



### **Electron Spin Resonance Spectroscopy**



Rodah C. Soy & Otto Joseph



# **Outline**

- Background of EPR
- Basic principle
- Instrumentation
- Applications



# Background

# Electron Spin Resonance (ESR) or Electron paramagnetic resonance Spectroscopy (EPR):

- powerful non-destructive magnetic resonance spectroscopic technique
- Used to analyse substance with one or more unpaired electrons and radicals
- Invented by Zavoiskii in 1944
  - Similar to Nuclear magnetic resonance (NMR)
    - EPR is three times more sensitive than NMR



# Background

- Compounds analysed using EPR
  - **\*** Stable paramagnetic substances e.g.
    - transition metal ions, their complexes, and molecules like NO, O<sub>2</sub> and NO<sub>2</sub>

# Unstable paramagnetic substances e.g. free radicals or radical ions

- formed as intermediates in chemical reactions or by irradiation e.g. from
  - photolysis, thermolysis, radiolysis, electrolysis e.t.c



- ✓ Structure
- ✓ Reactivity
- ✓ Mechanisms
- ✓ Bonding
- ✓ Intermediates
- ✓ Distances



# **Basic principle**

#### > EPR measures the transition between electron spin energy levels

 transition between the two different electron spin energy states takes place by absorption of a quantum of radiation of an appropriate frequency in the microwave region



Resulting energy levels of an electron in a magnetic field  $\Delta E = hv = g\beta H_0$ 

g=Bohr magneton

- Required frequency of radiation dependent upon strength of magnetic field
  - Common field strength 0.34 and 1.24T
  - 9.5 (X-band) and 35 GHz (Q-Band)



#### **EPR instrument schematic diagram**



#### EPR samples:

 single crystal, solid powder, liquid, solution or frozen solutions and is usually contained in a tube of about 5 mm diameter

www.tech-faq.com/esr-spectroscopy.html



#### **EPR instrument in the NIC**





### **Applications of EPR**

#### Catalytic mechanism of 1-GQDs-MnO<sub>2</sub>

EPR Plot



Shows the presence of Mn in the Mn<sup>+4</sup> state (MnO<sub>2</sub>)

**Catalase-like properties** 

\*DMPO: 5,5-Dimethyl-1-pyrroline N-oxide



#### GQDs-4-Amino-TEMPO/SN-GQDs-4-amino-TEMPO nanoconjugates

selective sensing ascorbic acid (AA)



#### Quencher: 6-Tetramethylpiperidine-N-Oxide (TEMPO)

EPR signals of the TEMPO conjugates target analyte (AA).

Achadu, Britton & Nyokong. Journal of fluorescence. 2016, 1;26(6):2199-212.

# **Experiments**

- A. Continuous Wave EPR (CW)
- B. Pulsed EPR
  - Electron nuclear double resonance spectroscopy (ENDOR)
  - ESEEM
  - HYSCORE



### **Host Guest Interactions**



Roessler & Salvadori. Chemical Society Reviews.

2018;47(8):2534-53.



# **Transition Metals**



Continuous Wave (CW) EPR

Roessler & Salvadori. Chemical Society Reviews. 2018;47(8):2534-53.

RHODES UNIVERSITY Where leaders learn

# Aminoacids







# Nanomagnets



### **Molecular Wire Distance Measurements**

Spin Polarization change due to # of porphyrin units





### **Time Resolved – Triplet State EPR**





# Thank you

