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Introduction

Nonholonomic Riemannian manifold (M, g, D)

Model for motion of free particle
@ moving in configuration space M with kinetic energy L = %g(-, 3)
@ constrained to move in “admissible directions” D

Invariant structures on Lie groups are of the most interest

| A\

Objective

@ classify all left-invariant structures on 3D Lie groups

@ characterise equivalence classes in terms of scalar invariants

For this talk: restrict to the unimodular Lie groups

| N

DI Barrett, R Biggs, CC Remsing, O Rossi: Invariant nonholonomic Riemannian
structures on three-dimensional Lie groups, J. Geom. Mech. 8(2016), 139-167
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@ Invariant nonholonomic Riemannian manifolds
@ Nonholonomic isometries
o Curvature

© 3D simply connected unimodular Lie groups

© Classification of 3D structures
@ Case1: ¥ =0
@ Case 2: ¥ >0
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Invariant nonholonomic Riemannian manifold (G, g, D)

Ingredients

e (G, g) is an n-dim Riemannian Lie group (g is left invariant)

@ D is a nonintegrable, left-invariant, rank r distribution on G
Assumption

@ D is completely nonholonomic: if

D! =D, D =D +[D D], i>1
then there exists N > 2 such that DN = TG

Chow—Rashevskii theorem

if D is completely nonholonomic, then any two points in G

can be joined by an integral curve of D

Orthogonal decomposition TG = D @ D+
e projectors # : TG — D and 2: TG — D+
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Nonholonomic geodesics and the nonholonomic connection

D’'Alembert’s Principle

Let V be the Levi-Civita connection of (G,g). An integral curve y of D is
called a nonholonomic geodesic of (G, g, D) if

Viey¥(t) € Dy for all ¢

Equivalently: @(%&(t)ﬁ(t)) = 0 for every t

NH connection V : ['(D) x (D) — (D)

VxY = 2(VxY), X,Y el(D)

e depends only on (D, g|,) and the complement D+
@ integral curve v of D is a NH geodesic <= V37 =0
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Nonholonomic isometries

NH-isometry between (G, g, D) and (G, g’,D’)

diffeomorphism ¢ : G — G’ such that
D = Dlv d)*Dl = D/J_ and g|’D = ¢*g/ D

Nonholonomic isometries preserve:
@ the nonholonomic connection: V = ¢*V’
@ nonholonomic geodesics
@ projections: ¢, P (X) = P’ (p.X) for every X € [(TM)
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Curvature

@ V is not a vector bundle connection on D J

@ usual curvature tensor (X, Y) = [Vx, Vy] — V[x y] not defined

Schouten curvature tensor K : (D) x [(D) x I'(D) — I'(D)

K(X,Y)Z =[Vx,Vy]Z = Vyxy)Z - Z([2([X, Y]). Z])
Associated (0, 4)-tensor
K(W,X,Y,Z)=g(K(W,X)Y,Z)

o K(X,X,Y,Z)=0

o K(W,X,Y,Z)+K(X,Y,W,Z)+K(Y,W,X,Z)=0
Decompose K

o R= component of K that is skew-symmetric in last two args

o C=K-R

(R behaves like Riemannian curvature tensor)
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Ricci-like curvatures

Ricci tensor Ric: D x D — R

r
Ric(X,Y) =Y R(Xa, X, Y, X,)
a=1
@ (X3)5_; is an orthonormal frame for D
@ Scal = Y7 _, Ric(X;, X,) is the scalar curvature

Ricci-type tensors Agm, Askew : D X D — R

r
AX,Y) =D C(Xa X, Y, X,)
a=1
Decompose A

@ Asym = symmetric part of A

@ Askew = skew-symmetric part of A

v
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Nonholonomic Riemannian structures in 3D

Contact structure on

We have D = kerw, where w is a 1-form on M such that
wAdw#0

o fixed up to sign by condition:
dw(Yy, Y2) = £1, (Y1, Y2) o.n. frame for D
@ Reeb vector field Yy € T(TG):

iyow =1 and iyodw =0

v

Two natural cases

(1) Yo € [(D?) (2) Yo & T(DF)
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Scalar invariants in 3D

9 = || 2(Yo)|I?

o Yoelr(Dlt) < 9=0

Curvature invariants s, x1 and x»

1

1
R=3 Scal 1= \/— det(g!% o AL, Xx2= \/det(g‘tiD oA, )

@eR=0 <= x=0
065 <~ x1=x2=0

For unimodular groups:

@ x2=0

v

structures are NH-isometric =  their scalar invariants are equal )
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Bianchi—Behr classification of 3D unimodular Lie algebras

Lie algebras and (simply connected) Lie groups

Lie algebra Lie group Name Class

R3 R3 Abelian Abelian

b3 Hs Heisenberg nilpotent

se(1,1) SE(1,1)  semi-Euclidean completely solvable
s5¢(2) SE(2) Euclidean solvable

5((2,R) gI(2,]R) special linear semisimple

su(2) SU(2) special unitary  semisimple
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Left-invariant distributions on 3D groups

Killing form
K:gxg—R, KU, V) =tr[U,[V, -]]

@ K is nondegenerate <= g is semisimple

Completely nonholonomic left-invariant distributions on 3D groups

@ no such distributions on R3

Up to Lie group automorphism:
@ exactly one distribution on Hs, SE(1,1), gIvE(2) and SU(2)
@ exactly two distributions on évL(2,]R):
denote §[(2,R)hyp if IC indefinite on D
E §I:(2,R)e,/ v definite v

v

Dennis |. Barrett (Rhodes Univ.) Invariant NH Riemannian Structures DGA 2016 14 / 22



Outline

© Classification of 3D structures
@ Case1: ¥ =0
@ Case 2: ¥ >0

Dennis |. Barrett (Rhodes Univ.) Invariant NH Riemannian Structures DGA 2016 15



Case1: ¥ =0

A
@ determined (up to equiv) by the sub-Riemannian structure (G, D, g|p)
@ invariant sub-Riemannian structures classified in

A Agrachev, D Barilari: Sub-Riemannian structures on
3D Lie groups, J. Dyn. Control Syst. 18(2012), 21-44.

v

Invariants

o {k,x1} form a complete set of invariants (in the unimodular case)

@ can rescale structures so that

k=x1=0 or K2+x3=1

Dennis |. Barrett (Rhodes Univ.) Invariant NH Riemannian Structures DGA 2016 16 / 22



Classification when ¥ =0

X1

SL2R)y

SE(1,1) SE(2)

~

SL(2,R),; su(2)

Hs
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Case 2: ¥ >0

Canonical frame (Xp, X1, X2)

2(Yo) Xo unique unit vector s.t.
Xo = 2( Y X1 = ——
0= 20 X =gy (X, %) = 1

e D =span{Xy, Xo}, D+ = span{Xp}

@ canonical left-invariant frame (up to sign of Xp, X1) on G

Commutator relations (determine structure uniquely)

[Xl) XO] = C]:!-OXI + C]?OX2 1 2 1 1
1 1 1 Cios Cio» G200 €1 € R,
[XQ, XO] = —C21X0 T C20X1 — C10X2 1
1 ¢ >0
[XQ, Xl] = Xo I C21X1
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Nonholonomic isometries

NH-isometries preserve the Lie group structure

— /
(G, g, D) NH-isometric to (G, g’, D’) ¢ = Ly1) o ¢, where

wort. ¢:G— G — ¢’ is a Lie group
R isomorphism

@ hence NH-isometries preserve the Killing form /C

v

Three new invariants gg, 01, 02

0i = _%K(XiaXi)a = 07 172
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Classification

Approach

@ rescale frame so that ¥ =1

@ split into cases depending on structure constants

@ determine group from commutator relations

CAl 2
Example: ¢jg =¢cj, =0

X1, X0] =0 [Xo, Xo] = —Xo + i X1 [Xo, X1] = Xo + X1
@ implies K is degenerate (i.e., G not semisimple)
(1) cagp+1>0 =  compl. solvable hence on SE(1,1)
(2)cdg+1=0 = nilpotent U NS

(3)cay+1<0 = solvable noon SE(2)

e for SE(1,1), STE(Z): 3o is a parameter (i.e., family of structures)

v
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Some of the results

[X1,X0] =0 00 =0
Hs [X2, Xo] = —Xo — X1 01=0
[X2, X1l = Xo + X1 02="0
[X1, Xo] = —v/wa2 X1 + a1 Xo 00 = a1
SE(2) { [Xe,Xol = —Xo— (1+2)X1+ vVara2 X2 { o1 =an
[Xo, Xa] = Xo+ X4 02 =
(a1,00 >0, a3 4 a3 #0)
[X1, Xo] = —0Xo + a1 X2 00 = az(ap + 1) — &2
SU(2) [X2, Xo] = =Xo — (1 + a2) X1 + 60Xz 01 =01
[X2, X1] = Xo+ X1 02 =

(al,ag >0, >0, 52 —ajan < 0)

v
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o {v, 0o, 01, 02} form a complete set of invariants

o (again, only for the unimodular case)

Structures on 3D non-unimodular groups

On a fixed non-unimodular Lie group (except for G§.5), there exist at most
two non-NH-isometric structures with the same invariants 9, 0g, 01, 02

e exception G} ¢: infinitely many (0o = 01 = 02 = 0)
@ use K, X1 or X2 to form complete set of invariants
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