Thermal analysis

Sithi Mgidlana

TGA/DSC

Characterize samples by measuring change in mass as a function of temperature Provides information:

Composition

▶ Purity

Moisture content

Decomposition

The principles

Burning Match decreases in mass Leaving ashes

- 1. Loss of volatile components
- 2. Decomposition
- 3. Atmosphere is switched from N_2 to O_2
- 4. Combustion of the carbon
- 5. Ashes

TGA/DSC curves

TGA/DSC sensors

- Equipped with 3 different sensors
- Measures sample and reference temperatures below ceramic support

Measures sample and reference temperatures

Measures sample temperatures *

TGA/TDA

TGA/DSC balance

Automatic internal weigh/ external weigh measurements

Analyse up to 50 million compounds

TGA/DSC crucibles

Materials used as crucibles are important for achieving good results

TGA/DSC measurement possibilities

- Temperature ramp (used for loss of moisture)
- Isothermal measurements (oxidation induction time)
- Measurement under vacuum (separation of vaporization)
- Measurement atmosphere (determines the ash content)

Temperature ramp

2. Decomposition

1. Loss of Water

3. Decomposition reaction

Applications

- Pharmaceutical industries: Quality control
- Food industries: Quality assurance
- Science/research: Stability, quantitative analysis
- Paints : drying

TGA/DSC Manual and automated operation

Image: Construction of the second second

Quality assurance

QResearch and development

Thank you for listening