson automorphism v and constants
r,k € R, r > 0 such that

rHg o 1) + kC? = H;

for exactly one index i € {0,1,2}.
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Classification of QHP systems

Proposition
Let Ha o and Hgr be QHP systems on g*. If Hy o is A-equivalent to
Hg . then Hg is A-equivalent to Hg.

Let S(H;) denote the subgroup of linear Poisson automorphisms

Y 1 b3 — b3 satisfying
H; o ¢ = rH; + kC?

for some r > 0 and k € R. )

Proposition
The system Lg + H; is A-equivalent to Lg o ¢ + H; for any ¢ € S(H;).
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The subgroups S(H;), i € {0,1,2}

The subgroups S(

H;), i € {0,1,2} are given by

-V2W3 — V3W2
S(Ho) = 0

i 0

wws 0
S(Hl) = 0 Vo

| O 0

[o(v3 +v3)
S(H,) = 0

i 0

Vi
V2

-

wi

V1, V2, V3, Wi, W2, W3 € Ra
%] .

vowz — wov3 #= 0

Do, wi,wo, w3 € R, vows # 0

w,v3 € R,

—0V: .
| V12 4£0,0=+1

gV
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Proof S(H;) (1/2)

o Let Hi(p) = 3pQp' where

Q=

o O O
O = O
o O O

o Let

Vow3z — v3wp Vi wp
vip—p 0 Vo wo|, wvows— wrvg # Q.
0 vy W3
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Proof S(H;) (2/2)

o We have

V12 Vivo viVv3

1 1
(HLo9)(p) = §P?/)Q¢TPT = 5P |2 Vi vavs p'.
vivs wvz V2

@ On the other hand,

o

rHi(p) + kC?(p) = p

o o x
N

oﬁ

o oo
<

) |f1/) E S(Hl) then vy = v3 = 0.
o If vy = v3 =0, then (H; o ¥)(p) = viH1(p) and so ¢ € S(Hy).

Catherine Bartlett (Rhodes) QHP systems on b3 PG Sem. Math. 2015



Classification

Any QHP system on b3 is A-equivalent to exactly one of the following
systems

1
Ho(p) =0, Ho(p)=p2, Hh(p) = 5p3

1 1
Hi(p) = ps+ 5p3,  Ha(p) = 5(p3 + P3).

Proof sketch (1/3)

@ May assume Hy g is A-equivalent to H = Lg + H; for some B € b3
and i € {0,1,2}.

\
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Proof sketch (2/3)

o Let H=Lg+ Hp and let B=3"3 | hE;.
o If bp = b3 =0, then LB(p) = p(B) = b1p;.
@ H is A-equivalent to the system H(p) = %(p% + p3).
o Suppose b3 + b3 # 0. Then
0 b b

_ 93 D02
b3+b3  b3+b3

is an element of S(Hz) such that Lgoy =L &
b3+5

Ei+E’
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Proof sketch (3/3)

@ Therefore Lg(p) = p(ﬁEl + E) = Wpl + p2.
e Hence H is A-equivalent to G(p) = p> + 3(p3 + p3).
o Hy(p) = 4(p3 + p3) and G(p) = p> + 3(p3 + p3) are A-equivalent:

Y:lpr p2 p3l [ p2—1 p3

is an affine isomorphism such that

Tpt - Ha(p) = G o 9(p).
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Integral curves of QHP systems

Equations of motion

For any Hamiltonian H € C*(b3)
p1 =0, mz—Plai, bszplai
op3 op2
System Equations of motion Integral curves
p2 pr=0p=0ps=p (c,c,ct+c)
1p3 pr=0,p =0 p3=pip> (c1,0,crot+ c3)
ps + 3p3 p1 =0, p2 = —p1, (c1,—cat+ o,
p3 = p1p2 —322 4+ ot + )
2(P3+p3) PL=0, po=—pips, (c1, co cos(crt) — czsin(cyt),
p3 = p1p2 czcos(cit) + o sin(a t))
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Optimal control problem

e X =(Hs,3)
g==(g,u)=g(A+uBi+ -+ ubBy), gcHs, ucR

A, Bi,...,B; € bs.

@ Boundary data

g(o):gOa g(T):gla gOag1€H37 T >0.

@ Cost functional

-
J = / (u(t) — )T Q(u(t) — p)dt — min, p e R
0

Q positive definite £ x £ matrix.
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