Introduction to Laser Flash Photolysis LP980

By

Sixolile "Xolie" Centane

Laser Flash Photolysis (LFP)

LFP is a technique for studying the transient chemical and

biological species generated by a short, intense light pulse

from a nanosecond pulsed laser source (pump pulse).

Transient = short lived

LFP continued...

- Laser based technique
- The light pulse from the laser interacts with a sample
- to creates short lived photo-excited intermediates such as excited states, radicals, and ions.
 - Intermediates generated in amounts enough for chemical and physical interactions to occur.
- Direct observation of the temporal absorption characteristics

LFP continued...

- Absorption changes recorded spectrally: continuous Xenon lamp (probe source) in a single beamed spectrometer.
- Probe source pulsed: enhance photon flux measurements in short time ranges
 - Spectra measured with temporal resolutions :

Pulse mode (nanoseconds to milliseconds)

Continuous mode (milliseconds to seconds)

Standard Transient Absorption

suitable for liquids (shown) and film samples

LIQUIDS: The pump beam and the probe beam overlapping orthogonally (transverse excitation).

Diffuse Reflectance suitable for powders and non-transparent film samples

LFP Instrumentation

Sample Preparation

- Standard (known molar extinction coefficient)
- Sample of interest

Cross over wavelength using the Q-BAND of both the sample and the standard: put the value in your keypad

Degas with argon

Things to consider during measurements

- Excitation should occur where ground state absorption occurs
- Laser pulse must be half the length of the reaction
- Sufficient energy to cause excitation
- The flash must cover spectrum of frequencies being covered : the flash produces intermediates unknown and source of spectroscopic analysis.

Bringing it home

Phthalocyanines

CuPc

c)

Data acquisition/Types of Modes

1. Kinetic Mode

Transient Absorption decays are recorded at a single wavelength as a

function of time using a photodetector and a digital storage

oscilloscope.

Transient Absorption

2. Spectral data acquisition

Time-gated transient absorption spectra are measured at a specific time after excitation using an ICCD detector. Spectral mode measurements provide the full picture of the transient spectral features by exposing the sample to only a few laser shots.

Calculation of triplet quantum yield (Φ_T) and life times (τ_T) $\varepsilon = \varepsilon_S \frac{\Delta A_T}{\Delta A_S}$ (sample) $\Phi T^{std} = known$ $\varepsilon_{S,T}$ = molar extinction coefficient $\varepsilon_T^{std} = \varepsilon_{s^{std}} \frac{\Delta A_T std}{\Delta A_S std} \quad \text{(standard)}$ $(\Phi_T) = (\Phi_T)^{std} \frac{\Delta A_T \cdot \varepsilon^{std} T}{\Delta A_T std \varepsilon_T}$

Factors that might result in errors in quantum yield (Φ_T) and life times (τ_T)

- In-sufficient de-gassing of sample and standard
- Wrong value of molar absorption coefficient of the sample
- Equipment Handling
- Data acquisition and processing

Singlet Depletion

- All non fluorescing molecules undergo intersystem crossing
- The absorption of the single excited state and triplet states at

the working wavelength are negligible when compared to

that of the ground singlet state