Is there a Best Recipe for Food Effect Studies?

AAPS / Rhodes University Workshop
Grahamstown, SA, Dec 8 2011

Murray P. Ducharme, PharmD, FCCP, FCP
President and CEO, Learn and Confirm Inc.
And, Professeur Associé, Faculté de Pharmacie, University of Montreal, Montreal, Canada
And, Visiting Professor, Faculty of Pharmacy, Rhodes University, South Africa

Current regulatory requirements (EU, HC, USA)
“Conventional” versus “Controversial” hypotheses/Assumptions
Effect of Meals on the PK of drugs
 • “Physical” effects vs. those affecting transport and metabolism
Influx and Efflux gut transporters
 • Effect of Ethnicity on gut transport and metabolism of drugs
Conclusion
Food effect studies

Current Fed BE Regulatory Requirements

<table>
<thead>
<tr>
<th></th>
<th>US FDA</th>
<th>HC</th>
<th>EMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>IR</td>
<td>Fed BE if food is specified in the label</td>
<td>No fed BE</td>
<td>No fed BE (except for microemulsions of solid dispersions)</td>
</tr>
<tr>
<td></td>
<td>(Upcoming: all drug products?)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MR</td>
<td>Fed BE</td>
<td>Fed BE</td>
<td>Fed BE</td>
</tr>
<tr>
<td>Other</td>
<td>CDD</td>
<td>CDD</td>
<td>CDD</td>
</tr>
<tr>
<td></td>
<td>Non linear</td>
<td>Non linear</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Report C (highly toxic, NTR)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meal</td>
<td>High fat, protein, caloric meal</td>
<td>High fat, protein, caloric meal</td>
<td>According to SmPC</td>
</tr>
<tr>
<td>Subjects</td>
<td>HV</td>
<td>HV</td>
<td>HV</td>
</tr>
<tr>
<td>Fasting</td>
<td>Min. 10 hours</td>
<td>Min. 10 hours</td>
<td>Min. 8 hours</td>
</tr>
<tr>
<td>Volume fluid to administer</td>
<td>240 ml</td>
<td>At least 150ml water room temperature</td>
<td>At least 150ml</td>
</tr>
</tbody>
</table>

Food effect studies

Introduction

“Conventional” Hypotheses/Assumptions behind Food studies:

- The Gut Wall mucosa acts more like a “physical barrier”
- The effect of food/Meals is a “physical” one
- Once in solution and “absorbed”, then it does not matter what happens after (“metabolism” differences) as drug product is not coming back:

Crossover studies in any population of HV is fine, as even if there was a difference genetically in metabolism/transport, all subjects would act as their own control and BE ratio (Test/Ref) would be accurate

www.LearnAndConfirm.ca
Food effect studies
Effect of Meals on the PK of Drugs
Food effect studies

Introduction

Proposed “controversial” Hypotheses/Assumptions:
• Knowing that the gut wall mucosa is a major site of drug metabolism and transport
• Knowing that Food/Meals affect drug metabolism and transport activity in the gut wall

• Results of BE studies could be different between different ethnic groups because of differences in transporters expression
 Even if a crossover design is followed: Never been Proven or Disproven

Food effect studies

Effect of Meals on the PK of Drugs

• Slowed Gastric emptying
 • Decrease Cmax, delay Tmax, and no change in AUC
 • Prolonged residence time accelerate hydrolysis of acid-labile drugs (e.g., didanosine)
 • Increased solubility of poorly soluble drugs (nitrofurantoin)
• Binding to food components
 • Multivalent cations such as aluminum chelate with ciprofloxacin
• Increase blood flow (Gut and Liver)
 • Increase AUC for Propranolol
 • Increase both active transport and passive absorption
Food effect studies
Effect of Meals on the PK of Drugs

<table>
<thead>
<tr>
<th>High Solubility</th>
<th>Low Solubility</th>
</tr>
</thead>
<tbody>
<tr>
<td>High permeability</td>
<td>Acetaminophen</td>
</tr>
<tr>
<td>Delayed Gastric emptying</td>
<td></td>
</tr>
<tr>
<td>No change</td>
<td>Decrease Cmax (bases), Increase Cmax (acids), increase Lipophilic drugs</td>
</tr>
<tr>
<td>Or Decr. Cmax with same AUC</td>
<td></td>
</tr>
<tr>
<td>Low permeability</td>
<td>Atenolol, ranitidine, pravastatin</td>
</tr>
<tr>
<td>No effect /Decrease</td>
<td></td>
</tr>
</tbody>
</table>

Food effect studies
Effect of Meals on the PK of Drugs

- Carbohydrates: Increase water absorption in intestine
- Proteins:
 - Increase pancreatic secretion and increase intestinal volume
 - High protein meal increases the bioavailability of highly extracted drugs such as propranolol (could be due to increase GI blood flow and increase transport)
 - High protein diet increased Propranolol, theophylline and Antipyrine clearances
- Fat and increased bile acid release
- Increase absorption of lipophilic drugs by enhancing their solubility (Isotretinoin, CsA, Atovaquone)
- Increase Clearance of drugs (CsA IV administered)

www.LearnAndConfirm.ca

24/01/2012
Food effect studies
Effect of Meals on the PK of Drugs

• Saquinavir
 • F increase 5-10x with fatty meal
 • F increases 5x in Pgp knockout mice

• Indinavir
 • Substrate for CYP3A and Pgp
 • 60% decrease in F with high caloric meal
 • F increases 2x in Pgp knockout mice

• Potential to Induce or Inhibit Gut wall CYP metabolism
• Potential to Induce or inhibit Mucosal Efflux and Influx transport

We know already that:
• Charcoal and smoked food: Induce CYP1A1 (gut)
• Cruciferous vegetables: Induce CYPs
• Fruit juices
 • GJ Inhibit CYP3A, OATP1A2 & ABCB1 (30% increase in CsA AUC and Cmax)
 • OJ and AJ Inhibit OATP1A2 (30-40% decrease Fexofenadine Cmax and AUC)

Could it be that?
• High Fat meals decrease P-gp activity? (Saquinavir, CsA)
• High Carbohydrate meals increase P-gp/CYP3A activity? (Indinavir)
• High Protein meals decrease P-gp? (Propranolol)
• What about other nutrients?

Food effect studies

Effect of Meals on the PK of Drugs

Examples of Influx Gut Transporters

<table>
<thead>
<tr>
<th>Influx transporter genes</th>
<th>Protein names</th>
<th>Substrates</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLC15A1</td>
<td>PEPT1</td>
<td>(Oligopeptides) Cephalosporins, penicillins, ACE inhibitors, valacyclovir</td>
</tr>
<tr>
<td>SLC15A4</td>
<td>PHT1</td>
<td>(Oligopeptides), valacyclovir</td>
</tr>
<tr>
<td>SLC15A3</td>
<td>PHT2</td>
<td>(Oligopeptide)</td>
</tr>
<tr>
<td>SLC16A1</td>
<td>MCT1</td>
<td>(Monocarboxylate), lactic acid, pyruvate, penicillins, NSAIDs, valproic acid, atorvastatin</td>
</tr>
<tr>
<td>SLC22A1</td>
<td>OCT1</td>
<td>(Organic cations) Metformin, fexofenadine, cimetidine, prazosin</td>
</tr>
<tr>
<td>SLC22A3</td>
<td>OCT3</td>
<td>(Organic cations)</td>
</tr>
<tr>
<td>SLC01A2</td>
<td>OATP1A2</td>
<td>Methotrexate, fexofenadine, steroid hormones, thyroid hormones,</td>
</tr>
<tr>
<td>SLC02A1</td>
<td>OATP2B1</td>
<td>Atorvastatin</td>
</tr>
<tr>
<td>CDH17</td>
<td>PT1</td>
<td>(Intestinal peptide)</td>
</tr>
</tbody>
</table>

Food effect studies

Examples of Efflux Gut Transporters

<table>
<thead>
<tr>
<th>Efflux transporter genes</th>
<th>Protein names</th>
<th>Substrates</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABCB1 (*)</td>
<td>P-gp</td>
<td>Etoposide, Imatinib, fexofenadine, tramadol, propranolol, CsA, Tacrolimus</td>
</tr>
<tr>
<td>ABCC1 (*)</td>
<td>MRP1</td>
<td>Methotrexate, daunorubicin, doxorubicin, vincristine, Glucuronic acid or sulfate conj. compounds</td>
</tr>
<tr>
<td>ABCC2 (*)</td>
<td>MRP2</td>
<td>Doxorubicin, cisplatin, conj drug metabolites, protease inhibitors, fluoroquinolones, pravastatin</td>
</tr>
<tr>
<td>ABCC3 (*)</td>
<td>MRP3</td>
<td>Etoposide, methotrexate, bile salts</td>
</tr>
<tr>
<td>ABCC4 (*)</td>
<td>MRP4</td>
<td>Methotrexate, folic acid</td>
</tr>
<tr>
<td>ABCC5 (*)</td>
<td>MRP5</td>
<td>Adefovir, 5-FU, methotrexate</td>
</tr>
<tr>
<td>ABCG2 (*)</td>
<td>BCRP</td>
<td>Mitoxantrone, doxorubicin, Pravastatin, sulfate conjugates, irinotecan, imatinib</td>
</tr>
</tbody>
</table>

Food effect studies

Influx and Efflux Gut Transporters

-CsA increase 7X Rosuvastatin AUC (Inhibition of OATP and BCRP? + inhibition of OATP1B1 in liver)
Effect of ethnicity on activity of ABCB1 (Pgp). More than 100 mutations identified.

- C3435T polymorphism (lower activity): 50% Caucasians/Asians; 10-20% Africans
 - Africans have lower F for CsA and have 20-80% lower Tacrolimus F than in Caucasians or Latin-Americans
 - Fexofenadine 40% higher concentrations
- G2677T polymorphism: 46% Caucasians, 6.5% African-Americans
 - Fexofenadine 40% higher concentrations

Effect of ethnicity on activity of OATP1B1

- OATP1B1*5 and OATP1B1*15 alleles: increased pravastatin, pitavastatin and rosuvastatin levels
 - *15 observed in 30% Europeans/Americans, 71% Koreans. *5 observed 14% Europeans/Americans and 0% in Japanese/Koreans.
 - Europeans have higher Pravastatin Cmax and AUC than African-Americans
 - Rosuvastatin [C] higher by 2.4x in Chinese, 1.9x in Malay, 1.6x in Indians versus whites.

Food effect studies

Effect of Ethnicity and Food

- Tramadol (CYP3A, P-gp or other Efflux transporter)
 - Food increased Cmax and AUC by 30% in Indian population (Zydol®)
 - Food decreased Cmax and AUC by 15-30% in US population (Ultram ER®)
- Pravastatin (OATP1A2, OATP1B2, MRP2, BCRP)
 - Food decreases Cmax and AUC by 30-50% in US population
- Rosuvastatin (OATP1A2, OATP1B2, MRP2, BCRP)
 - Lower dose for asians (label specified)
- Tacrolimus (P-gp, CYP3A, OATP1A2)
 - Same PK after IV dosing African-Americans, whites and Latin Americans
 - Different PK after PO, much lower AUC and Cmax in African americans (higher P-gp activity and/or lower OATP1A2 activity?). (Label specified)
- Ropinirole XL (CYP1A2)
 - Food increases AUC and Cmax by 30% in NA population
 - Adverse events much less pronounced in Indian versus NA BE studies

Food effect studies
Would this be possible?

Ethnic group#1 for hypothetical Drug Product
Interplay between transporters, CYP3A and formulation components:
• Food effect (fast versus fed)
• More discriminative of formulation performance

Ethnic group#2
No or Less Interplay between transporters, CYP3A and formulation components:
• No or Less Food effect (fast versus fed)
• Less discriminative of formulation performance under fed

Food effect studies
Conclusion

• The “effect of food” on the PK of drugs is VERY complex.
• It is important to determine the “food effect” or verify BE under fed conditions for all drug products, similar to FDA recommendations.
• Food may affect many transporters, but very little research has been done at this time.
• Transporters activity may differ between Ethnic groups. Very little or no research has been done on this contrary to CYPs.
• Research should be done to prove or disprove the use of any Healthy Volunteers population group (versus the “targeted” one) to assess food effect and fed BE.