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Marius Sophus Lie (17 December 1842 – 18 February 1899)

Norwegian mathematician

largely created the theory of
continuous symmetry

applied it to the study of geometry
and differential equations.
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What is a Lie group?

Real Lie group G

Group G endowed with the structure of a smooth manifold such that the
group operations

µ : G× G→ G, (x , y) 7→ xy

ι : G→ G, x 7→ x−1

are smooth.

Assumption

Throughout, we assume G is connected.
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Examples

2D Abelian

Group of translations in a plane.

R2 with (x1, y1)(x2, y2) = (x1 + x2, y1 + y2)
1 0 0
x 1 0
y 0 1

 : x , y ∈ R


Group of dilations in a plane.

{(x , y) ∈ R2 : x , y > 0} with (x1, y1)(x2, y2) = (x1x2, y1y2)
1 0 0

0 ex 0
0 0 ey

 : x , y ∈ R


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Examples

Rotations (organised as matrix Lie groups)

In 2 dimensions.

SO (2) =

{[
cos θ − sin θ
sin θ cos θ

]
: θ ∈ R

}
In 3 dimensions.

SO (3) =
{
x ∈ R3×3 : x>x = 1, det x = 1

}
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Examples

The Euclidean group

Translations and rotations in a plane.
1 0 0
x cos θ − sin θ
y sin θ cos θ

 : x , y , θ ∈ R


The Heisenberg group

1 y x
0 1 z
0 0 1

 : x , y , z ∈ R


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The Lie (or tangent) algebra of a Lie group

Lie algebra g

Vector space over R
with a skew-symmetric bilinear form [·, ·] : g× g→ g satisfying

[A, [B,C ]] + [B, [C ,A]] + [C , [A,B]] = 0 for all A,B,C ∈ g.

Lie (or tangent) algebra of a Lie group

Vector space = Tangent space at identity.

Lie bracket given by

[ġ(0), ḣ(0)] =
∂2

∂t∂s
(g(t) h(s) g(t)−1 h(s)−1)

∣∣∣∣
t=s=0

where g(·), h(·) : [−ε, ε]→ G are curves through g(0) = h(0) = 1.
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Examples

Lie group G Lie algebra g Lie Brackets1 0 0
x 1 0
y 0 1

 0 0 0
x 0 0
y 0 0

 [E1,E2] = 0

1 0 0
0 ex 0
0 0 ey

 0 0 0
0 x 0
0 0 y

 [E1,E2] = 0

1 y x
0 1 z
0 0 1

 0 y x
0 0 z
0 0 0

 [E2,E3] = E1

[E3,E1] = 0
[E1,E2] = 0
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Equivalence and isomorphisms

Lie group isomorphism

Mapping φ : G→ G′

diffeomorphism, i.e. φ is smooth and has smooth inverse

group homomorphism, i.e., φ(xy) = φ(x)φ(y).

Example: group of translations and group of dilations isomorphic

φ :

1 0 0
x 1 0
y 0 1

 7−→
1 0 0

0 ex 0
0 0 ey


Result

Isomorphic Lie groups have isomorphic Lie algebras
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Is there more than one group with the same algebra?

1D Abelian groups

1D translation{[
1 0
x 0

]
: x ∈ R

}
Abelian Lie algebra: [E1,E1] = 0

Diffeomorphic to line R

Rotation in plane{[
cos θ − sin θ
sin θ cos θ

]
: θ ∈ R

}
Abelian Lie algebra: [E1,E1] = 0

Diffeomorphic to circle T

As line is not diffeomorphic to circle, these groups are not isomorphic.

Rory Biggs (Rhodes) On the classification of Lie groups PG Sem. Math. 2015 10 / 22



Is there more than one group with the same algebra?

2D Abelian groups
1 0 0
x 1 0
y 0 1

 : x , y ∈ R



ex 0 0

0 cos y − sin y
0 sin y cos y

 : x , y ∈ R





cos x − sin x 0 0
sin x cos x 0 0

0 0 cos y − sin y
0 0 sin y cos y

 : x , y ∈ R


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Universal coverings

Theorem

1 For every Lie algebra g, there exists a simply connected Lie group G̃
(called the universal covering group) with Lie algebra g.

2 Any other connected Lie group with Lie algebra g is isomorphic to a
quotient G/N where N is a discrete central subgroup of G.

Simply connected: every loop can be contracted into a point

e.g., a plane is simply connected; a cylinder is not simply connected.

Discrete subgroup: subgroup whose relative topology is the discrete one

e.g., Z is a discrete subgroup of R
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Universal coverings

Proposition

Let G̃ be a simply connected Lie group and let N1 and N2 be
discrete central subgroups.

G̃/N1 is isomorphic to G̃/N2 if and only if there exists an
automorphism φ ∈ Aut(G̃) such that φ(N1) = N2.

classification of Lie groups = classification of discrete central subgroups
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One-dimensional groups

1D Lie algebras: g1

Universal covering group:

G1 =

{[
1 0
x 1

]
: x ∈ R

}
Center: Z(G1) = G1

Discrete central subgroups:{[
1 0
αx 1

]
: x ∈ Z

}
, α 6= 0

Automorphisms:[
1 0
x 1

]
7−→

[
1 0
rx 1

]
, r 6= 0
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One-dimensional groups

Normalized discrete central subgroups:

N =

{[
1 0
x 1

]
: x ∈ Z

}

Quotient: G1/N ∼= SO(2) =

{[
cos θ − sin θ
sin θ cos θ

]
: θ ∈ R

}

Classification of 1D groups

Any one-dimensional Lie group is isomorphic to G1 or SO(2).
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Two-dimensional groups

2D Lie algebras: 2g1, g2.1

Case: 2g1

Universal covering group:

G1 × G1 =

{[
ex 0
0 ey

]
: x , y ∈ R

}
Center: Z(G1 × G1) = G1 × G1

Discrete central subgroups:{[
eα1x 0

0 eα2x

]
: x ∈ Z

}
, α2

1 + α2
2 6= 0{[

eα1x+α2y 0
0 eα3x+α4y

]
: x , y ∈ Z

}
, α1α4 − α2α3 6= 0.

Automorphisms:[
ex 0
0 ey

]
7−→

[
er1x+r2y 0

0 er3x+r4y

]
, r1r4 − r2r3 6= 0
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Two-dimensional groups

Normalized discrete central subgroups:

N1 =

{[
1 0
0 ex

]
: x ∈ Z

}
, N2 =

{[
ex 0
0 ey

]
: x , y ∈ Z

}
Quotients:

(G1 × G1)/N1
∼=


ex 0 0

0 cos y − sin y
0 sin y cos y

 : x , y ∈ R


(G1 × G1)/N2

∼=




cos x − sin x 0 0
sin x cos x 0 0

0 0 cos y − sin y
0 0 sin y cos y

 : x , y ∈ R


Classification of Ablelian 2D groups

Any two-dimensional Abelian Lie group is isomorphic to G1 × G1,
G1 × SO(2), or SO(2)× SO(2).
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Two-dimensional groups

2D Lie algebras: 2g1, g2.1

Case: g2.1

Universal covering group:

Aff(R)0 =

{[
1 0
x ey

]
: x , y ∈ R

}
Center: Z(Aff(R)0) = {1}

Hence, no discrete central subgroups.

Classification of 2D Lie groups

Lie algebra 2g1: G1 × G1, G1 × SO(2), or SO(2)× SO(2)

Lie algebra g2.1: Aff(R)0.
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Three-dimensional Heisenberg groups

Case: g3.1

Universal covering group:

H3 =


1 y x

0 1 z
0 0 1

 : x , y , z ∈ R


Center:

Z(H3) =


1 0 x

0 1 0
0 0 1

 : x ∈ R


Discrete central subgroups:

Z(H3) =


1 0 αx

0 1 0
0 0 1

 : x ∈ Z

, α 6= 0
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Three-dimensional Heisenberg groups

Automorphisms:1 y x
0 1 z
0 0 1

 7−→1 r2y + r5z (r2r6 − r3r5)x + r1y + r4z + 1
2 r2r3y

2 + r3r5yz + 1
2 r5r6z

2

0 1 r3y + r6z
0 0 1

,

r2r6 − r5r3 6= 0

Normalized discrete central subgroups:

N =


1 0 x

0 1 0
0 0 1

 : x ∈ Z



Rory Biggs (Rhodes) On the classification of Lie groups PG Sem. Math. 2015 20 / 22



Three-dimensional Heisenberg groups

Classification of 3D Heisenberg groups

universal covering H3

quotient H3/N.

Remark

The group H3/N cannot be represented as a matrix Lie group
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Conclusion

Concluding remarks

Classification of 3D Lie groups has been known for several decades.

We recently completed the classification for the 4D groups
[There are 24 types of 4D Lie algebras]

Also, we determined which 4D groups admit matrix representations.

Some standard references:

J. Hilgert and K.-H. Neeb, Structure and geometry of Lie groups,
Springer, 2012.

A.L. Onishchik and E.B. Vinberg, Lie groups and Lie algebras, III,
Springer, 1994.
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