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Nonholonomic Riemannian structure (M, g, D)
Model for motion of free particle

@ moving in configuration space M

@ kinetic energy L = %g(-, )

@ constrained to move in “admissible directions” D

Invariant structures on Lie groups are of the most interest )

Objective

o classify all left-invariant structures on 3D Lie groups

@ characterise equivalence classes in terms of scalar invariants
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Nonholonomic Riemannian manifold (M, g, D)

Ingredients

e (M, g) is an n-dim Riemannian manifold

@ D is a nonintegrable, rank r distribution on M
Assumption

@ D is completely nonholonomic: if

D! =D, D =D +[D D], i>1
then there exists N > 2 such that DN = TM
Chow—Rashevskii theorem
if D is completely nonholonomic, then any two points in M

can be joined by an integral curve of D

Orthogonal decomposition TM = D @ D+

e projectors Z : TM — D and 2 : TM — D+
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Nonholonomic geodesics

D’Alembert’s Principle

Let V be the Levi-Civita connection of (M, g). An integral curve v of D is
called a nonholonomic geodesic of (M, g, D) if

Viey¥(t) € Dy for all ¢

Equivalently: Q@(%;Y(t)‘y(t)) = 0 for every t.

@ nonholonomic geodesics are the solutions of the Chetaev equations:

doL aL o
dt@k"axi:;)‘a@a T=1 0ot

o L=1g(-,-) is the kinetic energy Lagrangian
o p? =>7_| B?dx’ span the annihilator D° = g’(D*) of D
@ )\, are Lagrange multipliers
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The nonholonomic connection

NH connection V : ['(D) x (D) — (D)

VxY = 2(VxY), X,Y el(D)

o affine connection
@ parallel transport only along integral curves of D
o depends only on (D, g|,) and the complement D+
Characterisation
V is the unique connection I'(D) x (D) — (D) such that
Vglp =0 and VxY —VyX=2(X,Y])

Characterisation of nonholonomic geodesics

integral curve v of D

. : . <= (1)) =0 f
is a nonholonomic geodesic g} = U o every &
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Nonholonomic isometries

NH-isometry between (M, g, D) and (M', g’, D’)
diffeomorphism ¢ : M — M’ such that

L *
¢ D=D, ¢ D =D and g|,=¢"g],

Properties
@ preserves the nonholonomic connection: V = ¢*V’

@ establishes a 1-to-1 correspondence between the nonholonomic
geodesics of the two structures

@ preserves the projectors: ¢, 2(X) = P'(p.X) for every X € [(TM)

v

Left-invariant nonholonomic Riemannian structure (M, g, D)

@ M =G s a Lie group

o left translations L, : h — gh are NH-isometries
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Curvature

@ V is not a vector bundle connection on D J

@ Riemannian curvature tensor not defined

Schouten curvature tensor K : (D) x [(D) x I'(D) — I'(D)

K(X,Y)Z =[Vx,VylZ = Vaxy)Z — 2(2(X, Y]), Z])
Associated (0, 4)-tensor
K(W,X,Y,Z)=g(K(W,X)Y,2)
o K(X,X,Y,Z)=0
o K(W,X,Y,Z)+K(X,Y,W,Z)+ K(Y,W,X,Z) =0
Decompose K

o R= component of K that is skew-symmetric in last two args

(R behaves like Riemannian curvature tensor)
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Ricci-like curvatures

Ricci tensor Ric: D x D — R

r
Ric(X,Y) =Y R(Xa, X, Y, X,)
a=1
@ (X3)5_; is an orthonormal frame for D
@ Scal = Y7 _, Ric(X;, X,) is the scalar curvature

Ricci-type tensors Agm, Askew : D X D — R

r
AX,Y) =D C(Xa X, Y, X,)
a=1
Decompose A

@ Asym = symmetric part of A

@ Askew = skew-symmetric part of A

v
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e Nonholonomic Riemannian structures in 3D
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Nonholonomic Riemannian structures in 3D

Contact structure on

We have D = kerw, where w is a 1-form on M such that
wAdw#0

o fixed up to sign by condition:
dw(Yy, Y2) = £1, (Y1, Y2) o.n. frame for D
@ Reeb vector field Yy € [(TM):

iyow =1 and iyodw =0

v

Two natural cases

(1) Yy € D+ (2) Yo ¢ D+

Dennis |. Barrett (Rhodes Univ.) Invariant NH Riemannian Structures Univ. Ostrava 2016 12 / 30



The first scalar invariant ¢ € C*(M)

Extension of g|,, depending on (D, g|)

@ extend g, to a Riemannian metric g such that
Yo J_g D and g’(YO, Yo) =1

@ angle 0 between Yy and D= is given by

g( Yo, Y
1&(Yo, Y3)| 0<6<Z, D =span{Ys}

VE(Y3, Y3) - 2

@ scalar invariant: ¥ =tan?6 >0

cosf =

Yoe Dt — 9=0
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Curvature in 3D

Curvature invariants &, x1, x2 € C*(M)

1 1 1
R=3 Scal X1 = \/— det(g|g) 0 A%m) X2 = \/det(g‘gj oA
@ preserved by NH-isometries (i.e., isometric invariants)

o R= — k=0

0 C=0 <« x1=x2=0
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© 3D simply connected Lie groups
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Bianchi—Behr classification of 3D Lie algebras

Unimodular algebras and (simply connected) groups

Lie algebra Lie group Name Class

R3 R3 Abelian Abelian

b3 Hs Heisenberg nilpotent

se(1,1) SE(1,1)  semi-Euclidean completely solvable
s¢(2) SE(2) Euclidean solvable

5((2,R) §(2,R) special linear semisimple

su(2) SU(2) special unitary  semisimple

\

Non-unimodular (simply connected) groups

Aff(R)o x R, G3a, Gaz, Gi,4(h>0, h#1), Gis(h>0)

V.
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Left-invariant distributions on 3D groups

Killing form
K:gxg—R, K(U,V)=trU,[V, -]]

@ K is nondegenerate <= g is semisimple

Completely nonholonomic left-invariant distributions on 3D groups

@ no such distributions on R3 or Gz 3

Up to Lie group automorphism:
o exactly one distribution on Hs, SE(1,1), SE(2), SU(2) and
non-unimodular groups
@ exactly two distributions on /SVL(Q,]R):

v

denote SL(2,R)nyp if IC indefinite on D
] SL(2,R).y wou o definite v
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@ Classification of nonholonomic Riemannian structures in 3D
@ Case1: V=0
@ Case 2: ¥ >0
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Case1: ¥ =0

(0
o D! = span{Yp} determined by D, g|p
@ reduces to a sub-Riemannian structure (M, D, g|p)

@ invariant sub-Riemannian structures classified in

A. Agrachev and D. Barilari, Sub-Riemannian structures on 3D Lie groups,
J. Dyn. Control Syst. 18(2012), 21-44.

Invariants
o {k,x1} form a complete set of invariants for structures on unimodular
groups
@ structures on non-unimodular groups are further distinguished by
discrete invariants

@ can rescale structures so that

k=x1=0 or /12+X%:1

v
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Classification when ¥ =0

X1
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Case 2: ¥ >0

Canonical frame (Xp, X1, X2)

2(Yo) X unique unit vector s.t.
Xo = 2(Y X1=———
S E440] du(X, %) =1

e D = span{Xy, Xo}, D+ = span{Xo}
@ canonical frame (up to sign of Xp, X;1) on M

Commutator relations (determine structure uniquely)
[Xl, Xo] = Clloxl ol C120X2
[Xo, Xo] = 9oXo + o X1 + c2pXo ck e Cc=(M)
X2, X1l = Xo+ X+ Xo
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Left-invariant structures

@ canonical frame (Xp, X1, X2) is left invariant

@ 9, K, X1, X2 and c,é? are constant

v

NH-isometries preserve the Lie group structure

¢ = L¢(1) @) ¢/, where
- ¢’ is a Lie group
isomorphism

(G, g, D) NH-isometric to (G', g’, D’)
wrt. ¢:G— G

@ hence NH-isometries preserve the Killing form IC

Three new invariants gg, 01, 02

Oi = _%IC(XI"XI')a = 07 172
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Classification

Approach

@ rescale frame so that ¥ =1
@ split into cases depending on structure constants

@ determine group from commutator relations

- G s uni 1 _ 2 _
Example: G is unimodular and ¢y = ¢j; =0

X1, X0] =0 [Xo, Xo] = —Xo + i X1 [Xo, Xa] = Xo + X1
@ implies K is degenerate (i.e., G not semisimple)
(1)cap+1>0 =  compl. solvable hence on SE(1,1)
(2)cdg+1=0 = nilpotent U NS

(3)cay+1<0 = solvable non SE(2)

e for SE(1,1), STE(Z): 3o is a parameter (i.e., family of structures)

v
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Results (solvable groups)

[X1, Xo] =0 0 =0
Hs [X2, X0] = —Xo — X1 01=0
[Xo, X1] = Xo+ Xi 0o=0
[X1, Xo] = —Vara2 X1 — a1 Xo 00 = —
SE(1,1) {[X2, Xo] = =Xo — (1 —a2) X1 + Vauax X {01 = —2
X, Xi] = Xo+ X 02 =—m
(1,0 > 0, a% e a% #0)
[X1, Xo] = —v/a1a2 X1 + a1 X2 00 =0
SE(2) [X2, Xo] = —=Xo — (1 + a2)X1 + Vara2 X2 {01 = 2
(X2, X1] = Xo + X4 02 =
(1,00 >0, a3 4 a3 # 0)

v
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Results (semisimple groups)

[X1, Xo] = —0Xo + a1 Xz 00 = a1(ag + 1) — 62

SU(2) [X2, Xo] = —Xo — (L + a2)X1 +6X2 01 = a1

X2, Xi] = Xo+ X1 02 = a2

(a1, a0 >0, 6 >0, 6% — aqan < 0)

[X1, Xo] = —0X1 — a1 Xo 00 = a1(ap — 1) — 82
SL(2,R)es < [X2, Xo] = —Xo — (1 — a2)X1 + 6X2 { 01 = —ont

[Xo, X1] = Xo+ X1 02 =—

(1,020 >0, 6 >0, 8% — aqan < 0)

[X1, Xo] = —6X1 — M1 X2 00 ="71(72 — 1) — 6
SL(2,R)pyp 4 [Xo, Xol = —Xo — (1 — 72)X1 +6X2 { 01 = —m1

e, ] = Xo+ X 02 =—"7

(6 >0, v1,72 €R, 6% —y172 > 0)
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Structures on unimodular groups

e {9, 00, 01,02} form a complete set of invariants
e {U,k,x1} also suffice for H3, SE(1,1), SNE(Z)
@ X2 = 0

v
Structures on 3D non-unimodular groups

On a fixed non-unimodular Lie group (except for G} ), there exist at most
two non-NH-isometric structures with the same invariants 9, o9, 01, 02

o exception G} : infinitely many (0o = 01 = 02 = 0)

@ use K, X1 or x2 to form complete set of invariants
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© Flat nonholonomic Riemannian structures
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Flat nonholonomic Riemannian structures

Definition

(M, g, D) is flat if the parallel transport induced by V does not depend on
the path taken

Characterisations

| \

(M, g,D) is flat there exists a parallel frame for D, i.e.,

an o.n. frame (X;) for Ds.t. VX, =0
an o.n. frame (Xj)

for D is parallel —  P([X5 Xp]) =0forevery a,b=1,...,r

In Riemannian geometry

| A\

(M,g)is flat <= Riemannian curvature tensor R =0

v

Vanishing of Schouten tensor does not characterise flatness of (M, g, D) J
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Wagner's approach

Flag of D

D=D'CcD’C...cDV=TM

o DHl =D +[DI D], i>1

Approach

For each i =1,..., N, define a new connection
V' [(D') x T(D) — (D)

such that
e V! =V and ViJrl‘r(D,)Xr(D) =V
e VX=0 «— Vtlix=o

o VN is a vector bundle connection with curvature KV
o (M,g,D)isflat +— KN=0
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The Wagner curvature tensor

D+l = pi @E’ foreachi=1,....N—1

@ not preserved under NH-isometry (unless N = 2)
e projectors &;: TM — D', 2, : TM — &'

Construction
If Z=X+Aec (D) =T(D' @ &), then
VU = ViU + K'(©:(A)U + Z2([A, U)])

Here
0 O = A,-|(_kirAi)L and A;: \’D = £ XA Y = 2i([X, Y])
o KI(XAY)U =V, VLU = Vi, x ypU — 2(12i(1X, Y1), U])

v

KN is called the Wagner curvature tensor J
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