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ABSTRACT 

Measurement is acknowledged to be a critical component in mathematics education and is 

particularly important for vocational Engineering students, for whom this is a key skill required 

in the workplace. The goal of this research was to explore the existing measurement 

conceptualisations of vocational Engineering students at the outset of their course, as evident 

in their engagement with mediated measurement tasks. The focus on students’ prior knowledge 

in measurement, was for the value that this awareness holds in understanding the learning needs 

of the students. 

Students participated in five measurement tasks. Four took the form of dynamically assessed 

task-based interviews, and the fifth was a written test assessing what they had learned during 

their Mathematics classes. Domains of measurement that were assessed in these tasks included 

length, area, surface area, volume and flow rate. The interviewer took the role of mediator and 

students were assessed according to the number of moments of mediation and the degree of 

mediation required to successfully complete the task. Students’ responsiveness to this 

mediation provided insight as to their conceptualisations of the measurements relevant to the 

task.  

This research was exploratory in nature and adopted an open and flexible approach to the data 

analysis. Critical incidents were identified and coded according to the mediation offered and 

the actions of the students during the measuring activity. This allowed patterns to emerge that 

revealed stable and emerging conceptualisations that related to embodied and symbolic aspects 

of measurement. Evidence was found that for many of these students the link between the 

embodied and symbolic aspects of the concept was broken. This insight permitted a view of 

where the break occurs between what is needed as stable conceptualisations, and what is rather 

present as emergent conceptualisations. 
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CHAPTER 1 

INTRODUCTION 

1.1 INTRODUCTION  

Sarama, Clements, Barrett, van Dine and McDonel (2011, p. 667) emphasise that 

“measurement is a critical component of mathematics education”, but explain that research on 

the learning and teaching of measurement is limited. This study aims to contribute research to 

this developing field, with a specific focus on the measurement learning of vocational 

engineering students at a South African Technical and Vocational Education [TVET] college.  

The goal of this research is to explore the existing measurement conceptualisations of TVET 

Engineering students at the outset of their course, as evident in their engagement with mediated 

measurement tasks. The focus on students’ prior knowledge in measurement, is for the value 

that this awareness holds in understanding the needs of the students. This insight provides the 

foundation from which suggestions can be formulated about how to support the students’ 

further development of accurate and stable measurement conceptualisations most effectively. 

In this chapter, a brief rationale for the focus of the research is provided, as well as an overview 

of the measurement research landscape. This highlights the need for measurement research that 

focuses on students beyond primary school age, and on measurement domains beyond those of 

length, area and volume. Thereafter, the research aims and questions are made explicit. 

Finally, an outline of the thesis is provided, as well as technical notes explaining the ways in 

which various terms are used in this thesis. 

1.2 RATIONALE FOR THE RESEARCH  

‘Measurement’ is included in the list of engineering functions defined by the Engineering 

Council of South Africa [ECSA] (ECSA, 2014). Competence in measurement is therefore a 

key skill in the engineering workplace. Furthermore, as Johri and Olds (2011) point out, “what 

engineers need is adaptive expertise which allows them to be innovative and efficient in what 

they do” (p. 174). Therefore, the measurement learning of these students needs to be sufficient 

to allow for adaptive use of these concepts and skills.  
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There is a need for improving the teaching and learning of Mathematics in the TVET sector. 

The pass rate for the subject is yet to exceed 50% (Department of Higher Education and 

Training [DHET], 2015a), suggesting that students are not acquiring adaptive expertise in the 

concepts and skills that ought to be learned in this subject. Having taught Mathematics at a 

TVET college, I have observed students as they have struggled with the subject and have 

experienced the frustration of not knowing how to support their needs, nor understanding what 

these needs may be. The concern deepens when the concepts and skills learned in the 

Mathematics classroom translate directly into workplace competencies required in their chosen 

field as is the case with measurement for students of engineering. 

As explained in Section 1.3, there is a paucity of research that speaks to any of the aspects of 

this challenge in vocational education. Research on the teaching and learning of measurement 

remains limited, particularly research focusing on issues of measurement learning beyond 

primary school years and beyond the spatial object measurements of length, area and volume. 

Adult vocational measurement learning, which extends to measurements more complex than 

spatial measurement, is left largely unexamined. In terms of understanding the TVET student, 

there is as yet no South African research that works at the student-level to attempt to understand 

their specific learning needs (this claim is substantiated in Chapter 2). This research aims to 

contribute to filling those gaps. 

Students entering TVET colleges have a minimum of a Grade 9 qualification, and are at least 

16 years of age (Further Education and Training [FET] Round Table, 2010). This implies that 

in their everyday lives, as well as through their schooling, students would have had exposure 

to informal and formal opportunities to conceptualise measurement. What this research 

proposes is that an understanding of the prior knowledge and existing measurement 

conceptualisations these students hold as they enter TVET courses can lead to more efficient 

and effective teaching and learning of measurement, and in so doing enable the student to 

develop the adaptive expertise that would be expected in the workplace.  
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1.3 THE MEASUREMENT RESEARCH CONTEXT 

As mentioned, Sarama et al. (2011) claim that mathematics education research in the field of 

measurement learning is limited, despite the important role that measurement plays in 

mathematics.  

Owens and Outhred (2006), in the Handbook of Research on the Psychology of Mathematics 

Education (Gutiérrez & Boero, 2006), provide an overview of research conducted in the field 

of measurement. They surveyed the research presented at each of the International Group for 

the Psychology of Mathematics Education’s [PME] 30 annual international conferences, 

spanning the period 1976 – 2006, and noticed that the growth of the body of research about 

measurement was initially slow. They found that the first appearance of a paper focused on 

measurement was six years after the first conference, in 1982 (see Eisenberg, Goldstein & 

Gorodetsky, 1982). The focus of this paper is not on practical measuring, but rather on how to 

teach conversions (Eisenberg et al., 1982). The first appearance of ‘Measurement’ as a separate 

section in the Table of Contents of the PME proceedings was only in 1987 and the first (and, 

to-date, only) plenary related to measurement was held as late as 2003 (Owens & Outhred, 

2006).  

Beyond noting that the growth of the field had been slow, Owens and Outhred (2006) write 

that there was almost no research reported in the PME proceedings for measurement of non-

spatial quantities. Fundamental to the measurement of length, area and volume is an 

understanding of “the spatial organisation of the units, in one, two or three dimensions 

respectively” (p. 100). Studies in measurement have historically predominantly focused on the 

“structure of units when measuring the spatially-organised attributes of length, area and 

volume” (p. 105), with an emphasis on length and area. Students’ development of volume 

concepts had received less attention, possibly due to the complexity of its three-dimensional 

nature (Owens & Outhred, 2006), and the measurement of non-spatial quantities had received 

almost no attention. 

1.3.1 The measurement research context in 2016 

A literature survey was conducted to establish the state of the field beyond 2006. The 

conference proceedings of two international mathematics education conferences were surveyed 

as well as articles published in five selected mathematics education journals.  
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1.3.1.1 Measurement research in conference proceedings 

Research reports from PME conferences after 2006, as well as those from International 

Congress on Mathematics Education [ICME] conferences were surveyed and the result 

revealed a similar pattern to that presented by Owens and Outhred (2006).  

Of the 16 PME research reports about measurement, only 2 included consideration of non-

spatial quantities: mass (McDonough & Cheeseman, 2014) and time (Doig, William, Wo & 

Pampaka, 2006). Also, noteworthy among the research reports surveyed was their singular 

focus on young children and primary school learners.  

Appendix A provides a full list of the conference proceedings consulted and the research 

reports surveyed. The table below provides a summary of the foci of the research. 

Table 1.1 Research focus of reports on measurement research at PME conferences (2006 

– 2016) 

Category Focus Frequency 

Person-characteristics Young children (up to Grade 3) 5 

Primary School learners (Grades 4 – 7 learners) 10 

Measurement domains 

and concepts 

Length 5 

Area 4 

Estimation 4 

Units 4 

Volume 3 

Mass 1 

Time 1 

 

A similar picture is evident when surveying the research presented at the International Congress 

on Mathematics Education [ICME] Conferences, held every four years, spanning the years 

1969 to 2008 (Furinghetti & Giacardi, 2012). Measurement as a distinct topic of discussion 

appears as a regular lecture concerning children’s understanding of basic measurement in the 
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proceedings of the 9th conference (Fujita, Hashimoto, Hodgson, Peng, Lerman & Sawada, 

2004; Vistro-Yu, 2000). No such topic appears in the 10th conference (Niss, 2008) nor the 11th 

(ICME, 2007). Its reappearance as a separate Topic Study Group in the 12th (Cho, 2015) and 

the 13th ICME (ICME, 2016), remained exclusively focused on primary education. 

1.3.1.2 Measurement research in mathematics education journals 

The International Journal of Mathematics Education ZDM published a special issue in October 

2011: Learning, Teaching and Using Measurement. In the introduction to this issue, Smith, van 

den Heuvel-Panhuizen and Teppo (2011) wrote that the aim of the issue was to stimulate more 

researchers to consider working in the field of measurement learning, noting that this field 

requires growth.  

More than half of the papers in this special edition addressed various aspects of length, area 

and volume measurement, which supports Owens and Outhred’s (2006) contention that 

spatially-organised quantities are the dominant focus in PME research. Only one paper (Lehrer, 

Min-Joung & Jones, 2011) focuses specifically on measurement of a different type: statistics. 

A further paper examines German primary school students’ achievement in measurement, with 

a view not only of their measurement of spatial quantities, but also the measurement of mass 

and duration (Hannighofer, van den Heuvel-Panhuizen, Weirich & Robitzsch, 2011). This 

reflects what is shown in the survey of research reports in PME and ICME conference 

proceedings. 

To uncover the pattern of measurement research published in peer-reviewed mathematics 

education journals, five journals were identified and surveyed in the same manner as the 

conference proceedings (see Appendix B outlining the criteria for the selection of these 

journals).  

The selected journals were: 

International Educational Studies in Mathematics  

 Journal for the Research of Mathematics Education  

 The International Journal for Mathematics Education ZDM  

African African Journal for Research in Mathematics, Science and 

Technology Education  

South African Pythagoras  
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In total, 53 such articles were found (see Appendix B for the full list and the inclusion criteria 

for the journals). The table below summarises the research foci of these articles. 

Table 1.1 Research focus of articles on measurement education research in 5 peer-

reviewed mathematics education journals 

Category Focus Frequency 

Person-characteristics Young children (up to Grade 3) 16 

Primary School learners (Grades 4 – 7 learners) 21 

High School learners (Grades 8 – 12) 6 

Adults  4 

Measurement domains 

and concepts 

Length 19 

Area 17 

Units 14 

Volume 8  

Angles 6 

Estimation 4 

Perimeter 3 

Time 3 

Rate 2 

Temperature 1 

Measurement in the 

workplace 

Teachers’ competence in measurement 4 

Technology and engineering 2 

 

The research presented in these journal articles covered a wider variety of measurement 

domains and concepts than those found in the conference research reports surveyed. The 

measurement of spatial quantities, however, still features most prominently and the dominant 

focus remains with young children and primary school learners.  
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1.3.2 Increasing attention to measurement teaching and learning 

If the surveyed information is organised chronologically, there is an indication of an increase 

in the amount of research about measurement teaching and learning. Figure 1.1 below shows 

two timelines extending from 1970 to 2016. The top timeline provides the numbers of articles 

found in the 5 journals surveyed, while the bottom timeline provides information about 

measurement-related research reported at PME and ICME conferences. 

Figure 1.1 Timelines representing measurement research reports and articles 

 

While there is an increase in articles and research reports from 2011 onwards, there is no 

significant shift in the focus of this research.   

1970 - 1980

• 7 articles

1981 - 1990

• 2 articles

1991 - 2000

• 10 articles

2001 - 2010

• 7 articles

2011 - 2016

• 10 articles (ZDM 
Special Edition)

• 16 articles (other 
journals)

1970 - 1980

• no 
appearance 
at PME or 
ICME

1981 - 1990

• 1982 one 
paper at PME

• 1987 separate 
topic at PME 

1991 - 2000

• 2000 first 
appearance 
as topic at 
ICME

2001 - 2010

• 2003 first 
PME plenary

• 2004 & 2008 
not included at 
ICME

• 7 PME 
Research 
Reports

2011 - 2016

• Dedicated Topic 
Study Group at 
ICME (2012 & 
2016) - primary 
education only

• 9 PME Research 
Reports
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1.3.3 The needs in measurement research 

It is clear from Owens and Outhred’s (2006) review of the PME research proceedings over 

thirty years, from a historical review of PME and ICME proceedings, and from an overview of 

the selected mathematics education journals, that further research is required in the field of 

measurement. While the field is expanding, the focus of such research must expand beyond the 

spatially-organised quantities of length, area and volume, as well as beyond primary education.  

This research examines the measurement conceptualisations of vocational engineering 

students, a field not yet explored in any of these publications. In addition, while the 

measurement of area and volume are required in some of the task-based interviews, there is 

also a focus on the measurement of flow rate, similarly not yet explored in the publications 

considered in this survey.  

While the choice to restrict the survey to English-language journals and proceedings does 

introduce limitations to the findings of the survey, it was necessary to do so for pragmatic 

reasons. An expansion of this survey to include journals published in other languages, may 

reveal more of an interest in measurement at later stages of education in non-English language 

speaking countries. However, it is not within the scope of this thesis to conduct such a survey.  

1.4  RESEARCH QUESTIONS 

This research first explores the measurement conceptualisations of students entering a TVET 

Engineering programme, through collaboratively framed task-based interviews centred around 

measurement tasks. The first two questions address what these conceptualisations are, and 

which of these are stable and which are in the process of emerging. Insights gained through 

analysis of students’ engagement with the mediated measurement tasks are then synthesised 

and evaluated to formulate suggestions about how to better facilitate students’ construction of 

accurate and stable measurement conceptualisations. 

The research questions are as follows: 

1. What stable measurement conceptualisations are evident in students’ engagement with 

mediated measurement tasks? 

2. What partial or emerging measurement conceptualisations are evident in students’ 

engagement with mediated measurement tasks? 
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3. Therefore, based on the analysis of stability and emergence as evident in students’ 

engagement in the mediated measurement tasks, where does the break between what is 

needed as stable conceptualisations, but rather possess as emergent conceptualisations, 

occur? 

 

1.5  ORGANISATION OF CONTENT 

In this chapter, the rationale for the research focus on measurement has been provided. In 

addition, the measurement-related mathematics education research context has been outlined 

through a broad survey of research presented at PME and ICME conferences and published in 

a selection of peer-reviewed mathematics education journals. This allowed the identification 

of a need for research into the measurement teaching and learning of students beyond primary 

school age, and the need for a focus on domains of measurement beyond the spatial quantities 

of length, area and volume. Lastly, the questions that this research aims to answer were 

clarified. 

Chapter 2 describes the broader educational context in which this research takes place: The 

South African TVET sector. The vocational education landscape in South Africa is a complex 

one. There are a multitude of societal and economic needs that the TVET colleges have been 

tasked with satisfying, while simultaneously rapidly growing their enrolment numbers. There 

have also been many significant historical shifts in vocational education in South Africa that 

have influenced the composition of their qualifications and their current position in the National 

Qualifications Framework [NQF]. These, and similar, complexities are explained in Chapter 2.  

This research focuses particularly on Engineering students. These students will enter the 

engineering workplace either to train further as artisans, or as students towards professional 

engineering qualifications. The workplace context into which these students will move is also 

considered in this chapter, with a focus on why mathematics in general, and measurement in 

particular, are crucial to their success in these endeavours. 

In addition to describing the vocational education landscape, it is necessary to describe the 

schooling context that these TVET students will have experienced prior to entering vocational 

education. To this end, Chapter 2 includes a discussion of the socioeconomic influences on the 

quality of schooling in South Africa, and the Mathematics performance of South African 

learners when compared to their international counterparts. 
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Finally, as the mathematical focus in this research is on measurement, an examination of 

measurement learning across South African curricula includes Chapter 2. 

Chapter 3 presents the theoretical framing of the study, in which the theories of Vygotsky and 

Piaget are presented, and their contributions explained. The neo-Piagetian work of David Tall 

similarly influences the understanding of measurement in this research, and his work is 

discussed and its application described. This chapter closes with a model proposed for mediated 

measurement interaction which brings together the work of these theorists as they are included 

in this research. 

In Chapter 4 the research methodology is described. It opens with a statement of the goals and 

research questions, which is followed by an explanation of the ontological, epistemological 

and methodological position of the research. The details of the research design are then 

provided and a full discussion of validity and reliability considered. Finally, ethical concerns 

are addressed 

Where Chapter 4 provides a general overview of the measurement tasks students engaged in, 

Chapter 5 is included to provide a brief, but detailed, description of each of these. Data from 

observations made as students engaged in these tasks is presented and analysed in Chapters 6 

to 9.  

In Chapter 10 the data from each of these tasks is synthesised to provide answers to the research 

questions. The major findings of the research are discussed, and these extend beyond answering 

the research questions. Thereafter, the strengths and limitations are discussed. The 

contributions of the study and the implications of its findings are then outlined before a 

discussion of the avenues for further research that have been identified. 

The thesis closes with a personal reflection on the research process, its findings and the way 

forward. 

1.6  USE OF TERMINOLOGY 

The following technical notes pertain to the use of terminology in this thesis: 

 As per South African norms, ‘learners’ shall refer to school-going children from 

Grade R to Grade 12. ‘Students’ is used when referring to individuals attending 

ABET colleges, TVET colleges and other tertiary education institutions. 
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 Where the words ‘Mathematics’, ‘Engineering’ and ‘Level’ are used to indicate 

subjects and programmes, they are capitalised.   

 The term ‘domain of measurement’ is used in this thesis to indicate a type of 

measurable quantity and its measurement, e.g. length, area, time, mass, duration 

and rate are all quantities that can be measured and are, as such, ‘domains of 

measurement’. 

 Where reference is made to ‘measuring’, it is the practical use of equipment to 

measure physical quantities that is referred to. Where reference is made to 

‘calculation’, the use of formulae and definitions to calculate a measurement, in 

the absence of the object to which the measurement applies, is referred to.  
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CHAPTER 2 

RESEARCH CONTEXT 

2.1  INTRODUCTION 

In this chapter, the TVET college sector in South Africa is described, with a focus on the 

National Certificate (Vocational) [NC(V)] Engineering programmes, as this is the broad 

educational context in which this research is situated. The way in which these qualifications 

contribute to addressing the critical shortage of artisans that South Africa is facing is also 

explained. In addition, the schooling system in South Africa is discussed, as this is the context 

in which students will have first formally encountered measurement in their mathematics 

learning. 

In terms of mathematics education research, the context in which this research is positioned is 

that of measurement learning of adult vocational engineering students. Included, therefore, in 

the description of the research context is an analysis of the mathematics and related school 

curricula that students will have been exposed to. This takes the form of a curriculum mapping 

of the progression of measurement learning through schooling and into the NC(V) Mathematics 

curriculum, within the context of the NC(V) Engineering programmes. This does not indicate 

whether learning has taken place but is important to examine as it is the expected measurement 

learning trajectory within the South African schooling context.  

As the chapter unfolds, the gaps in the existing research are made explicit, including an 

explanation as to how this research aimed to contribute toward filling them. 

2.2  THE VOCATIONAL EDUCATION LANDSCAPE IN SOUTH AFRICA  

The TVET sector was declared by the DHET as its area of highest priority in the White Paper 

for Post-School Education and Training, approved by Cabinet on 20 November 2013 (DHET, 

2013h). The stated purpose of these colleges is to “provide training for the mid-level skills 

required to develop the South African economy” (DHET, 2012c, p. 11) and the South African 

government claims to be seeking to meet “government delivery imperatives in skills 

development and employment creation” (p. 11). In South Africa, there has been a historical 

emphasis on the value of attending a university, however, South Africa’s status as a developing 
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country means that “technical skills are more important than professional university degrees” 

(Makholwa, 2015, p. 1).  

In the following two sections, the critical need for artisans in South Africa, as well as the 

problems of unemployment, inequality and poverty are discussed. This discussion focuses on 

how TVET colleges, and the NC(V) programmes they offer, aim to contribute towards 

addressing these issues.  

2.2.1 Addressing the critical need for artisans 

The National Skills Development Strategy III [NSDSIII] (DHET, 2012c) states that the critical 

skill shortage South Africa is facing in the artisanal fields jeopardises the development and 

growth of the economy. Forty-seven of the 100 careers currently in high demand in South 

Africa are artisanal (South African Government News Agency, 2016). Therefore, in addition 

to elevating the TVET sector in general to the Post-School Education and Training area of 

highest priority, the South African government has “elevated and identified as a priority area 

for skills development” (p. 1) the need for artisans.  

The shortage of artisans is most critical in the construction, engineering, mining, manufacturing 

and energy fields. In addition to fulfilling the role of training artisans, TVET colleges have 

been tasked with dramatically increasing their output in this regard from the 12 000 artisans 

produced in 2014 to a targeted 30 000 per annum by 2030 (Kolver, 2014) to further address 

this shortage. 

In the South African Skills Development Amendment Act (Republic of South Africa [RSA], 

2012), an artisan is defined as a “person who has been certified as competent to perform a listed 

trade” (p. 16). A trade is defined as: 

An occupation wherein a qualified person applies a high level of practical skills 

supported and re-enforced [sic] by underpinning and applied knowledge to: 

 Manufacture, produce, service, install or maintain tangible goods, 

products or equipment in an engineering and/or technical work 

environment 

 Uses [sic] tools and equipment to perform [sic] of his/her duties 

 Measure [emphasis added] and do fault finding on processing, 

manufacturing, production and/or technical machinery and equipment 

to apply corrective or repair actions 
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 Apply and adhere to all relevant health, safety and environmental 

legislation        (p. 17) 

Most trades listed in the Act are related to the key areas of economic growth targeted in the 

National Development Plan [NDP] (National Planning Commission [NPC], 2012), which 

include: “establish[ing] a competitive base of infrastructure; establish[ing] effective, safe and 

affordable public transport; produc[ing] sufficient energy to support industry; access to clean, 

running water; [and] increasing exports” (p. 24). It is the Engineering programmes offered at 

TVET colleges that prepare students to work toward artisanship in trades related to these 

targeted economic growth areas. 

To supply the number of workers required to achieve the growth targets, the NDP (NPC, 2012) 

specifies that the TVET college graduation rate needs to increase to 75% by 2030, and the 

DHET has called for the enrolment head-count to increase from the 702 383 students in 2014 

(DHET, 2016c) to 2.5 million in 2030 (DHET, 2013h). To drive these increases, the DHET 

declared 2014 – 2024 to be the Decade of the Artisan. This includes “campaign, interactive 

community events…held every three months at different TVET engineering campuses” 

(Kolver, 2014, p. 1). These are aimed at increasing the number of young people seeking to 

enrol in programmes that lead to the engineering-related artisanal careers that are most needed 

for the South African economy to grow. 

It is the opinion of the DHET that the lack of qualifying artisans can also be addressed through 

improving the current quality of career guidance (Sota, 2014). This is being addressed through 

an Artisan Development Technical Task Team instituted by the Human Resource Development 

Council of South Africa [HRDCSA] with the aim to encourage school-going learners to 

willingly choose to attend TVET colleges and train as artisans (HRDCSA, 2016). The Decade 

of the Artisan also includes a drive to recruit more students into the specific trades that are most 

needed for the South African economy to grow. 

2.2.2 TVET and the triple problems of unemployment, inequality and poverty 

In addition to the economic growth imperatives mentioned above, “the TVET sector is required 

to play a role in addressing the triple problems of unemployment, inequality and poverty” 

(Rasool & Mahembe, 2014, p. 28). There is a need to “subscribe to a broader developmental 

agenda beyond the rigidly economic development approach” (p. 30) and as such, the colleges 

have been tasked by the South African government with “redress[ing] past discrimination and 
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ensur[ing] representivity and equal access [as well as] provid[ing] optimal opportunities for 

learning” (Select Committee on Education and Recreation, 2006, p. 2).  

One of their purposes is to facilitate access to education for all adults, thereby enhancing their 

employability or providing an opportunity to access further studies at a tertiary level. In the 

first quarter of 2016, the official national unemployment rate was 26.7% (Statistics South 

Africa [StatsSA], 2016). In the Eastern Cape, where this research took place, the rate was 

slightly higher at 28.6% and, in the municipality in which this research was positioned even 

higher at 33.2% (StatsSA, 2016).  

The scale of the problem of unemployment among the youth in South Africa is particularly 

vast. In 2013, young people (16 – 25 year olds) who were not in education, employment or 

training [NEETs] made up 71% of the unemployed population and the national youth 

unemployment rate was as high as 52.9% (StatsSA, 2013). Census data from StatsSA (2016) 

for the first quarter of 2016 revealed that youth unemployment had increased nationally to 

67.3%. 

Every year, approximately 400 000 matriculants do not move on to further studies (Rasool & 

Mahembe, 2014). More than 30% of these students do not find employment, therefore swelling 

the number of NEETs by approximately 120 000 annually (StatsSA, 2013). For young people 

who have not completed 12 years of schooling, the unemployment rate is 42%. However, 

obtaining a non-degree post-school qualification, such as those offered by TVET colleges, 

decreases unemployment to 16% (Rasool & Mahembe, 2014).  

Young adults who have either not successfully completed 12 years of schooling, or who have 

completed their schooling without qualifying for entry to a university, can access the 

programmes at TVET colleges. This allows a ‘second chance’ at obtaining a qualification that 

will allow them access to the workplace. In this way, the number of NEETs in South Africa 

can be decreased.  

2.2.3 Rationale for the TVET focus of this research 

TVET colleges and the programmes they offer are core to many economic and development 

goals in South Africa, as explained in the previous two sections. It is their growth that has the 

potential to see the realisation of these goals. The growth targets for these colleges are 

exceptionally large, however, if these are realised, the number of artisans will be sufficient to 
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meet the NDP goals and it is possible that the number of NEETs and the unemployment rate in 

the country will be drastically reduced. This is, however, dependent on a simultaneous 

improvement in the quality of the instruction offered. 

There is a risk that this dramatic increase could adversely affect the quality of graduates and 

caution needs to be taken to avoid this. The current shortage of artisans is partly due to the poor 

quality of artisan training in the past (Makholwa, 2015). It is also noted by the HRDCSA (2016) 

that the quality of teaching in TVET colleges remains poor and has resulted in a high dropout 

rate among students. In addition to the drive for increased output, therefore, it is necessary to 

have research that is focused on the classroom level. This research aims to contribute at that 

level by exploring the existing knowledge of first-year TVET engineering students with the 

view that this can inform and improve teaching.  

The rationale for locating this research in the TVET sector was in part due to the contribution 

that these colleges can make to the South African economy, as well as to the lives of the 

individuals who enrol in the programmes offered. Accordingly, the HRDCSA (2016, p. 3) 

emphasises that “[t]he future for artisans is bright”. 

2.3  THE NATIONAL CERTIFICATE (VOCATIONAL) 

The National Certificate (Vocational) is one type of qualification offered at TVET colleges. It 

was developed to be a “sister qualification” (Umalusi, 2010, p. 10) to the National Senior 

Certificate [NSC]. The NC(V) is a three-year, full time course. Students enrol for one of 19 

fields of study, among them 8 related to engineering (see Appendix C for the full list of NC(V) 

engineering programmes), and complete one National Qualifications Framework [NQF] level 

per year, with the final year’s study being at NQF Level 4 (DHET, 2013h).  

The rationale for introducing the NC(V) curriculum, as outlined by Umalusi (2010), is to 

provide an alternative to the NSC qualification, which will equip students with both the 

theoretical background and practical experience required to master a trade or technical skill.  

The following sections will describe the positioning of the NC(V) in the South African NQF. 

The various pathways to both the workplace and further studies available to NC(V) graduates 

will also be outlined. This will provide orientation as to how the NC(V) programmes produce 

graduates who are ready to master a trade or ready to pursue further studies in their field. 
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2.3.1 The position of NC(V) in the National Qualifications Framework 

At NQF Level 4, a student’s scope of knowledge in their field includes a “fundamental 

knowledge base of the most important areas of [the] field or discipline” (South African 

Qualifications Authority [SAQA], 2012, p. 7). They are also able to “demonstrate the ability 

to apply essential methods, procedures and techniques in [this] field or discipline” (p. 7). A full 

list of level descriptors for Levels 2, 3 and 4 are provided as Appendix D.  

The table below provides a general outline of the South African NQF: 

Table 2.1 The South African National Qualifications Framework 

NQF LEVEL QUALIFICATION TYPE 

10 PhD 

9 Master’s Degree 

8 
Bachelor’s Honours Degree  

Post-Graduate Diploma 

7 
Bachelor’s Degree 

Advanced Diploma 

6 
National Diploma 

Advanced Certificate 

5 Higher Certificate 

4 
Grade 12 (National Senior Certificate) 

NC(V) Level 4 

3 
Grade 11 

NC(V) Level 3 

2 
Grade 10 

NC(V) Level 2 

1 
Grade 9  

Adult Basic Education and Training [ABET] Level 4 

Senior Phase Grades 7 – 9 

Intermediate Phase Grades 4 – 6 

Foundation Phase Grades R – 3 

Adapted from SAQA (2012), Miles (2009) and Kizito (2014)  

The pre-requisite for entrance to NC(V) is a qualification at NQF Level 1. This is achieved 

either through completion of compulsory schooling (Grade 9), or through completing the Adult 

Basic Education and Training [ABET] Level 4 qualification. ABET is an alternative route to 

NQF Level 1 for adults who did not complete compulsory schooling. Its primary purpose is to 

“seek to connect literacy with basic (general) adult education on the one hand and with training 
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for income generation on the other hand” (Department of Education, 2007, p. 5). There are four 

levels to the ABET qualification, and upon completion of these the student becomes eligible to 

enter the NC(V). 

Although the entrance requirement is a qualification at NQF Level 1, students enter the course 

with qualifications at any of the Levels 1 to 4. In 2009, as many as 50% of students enrolled in 

TVET college were in possession of a NSC (DHET, 2012a).   

NC(V) students therefore fall into 4 broad categories (FET Round Table, 2010):  

• Young people who have a Grade 12 ‘pass’  

• Young people who have not passed Grade 12 due to either dropping out or failing 

the examinations 

• Young people who have left school at Grade 9 and choose enter the NC(V) route 

as an alternative to the NSC 

• Adults who have not completed compulsory schooling and choose to access 

further education. This requires: 

• ABET Level 4  

OR 

• Recognition of Prior Learning [RPL] enable access to the NC(V) 

programmes in such cases 

SAQA (2013, p. 5) defines RPL as the “principles and processes through which the prior 

knowledge and skills of a person are made visible, mediated and assessed for the purposes of 

alternative access and admission, recognition and certification, further learning and 

development”. 

Within the first two categories, one can distinguish between students who have chosen to enrol 

at a TVET college because of a genuine desire to work or study further in their chosen field 

and those who have enrolled because they have not met the requirements to pursue studies in 

another field at a tertiary level. There has been an emphasis in the past, and it remains largely 

unchallenged, that a university education is superior to a college qualification (Makholwa, 

2015). This can have an influence on the motivation of TVET students if they fall into that 

category of student who is disappointed that they are not working towards the achievement of 

a degree. 
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As pointed out in the Green Paper for Post-School Education and Training (DHET, 2012a, p. 

22), this broad range poses a significant challenge to the lecturer as they are “teaching…very 

different cohorts of students in the same classroom”.  

2.3.2  Vocational education and combined approaches to formal education 

South Africa’s public TVET colleges “exist at the cross roads between compulsory education, 

higher education and the world of work” (Powell, 2012, p. 643). They provide a non-traditional 

route to higher education (Powell, 2012) and do not exclusively aim for students’ immediate 

employment. This is crucial to note, as the design of programmes and curricula needs to hold 

these aims in tension. Not only should students finish the NC(V) Engineering course as 

employable artisans, but they should also be ready to pursue higher education should they 

desire to do so (RSA, 2009). For the South African economy, this means that NC(V) 

Engineering graduates could be a source of artisans as well as future engineering professionals. 

Papier, Needham and McBride (2012) report that there is similarly an “increasing international 

emergence of combined approaches to formal education and workplace based training” (p. 13) 

that mirrors what we see in TVET in South Africa. These approaches emphasise the 

responsibility of vocational training for providing both workplace preparation and the 

foundation of knowledge required to pursue higher education in that field. (Papier et al., 2012). 

As Papier et al. (2012) note, however, this type of approach is “easier said than done” (p. 13).  

A recently released United Nations Educational, Scientific and Cultural Organisation 

[UNESCO] publication (UNESCO, 2015), emphasises that the “quickening pace of 

technological and scientific development is making it increasingly difficult to 

forecast…associated skill needs” (p. 60). The competencies acquired by students need to be 

flexible and allow for “the adaptation of competencies to rapidly changing needs” (p. 60). As 

mentioned earlier, the students’ learning needs to be sufficiently powerful to allow for the 

adaptive use of their knowledge.  

2.3.3  Pathways to the workplace and further training available to NC(V) graduates 

Because of the combined approach taken in the NC(V), there are pathways open to NC(V) 

graduates both to the workplace and to further training in their field.  

The NC(V) leads directly into the workplace for students who would like to work as artisans. 

For those that wish to pursue further studies to become Engineering Technicians, Certificated 
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Engineers, Engineering Technologists or Professional Engineers, there are pathways that are 

open to them that are dependent on their performance in their NC(V) subjects. 

The following sections outline these pathways. First, the steps to becoming an artisan are 

described. Thereafter, the paths to further training and professional registration in other 

categories of engineering practice are outlined. It is important to note that students’ mobility 

along these paths is largely dependent on their performance in Mathematics (ECSA, 2012).  

2.3.3.1 Seven steps to trade certification as an artisan      

It has already been mentioned that the HRDCSA (2016) indicates that career guidance needs 

to improve to increase the number of individuals enrolling in programmes that ultimately lead 

to artisanship. There are an additional 6 steps that make up the national model of the route to 

trade certification as an artisan. To find employment or practice as an artisan, one needs to 

possess a trade certificate. These are available for the trades listed in the South African Skills 

Development Amendment Act (RSA, 2012). 

The seven steps to this certification are shown in Figure 2.1 below. These represent the result 

of a review of the previous trajectory, and an examination of international benchmarks for 

qualification as an artisan (Makholwa, 2015). For adults who have already been working in the 

appropriate workplace, it is possible that after the process of RPL is concluded, they can move 

directly to the trade test. 
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Figure 2.1 Seven steps to becoming an artisan 

(HRDCSA, 2016) 

A “structured learning programme of knowledge, practical and work experience” (RSA, 2012, 

p. 17) is central to the route to artisanship. Following appropriate career guidance, students 

enter a course which provides them with fundamental knowledge. This would include the 

NC(V), and would be specific to a field, e.g. Fitting and Turning, Welding or Automotive 

Repair and Design (which are the foci of this research).  

As it is the first step in their training, students’ performance in the NC(V) largely determines 

whether it is possible for students to move on to subsequent steps. In January 2016, the DHET 

released the following statement to the press: “40% in Mathematics…is a requirement for 

artisan consideration” (DHET, 2016b, p. 1). This highlights the importance of performance in 

Mathematics.  

After successful conclusion of fundamental knowledge training, students enter into an 

agreement with an employer who partners with the student to provide workplace-based training 

after occupational and practical training are completed at an accredited training centre. Through 

their promotion of artisanship during the Decade of the Artisan, the DHET aims to 

“relink…employers and workplaces to the TVET college system” (Kolver, 2014, p. 1), by 
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requiring that Sector Education Training Authorities [SETAs] become involved in facilitating 

these partnerships.  

Overseeing all of this, and facilitating links between trainee artisans, accredited skills 

development providers, SETAs, and other stakeholders involved in training artisans, is the 

DHET’s newly constituted National Artisan Development Support Centre [NADSC] 

(HRDCSA, 2016). These partnerships are crucial to enabling students to progress through these 

seven steps and for this to become an efficient system of producing artisans, from recruitment 

to employment.  

2.3.3.2 Pathways to further study post-NC(V) 

After obtaining their NC(V) Level 4 qualification, students can move on to study further in 

their field, provided they achieve the minimum requirements for admission, and provided the 

qualification is in the same field as the NC(V) the student has achieved. The general admission 

requirements for qualifications are listed below (RSA, 2009): 

 Higher Certificate (Level 5): A NSC or a National Certificate (Vocational) in a 

field relevant to the specific Higher Certificate  

 Diploma (Level 6): At least 50% for Mathematics, Life Orientation and the 

Language of Learning and Teaching [LoLT] of the institution; at least 60% for 

three further subjects 

 Bachelor’s Degree (Level 7/8): At least 60% for Mathematics, Life Orientation 

and the LoLT of the institution; at least 70% for four further subjects 

While it seems implied by the admission requirements that sufficient achievement in NC(V) 

should permit access to Diploma and Bachelor Degree studies in engineering, ECSA (2012) is 

adamant that it is performance in NSC Mathematics, Physical Science and the LoLT of the 

institution that are to be considered for direct entry into engineering diploma and degree 

programmes (NQF Levels 7 and 8). This closes the possibility of moving directly into these 

professionally-oriented courses for NC(V) graduates, however, a vocationally-oriented 

pathway is open. These programmes focus more directly on workplace competencies. Should 

students wish to move from the vocationally-oriented path to study towards a qualification at 

NQF Levels 7 and 8, they need to acquire a Diploma in Engineering Technology (ECSA, 

2016f). 
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The figure below provides an illustration of the pathway to further training that is open to 

NC(V) graduates. 

Figure 2.2 Pathways to further training for NC(V) Engineering graduates 

(ECSA, 2015a; 2015b; 2016b; 2016c; 2016d; 2016e; 2016f) 

After achieving a Higher Certificate in their chosen engineering field (NQF Level 5), students 

can enrol for a one-year Advanced Certificate in Engineering or in Engineering Technology 

(NQF Level 6). Alternatively, depending on their performance in the Higher Certificate, 

students can gain entry to a vocationally-focused Diploma in Engineering or Engineering 

Technology, a three-year qualification at NQF Level 6. Having achieved a Diploma in 

Engineering Technology, it becomes possible to move into the professionally-oriented stream 

of qualifications to enrol in an Advanced Diploma in Engineering (indicated by the arrow on 

Figure 2.2). It is only the Diploma in Engineering Technology that allows access to the 

Advanced Diploma in Engineering.  
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2.3.3.3 Pathways to the workplace as a professionally registered engineer 

Having achieved any of the qualifications shown in Figure 2.2, students can exit the training 

pathway to enter the engineering workplace. ECSA (2002, p. 3) lists the following as being 

core functions in the engineering workplace: “design, research and development, 

commissioning, project or construction management, measurement [emphasis added] and 

testing, planning, quality assurance, production, maintenance [and] management”. 

As previously indicated, exiting this path with a NQF Level 4 NC(V) qualification allows 

further progression along the seven steps to becoming an artisan and ultimately, trade 

certification as an artisan. Exiting at any higher NQF Level requires registration with ECSA, 

as legislated in the Engineering Profession Act (RSA, 2000). Figure 2.3 illustrates the 

categories of registration available per NQF level, and provides an expansion of the process 

towards achievement of this registration. 

Figure 2.3 Pathways to the engineering workplace per NQF exit level  

* graduates with a Diploma in Engineering (NQF level 6) are also eligible for registration as candidate 

certificated engineers 

** candidates are required to write an examination to become a professional certificated engineer 

(ECSA, 2004, 2016a; HRDCSA, 2016) 
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The category of Engineering Practitioner “provides for the registration of persons who cannot 

register in the professional category, but who perform critically important work of an 

engineering nature” (RSA, 2000, p. 16). Trade certification does not exist for these jobs, 

although they can be classified as engineering roles. This includes, for example, lift technicians. 

It fulfils the legislative requirement for registration with ECSA, but does not provide a pathway 

to professional registration. 

New graduates with qualifications at NQF Levels 6 – 8 move on to register as candidate 

professionals in a category specific to the level of their qualification. As is shown in figure 2.3, 

the Engineering Profession Act (RSA, 2000) specifies the following categories of registration:  

 Engineering Technician 

 Certificated Engineer 

 Engineering Technologist 

 Engineer 

Following a minimum of 3 years of further workplace-based training and experience, 

candidates can begin the application process to become registered professionals. Core to these 

applications is the submission of an Engineering Report. Such reports are required to cover 

what are considered to be the engineering functions: “conceptualisation, design and analysis, 

specification, tendering and adjudication, manufacturing, project and construction 

management, commissioning, maintenance, measurement [emphasis added] and testing” 

(ECSA, 2014, p. 8).   

2.3.4. The importance of mathematics at every level of engineering work 

It is repeatedly noted that students’ performance in Mathematics enables their mobility into the 

workplace and along the NQF qualification pathway. In engineering, Mathematics acts as a 

gatekeeper to accessing training, and competence in Mathematics is necessary for successful 

performance of the work of an engineer.  

2.4.  SHIFTS IN APPROACHES TO TVET RESEARCH IN SOUTH AFRICA 

Research concerns in the South African TVET sector have undergone several shifts in the past 

twenty years and the “current structures and ideologies both reflect our histories and reveal 

attempts to move beyond this” (Lotz-Sisitka & McKenna, 2015, p. 2). This section will trace 

the approaches that have been taken in researching the South African TVET context from 1994 
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to post-2009. Important shifts will be noted and this research will be contextualised according 

to these. 

2.4.1  Distinct research periods 

Powell (2013) provides an overview of research in this field and describes it as showing 3 

relatively distinct periods: 

  1994 – 2003 Period of Reconstruction 

  2003 – 2009 Period of Early Critique 

  2009 – Deconstruction – A new movement 

2.4.1.1 The Period of Reconstruction  

During the Period of Reconstruction, which began with South Africa’s first democratic 

elections, the TVET sector underwent major changes. The aim of research conducted during 

this time was to inform the design of legislation and the formation of colleges (Powell, 2013). 

The culmination of this was the merger of 152 technical colleges to form 50 FET colleges (later 

to be renamed TVET colleges) in 2002 (Powell & Lolwana, 2012). This transformation sought 

to shift student and staff demographics in terms of race and gender to become representative 

of the South African population (Powell & McGrath, 2014). Most of the research in this period 

was funded by the government and donors in partnership with the government and the aim of 

this research was to provide “‘hard’ data on which policy could be built” (Powell & Lolwana, 

2012, p. 9). The research approach was predominantly applied and instrumental and the 

preferred methodologies quantitative (Powell, 2013). 

2.4.1.2 The Period of Early Critique 

By the Period of Early Critique, the policy and structural foundations were in place (Powell, 

2013) and the focus of research turned to a critical engagement with policy. Researchers 

became concerned that the sector was failing in its stated outcomes (Powell, 2013). While the 

aim of research largely shifted in this period, it remained methodologically and 

paradigmatically similar to the Period of Reconstruction (Powell, 2013).  
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2.4.1.3 Shifting policy discourse 

In 2009, there was further reorganisation in the sector as colleges became the responsibility of 

the newly formed DHET (Powell, 2013). This renewed debates about skills development and 

vocational education and shifted the policy discourse “toward an integrated post-school system 

that focuses on the needs of the poor” (p. 73). With the recent publication of the White Paper 

on Post-School Education and Training (DHET, 2013h) and the earlier Green Paper (DHET, 

2012a), the policy discourse has now shifted towards a more integrated and expanded view of 

the post-school system. The system now not only seeks to meet the needs of industry but also 

aims to focus on the needs of students and communities and the alleviation of poverty: a far 

more student-centred approach (Powell & McGrath, 2014). In promoting an integrated post-

school system, these documents also highlight the need for a combined approach to vocational 

education (DHET, 2013h). 

Powell and McGrath (2014) indicate that until this point research in the TVET sector had been 

dominated by what they term to be ‘productivist’ accounts that “emphasise[d] economic 

growth and income generation as key development objectives” (p. 10). Thus, overly structural 

approaches and quantitative methodologies have been favoured and this has similarly been the 

dominant approach in international research in TVET (Powell, 2013). 

2.4.2  Educational research in a time of measurement 

In the past twenty years, educational research across the globe has entered a “time of 

measurement” (Sporre, 2015, p. 11). On a global scale, the last twenty years have seen the 

increased use of large-scale international studies that examine the educational outcomes of 

students across countries (Sporre, 2015). South Africa has participated in a number of these, 

including the Trends in Mathematics and Science Studies [TIMSS] (Mullis, Martin, Foy & 

Arora, 2012); Progress in International Reading Literacy Study [PIRLS] (Howie, van Staden, 

Tshele, Dowse & Zimmerman, 2012); Southern and Eastern African Consortium for 

Monitoring Educational Quality [SACMEQ] (Moloi & Chetty, 2010) and has also 

implemented the Annual National Assessments [ANA] to assess literacy and numeracy 

between Grades 1 and 9. Together with the reports on the results of the NSC examinations 

issued annually, there exists a large amount of easily available quantitative data about 

educational outcomes in South Africa.  
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While this information is valuable, Lotz-Sisitka and McKenna (2015) emphasise that what is 

left out when assessing educational quality by means of wide-scale benchmark testing 

indicators and systems level studies, is quality at the level of the classroom. With South African 

TVET research having undergone the shift in discourse away from a focus on “economic 

growth and income generation” (Powell & McGrath, 2014, p. 10), the productivist model, with 

its focus on “‘hard’ data” (Powell & Lolwana, 2012, p. 9) and its preference for quantitative 

methodologies (Powell, 2013), does not provide adequate information at the level of the 

classroom. It provides an “insufficient account of individual [students]” (Powell & McGrath, 

2014, p. 12).  

The research carried out to this point has been crucial to the building of this sector, and indeed, 

to constructing the policies that shifted this discourse, but there are several limitations. These 

approaches “tell us little about the recipients of [TVET]” (Powell, 2013, p. 74). TVET students 

are “not simply empty slates enrolling at colleges in the hope of acquiring employability skills” 

(Powell & McGrath, 2014, p. 12) and current approaches to TVET research in South Africa, 

as well as internationally, “have largely ignored the voices and experiences of students” (p. 9). 

To date, only three South African studies have examined TVET from the perspective of the 

student: Needham and Papier’s (2012) research about student perceptions of vocational 

education, Powell’s (2012) small-scale study about the impact of the colleges on the lives of 

students and Powell and McGrath’s (2014) paper encouraging the use of a capability approach 

in considering TVET students. No qualitative studies in SA have yet considered what students 

bring to the course in terms of prior knowledge and experience nor have they examined what 

is happening in the classrooms themselves (see Papier et al., 2012). 

The situation is similar in mathematics education in the TVET sector. Two studies, both 

commissioned by quality assurance body Umalusi, have explored the NC(V) curriculum. These 

comparative studies mapped the NC(V) mathematics curriculum onto the NSC mathematics 

curriculum (Houston, Booyse & Burroughs, 2010), and the previous national curricula for 

vocational engineering (Matshoba & Burroughs, 2013). There is, however, no research yet that 

“speak[s] to the enactment of the curriculum and to college and classroom practice” (Papier et 

al, 2012, p. 18).  
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2.4.3  Taking a fresh approach to TVET research 

Papier et al. (2012), in concluding their overview of contemporary issues in TVET colleges, 

suggest a research agenda which includes a call for “fine grained qualitative studies” (p. 23) 

that can contribute to building knowledge of the students. Despite the shift in policy discourse 

both nationally and internationally, however, most new projects commissioned in the sector 

remain largely quantitative and focused on the level of management and the potential 

contribution TVET education can make to the economy (Powell, 2013). The International 

Centre for Technical and Vocational Education and Training [UNEVOC] (2014) similarly state 

that TVET research globally has too often focused on the systems level, leaving teaching and 

learning at the student and classroom level under-researched. 

The interpretivist approach to analysis in this study is important to note. In the Period of 

Reconstruction and the Period of Early Critique interpretivist approaches were avoided as they 

were considered to emphasise “‘different voices’ and ‘different perspectives’, which went 

against the spirit of political integration and the need for consensual transformation” (Powell, 

2013, p. 63) in the sector. With the limitations of the orthodox approach to TVET research in 

South Africa being increasingly recognised (Powell and McGrath, 2014) it is time to consider 

a fresh approach. 

2.5  WHAT DO WE KNOW ABOUT THE TVET SECTOR?  

The ongoing focus on large-scale, quantitative research in education means that what we do 

know in the South African TVET sector remains quantitatively biased. We know that despite 

“extensive investment of financial and human resources into building a new identity for TVET 

colleges” (Papier, 2009, p. 44) results have not yet met expectations. We also have extensive 

knowledge of staff demographics, student demographics, pass rates, certification rates, 

enrolment figures and other large-scale quantitative statistics. There is, however, a paucity of 

research that enlightens us as to the mechanisms underlying these statistics.  

2.5.1 Performance in Mathematics 

Over the period 2007-2009, the mean throughput rate for the NC(V) Engineering programmes 

was 24% for Level 4 (Cosser, Kraak & Winnaar, 2011). Cosser et al. (2011) also point out that 

if attrition rates due to failure in Levels 2 and 3 are incorporated in these calculations, the 
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percentage of students who enrolled for Level 2 in 2007 and completed Level 4 in 2009 is 

4.4%. 

Similarly, results in NC(V) mathematics are disappointing. The table below shows the 

percentage of students passing mathematics for the period 2011 – 2014. While there is an 

increase evident in 2012, the upward trend for Level 4 is not maintained in 2014, with this pass 

rate dropping by 8% between 2012 and 2014. This is problematic in a system emphasising a 

combined approach, as students must perform well in mathematics to articulate to university 

studies in engineering (ECSA, 2012). Paterson (2016) adds that there is not only a pattern of 

failure in Mathematics, but a pattern of repeated failure. 

Table 2.2 Percentage of students passing NC(V) mathematics from 2011 - 2014 

Statistics from DHET (2013c, 2014, 2015a) 

In addition to the disappointing mathematics results, the NC(V) certification rate at Level 4 for 

the end of the 2014 academic year was 34.4%, substantially lower than the targeted 57% 

(DHET, 2015a). The 2014 Level 4 class (pass rate bold and underlined in Table 2.2) have a 6% 

cohort progression rate if attrition rates due to failure from Level 2 to Level 4 are taken into 

consideration for this group. The DHET (2015a) has attributed this primarily to the 

compounded effect of poor performance in Mathematics and Mathematical Literacy across 

NC(V) levels. Other factors identified by the DHET (2015a) as influencing the performance of 

students include “poor class attendance and disruptions caused by strikes” (p. 73); 

“inappropriate or lack of pedagogical training [of lecturers]” (p. 73); “unsuitable teaching and 

learning…practices” (p. 73); and “lack of systematic screening of teaching and learning 

materials” (p. 73).  

In 2015, the targeted certification rate for NC(V) Level 4 was 59% (DHET, 2016a). The actual 

achievement was significantly lower, at 23.3%. The comment made by the DHET in this regard 

was that “[r]apid expansion of the system has a negative impact on the quality of provision and 

 2011 2012 2013 2014 

Mathematics Level 2 22% 44% 45% 47.2% 

Mathematics Level 3 16% 36% 39% 46.4% 

Mathematics Level 4 16% 43% 41% 35% 
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the student strikes also disrupted teaching and learning” (p. 109). No pass rate for Mathematics 

is reported on in this Annual Report as had been the case in all previous such publications. 

Considering these results, we must acknowledge that current practices are ineffective, and yet 

what we do not learn from any of these statistics is the detailed picture of what is happening in 

the NC(V) Level 2 Mathematics classroom.  

2.5.2  Developing the skills of Mathematics lecturers 

As highlighted earlier, the HRDCSA (2016) explains that poor quality teaching in TVET 

colleges is one issue that needs to be addressed. Between 2011 and 2014, a Colleges 

Improvement Project [CIP] was implemented by the Joint Education Trust [JET] in the Eastern 

Cape. The core focus of the project was on promoting quality teaching and building 

competencies of lecturers and students (Paterson, 2016). A strategic choice was made to 

concentrate particularly on those subjects where the biggest challenges were being experienced 

(Marock, Hazell & Akhoobai., 2016). Mathematics lecturers’ competence was identified as 

requiring particularly urgent attention. While stakeholder feedback after the project was 

generally positive, it was emphasised that there was still a long way to go in addressing 

challenges related to lecturer competence in teaching Mathematics despite the JET 

interventions.  

The Mathematics classroom is, of course, attended by students as well the lecturer. Research 

that balances a focus on both students and teaching and learning techniques has the potential 

to propose solutions at the classroom level that may enhance teaching and learning. It is the 

aim of this research to provide such a balance. The research questions first guide attention to 

students’ existing conceptualisations of measurement, and having examined those, move to 

interrogate where the break occurs between what students need to have as stable 

conceptualisations, but rather possess as emerging conceptualisations. 

2.5.3 Asking new questions  

As Powell (2013) emphasises, “it is time to ask new questions and, perhaps, to ask them in 

different ways” (p. 75). In exploring the students’ prior conceptual understandings of 

measurement as they enter the course, this research contributes such a new question. Similarly, 

in its interpretivist approach and fine-grained qualitative analysis it offers a different way of 
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looking at the vocational student that will offer a new perspective on vocational education and 

training research both nationally and globally. 

2.6 PRIOR SCHOOLING IN CONTEXT  

In addition to entering the course with a variety of levels of prior schooling, students enter the 

course from a variety of schools. While measurement conceptualisation begins in early 

childhood (Feikes, Schwingendorf & Gregg, 2009), the formalisation of these 

conceptualisations begins from Grade R and continues throughout the learners’ school careers 

(Department of Basic Education [DBE], 2011e). It therefore becomes relevant to note the 

school context in which these concepts have been encountered. It is not the aim to dwell on a 

negative picture but as this research explores students’ existing measurement 

conceptualisations, it is important to have a notion of where these students have come from in 

terms of their prior school experiences.  

Paterson (2016) reports that findings from the CIP revealed that the level of preparedness of 

new students varied according to their academic background and the catchment area of the 

college. For this reason, the quintile classification of South African schools will be outlined, 

with specific reference to the Eastern Cape context. This will be followed by a discussion of 

the comparability of grade passes from different schools to further contextualise the indicators 

of levels of prior schooling.  

2.6.1  The quintile system in South Africa 

In South Africa, schools are grouped into quintiles according to the average relative income 

of the community in which the school is situated (Villette, 2016), as well as infrastructure and 

levels of unemployment and illiteracy in the community (Collingridge, 2013). This is a 

“poverty ranking” (Grant, 2013, p. 1) that primarily serves to determine how financial 

resources are allocated to schools by the government. Quintile 1 is considered ‘most poor’ and 

quintile 5 considered ‘least poor’. Schools in quintiles 1 to 3 are not permitted to charge school 

fees and are wholly reliant on government subsidies allocated per learner per year. Schools in 

quintiles 4 and 5 are allocated a much smaller subsidy per learner and supplement this by 

charging school fees (Grant, 2013). 

The amount allocated is intended for use in payment of municipal services and purchasing of 

stationery and learning support materials (e.g. textbooks), equipment (e.g. photocopiers) as 
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well as maintenance and repairs (Grant, 2013). In 2013, however, several schools in quintiles 

1 to 3 were found to be illegally charging fees as they were unable to function adequately by 

relying only on government funding (Phakathi, 2013). These schools reported being unable to 

buy necessities as basic as chalk (Phakathi, 2013). It cannot be denied that the quality of 

learning experiences is compromised in these schools due to limited, if not a complete lack 

of, resources.  

In the balance of number of schools per quintile, all provinces are not equal. The distribution 

of schools per province and quintile, provided in Figure 2.4, reveals clear differences. More 

than 95% of schools in the Eastern Cape [EC], the province in which this research was 

conducted, fall into quintiles 1 – 3, whereas in provinces such as Gauteng [GT] and the 

Western Cape [WC] the percentage of schools in quintiles 1 – 3 is approximately 50%. 

Figure 2.4 Distribution of schools by province and quintile  

 

EC [Eastern Cape]; FS [Free State]; GT [Gauteng]; KZ [KwaZulu Natal]; LP [Limpopo]; MP [Mpumalanga]; 

NC [Northern Cape]; NW [North West]; WC [Western Cape] 

from van Wyk, 2015, p. 150 

Nationally, 65% of children are in ‘no-fee’ schools, and this number is increasing (Villette, 

2016). In the Eastern Cape, this percentage is as high as 71.6% (Grant, 2013).  

According to the quintile classification of the schools the participants in this research attended 

(DHET, 2015e; 2015f), 95% attended schools in quintiles 1 – 3. What is implied in this figure 



35 

 

is that for 95% of the participants, their encounter of measurement in the classroom context 

will most likely have been compromised by a lack of physical resources in the classroom, 

among other disadvantaging factors. 

2.6.2  All grade passes are not equal 

The only examinations that are “nationally standardised and externally evaluated” (Spaull, 

2012, p. 12) in South Africa are the Grade 12 NSC examinations. For this reason, Spaull 

(2012) argues that any grade pass below Grade 12 cannot be taken as a true indicator of 

learning. He further explains that there is a “high dropout rate in grade 11 and 12 largely 

because students are not acquiring the foundational skills they should be in earlier grades” (p. 

1). This creates challenges for those students as they move through to later grades as well as 

into further learning opportunities at TVET colleges. 

The following figure illustrates the average Grade 8 level results for 24 middle income 

countries. It shows the vast difference in mathematics performance of South African Grade 9 

learners attending schools in quintiles 1 to 3 when compared to learners attending schools in 

quintiles 4 and 5.  

Figure 2.5 Average grade 8 mathematics test scores for middle-income countries 

participating in TIMSS 2011 (+/- 95% confidence intervals around the mean) 

From Spaull (2013, p. 18) 
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South Africa was one of only three countries whose Grade 9 learners completed this Grade 8 

level assessment. Despite the fact that the learners were a grade level higher than the 

assessment was designed for, South Africa’s score placed it in the bottom three countries. 

South African quintile 1 and 2 schools performed the poorest in mathematics when compared 

to all middle-income countries assessed (Mullis et al., 2012). Quintile 5 school results were 

more than 120 points higher than quintiles 1 and 2 results, which would place these schools 

tenth of the twenty-four countries. This difference extends to 140 points when comparing 

these schools to independent schools, which would place independent South African schools 

at 5th out of these twenty-four countries. 

As Spaull (2013) further explains, “the average quintile one and two Grade 9 pupil in South 

Africa is three years’ worth of learning behind the average quintile 5 pupil in mathematics” 

(p. 18). Therefore, where students have not achieved their NSC, it needs to be noted that one 

student’s achievement of a particular grade level may not be comparable to another. In fact, if 

Spaull (2013) is accurate, for some students their true learning is three years behind the grade 

level they attained before entering the NC(V). 

2.6.3  Acknowledging prior knowledge  

While the diversity of students entering the NC(V) at Level 2 makes it difficult to establish 

“level and prior experience of learning” (Haggis, 2006, p. 522), it is more productive to 

acknowledge that these individuals do arrive with a great diversity of experience that could be 

capitalised on (McAuliffe, Hargreaves, Winter & Chadwick, 2008). It is this which drives the 

current research, that attempts to establish the nature of the measurement conceptualisations 

NC(V) students enter the course with.   

The questions we ask need to change to “what are the features of the curriculum, or of processes 

of interaction around the curriculum, which are preventing some students from being able to 

access the subject?” (Haggis, 2006, p. 526).  However, while it needs to be recognised that 

these students possess prior knowledge, we have yet to determine how such knowledge is 

structured.  

When seeking to explore adult students’ prior knowledge, it is necessary to gather background 

data that includes the highest school grade passed. This does give some indication of their 

prior experience in learning measurement. As has been mentioned, it also needs to be noted 

that this is not necessarily a true reflection (Spaull, 2012).   
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For the sample of students participating in this research, the fact that 95% attended schools in 

quintiles 1 – 3 implies that Spaull’s (2013) claim that the average learner in lower quintile 

schools could be as much as three years behind in their learning should be kept in mind. 

2.7 MEASUREMENT LEARNING ACROSS CURRICULA 

Measurement is “a necessary foundation for much of mathematics and…many of the real-

world applications of mathematics are measurement-related” (Preston & Thompson, 2004, p. 

437). It is also an area of mathematics that many students find particularly challenging (Preston 

& Thompson, 2004). Large scale international studies bear this out, with the international 

average for measurement being the second lowest of the mathematical strands assessed at the 

4th Grade level in the most recent TIMSS (Mullis et al., 2012). The international average for 

this strand was below 50% (Mullis et al, 2012, p. 460).  

This challenge was also apparent when examining the 2014 ANA results for the Intermediate 

Phase (Grades 4 – 6) and Grade 9 (DBE, 2014a). For all grades assessed, components of 

performance on measurement tasks were listed as one of the ‘areas of weakness’ and 

measurement was the content area in which learners performed the poorest (DBE, 2014a). The 

average achieved for this content area per grade was: 13% (Grade 4); 31% (Grade 5); 32% 

(Grade 6) and 8,6% (Grade 9).   

2.7.1 Measurement as crucial to engineering practice 

The mathematics education context of this research is measurement learning. Its importance 

lies in the fact that achievement in measurement is crucial to engineering practice, and as such 

is listed by ECSA (2014) as one of the engineering functions in which candidates need to 

demonstrate competency to be considered for promotion to professional status. As previously 

mentioned, these engineering functions include: “conceptualisation, design and analysis, 

specification, tendering and adjudication, manufacturing, project and construction 

management, commissioning, maintenance, measurement [emphasis added] and testing” (p. 

8). In addition, it appears as a specifically named component of the definition of a trade: 

“Measure [emphasis added] and do fault finding on processing, manufacturing, production 

and/or technical machinery and equipment to apply corrective or repair actions” (RSA, 2012, 

p. 17). 
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In NC(V) Engineering, measurement is included in the Mathematics curriculum, as well as 

being specified in learning outcomes of the specialised engineering subjects from Levels 2 to 

4. Examples include: 

Automotive Repair and Maintenance, Level 4: “Use appropriate measuring 

instruments to measure parts according to manufacturer’s procedures and record 

the actual measurements” (DHET, 2015b, p. 8) 

Fitting and Turning, Level 4: “Measure and test replacement parts and evaluate 

performance” (DHET, 2015c, p. 6) 

Welding, Level 4: “Establish welding parameters and conform to requirements” 

(DHET, 2015d, p. 8) 

Applied Engineering Technology, Level 4: “Consider the mass of matter with 

reference to its direct relationship to friction and the force required for motion” 

(DHET, 2007, p. 10) 

2.7.2 Expected trajectory of measurement learning  

Students’ formal introduction to measurement starts in Grade R (DBE, 2011e), but for the 

purposes of this discussion, measurement learning will be mapped from the Intermediate Phase 

[IP] (Grades 4 – 6) through the Senior Phase [SP] (Grades 7 – 9) and on to the Further 

Education and Training [FET] band (Grades 10 – 12). As the focus of the research is on prior 

knowledge, this mapping serves to illustrate the expected prior learning that students would 

have been exposed to.  

Specifically, measurement of length, area, volume and speed are considered as they are the 

concepts around which the tasks in this research are based. Flow rate, another focus in this 

research, does not feature in any of these curricula, hence its absence in these maps. Five 

Appendices (E, F, G, H and I) provide the curriculum maps referred to in this section.  

Where reference is made to ‘measuring’, it is the practical use of equipment to measure physical 

quantities that is referred to. Where reference is made to ‘calculation’, the use of formulae and 

definitions to calculate a measurement, in the absence of the object to which the measurement 

applies, is referred to.  
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2.7.2.1 Measurement learning in the Intermediate and Senior Phases 

Appendix E provides a mapping of measurement learning from Grades 4 to 9, as well as a 

comparison between these and the ABET Level 4 qualification. This qualification is at NQF 

Level 1 and is therefore equivalent to Grade 9.  

While measurement, per se, is the content area carrying the smallest weighting for all grades 

in the IP and SP (DBE, 2011b; 2011c), its importance cannot be overemphasised because of its 

critical relationship with the interrelated concepts of fractions, decimals and percentages which 

abound in other sections of the curriculum (see DBE, 2011b; 2011c). These concepts are 

internationally and locally acknowledged to be key areas of difficulty for learners, as they 

require strong number sense as well as a connected understanding of these concepts (Mullis et 

al., 2012; DBE, 2014a). Measurement contexts provide particularly fertile ground for 

developing such connected understanding.  

In the IP, measurement problems provide an important real-world context through which 

learners work with fractions and decimals (DBE, 2011b). Proficiency in working with 

fractions, decimals and percentages in IP can be supportive of measurement learning, but 

similarly, measurement activities and problem-solving can act as a context in which work with 

fractions and decimals can improve (Lamon, 2012). 

Despite this, over the entire IP only 18 weeks, out of a possible 130, are devoted to 

measurement (DBE, 2011b). This is understandable due to the weighting of the content, but it 

is clear from examining the results of country-wide assessments (e.g. DBE, 2014a) that 

intervention is required to improve learners’ performance. This intervention needs to be time 

efficient and sufficiently powerful and thus requires careful research into possible means of 

doing so. 

In Grades R to 3, the Foundation Phase [FP], the learners’ concept of measurement is developed 

as they work with different physical objects (DBE, 2011e). Physical measurement remains 

central in IP, but begins to blend with the more symbolic use of formulae. It is emphasised in 

the curriculum documents that no work with general rules or formulae should be done in Grades 

4 and 5 (DBE, 2011b). In Grade 6 learners begin to encounter the use of formulae to calculate 

perimeter, area, surface area and volume (DBE, 2011b) as they investigate the relationships 

between these measurements (see Appendix E).  
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By Grade 7, the beginning of SP, learners are almost exclusively using formulae to calculate 

perimeter, area, surface area and volume (DBE, 2011c). It is at this point that there is a risk of 

focussing on the procedure of using formulae without maintaining the link to the real-world 

context to which these problems refer. Physical measurement of perimeter, area, surface area 

and volume is replaced with the requirement that students use appropriate formulae to calculate 

these quantities (see Appendix F). The range of shapes and objects increases from grade to 

grade. In Grade 7 it is only the area of squares, rectangles and triangles that are calculated. By 

Grade 9 students are also required to work with polygons and circles.  

There is a clear shift in focus from IP to SP. In IP, physical measurement of quantities is central, 

whereas, from the very beginning of SP the focus shifts to the symbolic use of formulae. 

2.7.2.2 Measurement learning in ABET Level 4  

Students enrolled in ABET Level 4 select to either study Mathematical Literacy or 

Mathematics and Mathematical Sciences [MMS]. In Mathematical Literacy, measurement 

outcomes are weighted at 44% of the total credits and of the allocation of marks in the final 

summative assessment (DHET, 2013a); in MMS, these outcomes are weighted as 14% of the 

total credits and the total marks for their final summative assessment (DHET, 2013b). ABET 

Level 4 students can move on to TVET colleges to pursue an NC(V) qualification as they hold 

a qualification of the same NQF level as a Grade 9 learner.  

While Mathematical Literacy maintains a dual focus on calculation using formulae as well as 

the use of measuring instruments to measure quantities, MMS focuses solely on the calculation 

of quantities using formulae. These outcomes are summarised in Appendix E. 

2.7.2.3 Measurement learning in the FET Band 

Grade 9 marks the end of compulsory schooling in South Africa, and is the point at which 

learners can elect to move to a TVET college to study towards an NC(V) qualification. Learners 

who choose to remain in school move into the FET band and work towards the achievement of 

the NSC. These learners are afforded the choice between the subjects Mathematics and 

Mathematical Literacy. Appendix G provides a broad comparison of measurement learning for 

these two subjects. 
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In Mathematics, measurement does not continue through the whole phase as a distinct topic. 

In Grade 10, spheres, pyramids and cones are added to the range of objects from Grade 9 for 

which volume and surface area are to be calculated. This is done by the application of given 

formulae (DBE, 2011d). In Grades 11 and 12, measurement knowledge is applied in the context 

of trigonometry, analytical geometry, Euclidean geometry and calculus (see Appendix G). 

In Mathematical Literacy, measurement is an important “application topic” (DHET, 2011a, p. 

12) which is weighted at 20% (+/- 5%) in terms of the allocation of teaching hours and allocation 

of marks in the final summative assessment. Appendix H provides a more detailed breakdown 

of the skills that are examined in this research: conversions, length/distance, area, perimeter 

and volume. 

The curriculum makes a distinction between “basic topics” (DHET, 2011a, p. 12), comprising 

“elementary mathematical content and skills that learners have already been exposed to in 

Grade 9” (p. 13), which is revised during the application of these skills in the topics Finance, 

Measurement, Representations of the Physical World, Data Handling and Probability. Each 

year it is the difficulty of the calculations that increases, and the type of context in which they 

are applied that changes (see Appendices G and H). 

2.7.2.4 Technical Mathematics 

In technical high schools, students are offered Technical Mathematics for Grades 10 to 12. The 

aim of this subject is to “apply the science of mathematics to the technical field where the 

emphasis is on application [emphasis in original] and not on abstract ideas” (DBE, 2014b, p. 

12) as well as to “provide learners at technical schools an alternative and value-adding 

substitute for Mathematical Literacy” (p. 10).  

An outline of the measurement outcomes in this subject, alongside those for Grades 10 – 12 

Mathematics and Mathematical Literacy, is provided in Appendix G. Unlike FET Mathematics, 

measurement appears as a distinct topic from Grade 10 to 12.  

2.7.3 Measurement learning in NC(V) Level 2 Engineering programmes 

Mathematics is a compulsory subject for students in any of the NC(V) engineering 

programmes. In Level 2, measurement appears as a distinct topic, with two main subject 

outcomes: measuring physical quantities and calculating physical quantities. Students are 
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required to make use of rulers and protractors in measuring physical quantities. The range of 

shapes and objects for which quantities are to be calculated adds parallelograms, trapeziums, 

hexagons and hexagonal prism to the range required in Grade 9 (DBE, 2011c; DHET, 2011). 

In addition, it is specified that students should be able to use Système International [SI] units 

appropriately. 

The students participating in this study had an additional compulsory subject: Engineering 

Technology (DHET, 2012b). This subject includes two topics specifically addressing 

measurement, the first addressing the practical use of precision measuring equipment, and the 

second concerning the use of SI units. 

The emphasis in Engineering Technology is on physical measurement of quantities rather than 

their calculation as is the case in Mathematics. Students are taught to use engineering precision 

equipment - both generic and specific to their field of study. The application of these skills 

includes deciding on the correct precision measuring instrument for a task, using marking off 

equipment, and producing accurate drawings in two-dimensional views (DHET, 2012b). 

The depth of knowledge of SI units is also greater. The subject outcomes cover identification 

of basic units and defining the physical quantities they measure (DHET, 2012b). In addition, 

students perform conversions between units as well as derive new units based on relationships 

between the SI units and the quantities they represent. 

2.7.4 Summary of measurement foci per curriculum 

The measurement focus of each curriculum can be classified according to its relative emphasis 

on physical measurement, using measuring instruments, or calculation of measurements, in the 

absence of the object to which the measurement applies, using definitions and formulae. Table 

2.3 provides a summary of these foci: 
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Table 2.3 Summary of measurement foci per curriculum 

Grade 9 The use of physical measurement in earlier grades 

progresses to exclusive calculation using formulae by 

the end of Grade 9 

ABET Level 4 

Mathematical Literacy 

Dual focus on physical measurement and calculation 

using formulae 

ABET Level 4 Mathematics 

and Mathematical Sciences 

Exclusive focus on calculation using formulae 

NSC Mathematics Exclusive focus on calculation using formulae 

NSC Mathematical Literacy Dual focus on physical measurement and calculation 

using formulae 

NSC Technical 

Mathematics 

Exclusive focus on calculation using formulae 

NC(V) Mathematical 

Literacy 

Dual focus on physical measurement and calculation 

using formulae 

NC(V) Mathematics Exclusive focus on calculation using formulae 

NC(V) Level 2 Engineering 

Technology 

Exclusive focus on physical measurement using 

precision measuring equipment 

 

Certain subjects focus exclusively on one, as is the case with NC(V) Engineering Technology’s 

exclusive focus on physical measurement, and NC(V) Mathematics’ exclusive focus on 

calculation using formulae. Mathematical Literacy (ABET Level 4, NSC and NC(V)) is the 

only subject to maintain a dual focus on physical measurement and calculation using formulae. 

2.8 SUMMARY 

This chapter has provided a detailed description of the broad educational context in which this 

research is situated as well as a detailed outline of the positioning of the NC(V) qualification 

regarding the NQF and the workplace. Furthermore, a mapping of measurement learning across 

South African curricula was explicated as a means of placing the measurement learning in the 

NC(V) programme within the context of what students should have been exposed to during 

their prior schooling. 
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The rationale for the positioning of this research in this specific context, as well as the 

knowledge that it aims to contribute, was emphasised throughout.  
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CHAPTER 3 

THEORETICAL FRAMEWORK 

3.1 INTRODUCTION 

The focus of this research is on the prior knowledge of measurement that NC(V) Engineering 

students hold as they begin their studies. Insight into students’ existing measurement 

conceptualisations, as evident in their engagement in mediated measurement tasks, is sought. 

These conceptualisations of measurement are the result of prior learning and form the ‘prior 

knowledge’ that this research aims to reveal. The research seeks to establish what this prior 

knowledge is, as well as its genesis and how it might be built on. Both Piaget and Vygotsky 

offer theories that are useful when considering the development of measurement 

conceptualisations, and both regard prior knowledge to be important in this regard. For this 

reason, their theories form a guiding framework to this research, although in slightly differing 

ways. 

Both theorists contend that “the learner is not a passive recipient of knowledge but that 

knowledge is constructed by the learner” (Rowlands & Carson, 2001, p. 1) as well as viewing 

this knowledge as actively constructed in response to social and physical interactions. 

However, Piaget and Vygotsky’s perspectives on the development of thinking in concepts 

differ in their emphases. While Piaget (1964) considered cognitive development to be “a 

spontaneous process tied to embryogenesis” (p. 20), and that maturity of mental functions is 

necessary for learning to take place, Vygotsky (1978) considered learning and development to 

be inextricably linked and words and the social milieu to be the drivers of the development of 

conceptual thinking. 

It is important to be aware of these differences, however, this research does not concern itself 

with Piaget and Vygotsky’s global orientations to teaching and learning. Rather, it draws on 

the psychological concepts developed by each of them in order to construct an appropriate 

conceptual framework for this particular research focus. 

Piaget’s theory, and the neo-Piagetian work of David Tall, provide a particularly useful 

analytical framework for understanding mathematical concept development. This literature 

review opens with an outline of their theories which is followed by a discussion of 

mathematical understanding in general, and measurement in particular. 
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Vygotsky’s work finds its application in the methodology of this research. His theory regarding 

the development of higher mental functions, including his notions of mediation and the zone 

of proximal development [ZPD], informed the design of the means of assessing measurement 

conceptualisation: dynamically assessed task-based interviews. The second part of the 

literature review, therefore, provides an outline of his developmental theory, taking care to 

highlight where he emphasises the importance of prior knowledge and how it speaks to 

measurement conceptualisation.  

The outline of Vygotsky’s work is followed by a more in-depth discussion of dynamic 

assessment. The task-based interviews were designed to dynamically assess the current 

measurement conceptualisations of students, based on their engagement with mediated 

measurement tasks. This approach allows an interviewer insight into the existing measurement 

conceptualisation of the student, but in addition, the task is mediated such that it becomes a 

learning opportunity. Mediation and dynamic assessment will be further explained in that part 

of the chapter. 

Prior to closing the chapter, there is a section in which the contributions of Piaget and Vygotsky 

are again discussed. Having established that both theories have been used in the research 

design, it is necessary to make explicit the possible pitfalls in doing so, and to provide a full 

explanation of the way in which this research avoids these incompatibilities.   

The chapter closes with a synthesis of the theories reviewed and an explanation of the resulting 

framework of mediated measurement interaction that provides structure to this research.  

3.2 PIAGET AND FUNDAMENTAL THINKING ABOUT MEASUREMENT 

Piaget (1964; 1972) explains that the development of mental functions occurs slowly from birth 

to the ages 12 – 15 through four stages: sensorimotor; preoperational; concrete operational and 

formal operational. He argued that these stages are “extremely regular and comparable to the 

stages of embryogenesis” (Piaget, 1964, p. 20), differing only in their speed of development 

depending on the individual and their social environment. While he emphasises “endogenous 

factors of construction” (Piaget, 1972, p. 44), he acknowledges the influence of the physical 

and social environment on the individual’s development.  

His theory provides a useful structure for understanding the development of mathematical 

conceptualisations. In its focus on operations on objects and interaction with the physical 
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world, it provides a particularly relevant perspective when considering the measurement of 

attributes of objects as well as relational measurements. In addition, his insistence that an 

understanding of the prior knowledge that a child brings to a classroom is important, resonates 

with the goals of this research. 

What follows is an explication of Piaget’s stage theory, with reference to its utility in 

understanding the conceptualisation of measurement. 

3.2.1  Piaget’s four stages of development 

Piaget’s (1964) theory of the development is centred on the notion of an “operation” (p. 20). 

He contends that one needs to act on an object to come to a knowledge of it, and that one comes 

to an understanding of how the object is constructed by modifying and transforming it and 

arriving at an understanding of that transformation process. Each stage in this development 

sequence is reliant on the achievement of the previous stage. What is achieved in one stage 

becomes the prior knowledge and conceptualisation on which the next stage is built. 

He explains that “an operation is thus the essence of knowledge; it is an interiorised action 

which modifies the object of knowledge” (p. 20). This transformation is also necessarily 

reversible, for example, adding and subtracting or pouring liquid from one glass into another. 

Piaget (1964) makes mention of measurement as one type of operation on an object that allows 

the individual to “get at” (p. 20) the structures of the object of operation.   

Conservation of quantity, achieved in the preoperational stage, is an essential precursor to being 

able to measure attributes of objects (Feikes, Schwingendorf & Gregg, 2008). Furthermore, if 

conservation is absent, then transitivity cannot yet be achieved (Piaget, 1970). Transitivity 

refers to the ability to order quantities according to their measure (Piaget, 1970), for example, 

understanding that if A < B and B <  C, then A < C. As with conservation, this is similarly a 

necessary precursor to the ability to measure (Piaget, 1970). 

With the logic of reversibility of operations, certain stable structures begin to form, including 

the concept of measurement of lines and surfaces (Piaget, 1972). Reasoning remains closely 

linked to concrete objects but can be classified as operational (Piaget, 1972).  At this point, the 

learner is as yet unable to reason about measurement if the concrete object that holds the 

relevant measurement attribute is not present. 
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Once able to use “hypothetic-deductive operations [of] propositional logic” (Piaget, 1964, 

p.21) the individual is considered to have reached the formal operational stage. At this stage in 

their measurement learning, the learner will have the prior knowledge and requisite 

conceptualisation to begin to apply formulae to calculate measurements, and to learn to do so 

in the absence of the concrete object to which the measurement refers. 

3.2.2  Piaget and learning 

Piaget (1964) claims that “[l]earning is subordinated to development and not vice-versa” (p. 

26). He recognises that this is an idea that is contested by researchers who claim to have had 

success in teaching operational structures, but queries whether this learning endures. He 

explains that when a structure develops as the child experiences their physical world and 

progresses through the four developmental stages naturally, it will last throughout the child’s 

life (Piaget, 1964).  

There are “continuing structuring processes in the child’s developing mental activity” (Piaget, 

1962, p. 6), which Piaget refers to as spontaneous concepts. He distinguishes them from non-

spontaneous, or learned, concepts, which are acquired in formal education. Rather than viewing 

the spontaneous concepts as being an obstacle to overcome in formal schooling, Piaget insists 

that “formal education could gain a great deal…from a systematic utilisation of the child’s 

spontaneous mental development” (p. 7).  

Piaget (1964) was asked, at the conclusion of a lecture he had given, whether or not “the 

development of stages in children’s thinking could be accelerated by practice, training, and 

exercise in perception and memory” (p. 27). He answered in the negative and explained this in 

terms of figurative and operative aspects of cognitive function. He regards perception, mental 

imagery, imitation, etc. as being figurative aspects of cognition and actions or operations that 

lead to transformations as the operative aspect (Piaget, 1964). Because children in the 

sensorimotor or preoperational stages do not yet understand transformations and operations, he 

regards any exercise of perception and memory as reinforcing the figurative rather than urging 

the cognitive development on to the next level (Piaget, 1964). 

His argument, therefore, is that the required prior learning needs to be in place for meaningful 

further development and learning to take place. This can be applied to the mathematics 

classroom. Requiring learners to practice substituting values into formulae to calculate 

measurements may result in their calculation of the correct value. However, if they have not 
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formed an accurate and stable conceptualisation of that object and its attributes, these solutions 

will be empty of meaning. The learner cannot be forced, through practice, into conceptual 

development. The requisite prior learning needs to be in place. 

3.2.3  Some critiques of Piaget’s theory 

An often-cited criticism of Piaget’s work is that his proposed age norms can be disconfirmed 

(Lourenço & Machado, 1996). Piaget’s (1964) theory does rest on physiological maturation as 

a continuation of embryogenesis to explain cognitive development but he is not, however, of 

the opinion that this is the only influence. He acknowledges “the role of experience of the 

effects of the physical environments on the structures of intelligence [as well as] social 

transmission” (1964, p. 21), therefore also acknowledging that the physiological maturation 

upon which his age norms are derived are not necessarily accurate for all physical and  social 

environments. Replication of his experiments across the world revealed that, while the ordering 

of his stages remained the same regardless of country, the ages at which children achieve 

preoperational, concrete operational and formal operational thought varied (Piaget, 1964). 

Piaget’s theory, therefore, is not about what age each developmental stage is reached, but rather 

about its sequence (Lourenço & Machado, 1996, p. 144).  

A recurring criticism of Piaget’s work is that he does not consider the influence of social factors 

in accounting for development (Lourenço & Machado, 1996). That he makes no reference to 

an individual’s self or personality and that he has extended his theory of forms of thinking to 

encompass all subjects irrespective of culture, are two of the criticisms levelled at his work 

(Lourenço & Machado, 1996). Piaget (1972) does, however, make it clear that, while not 

exclusively the result of social transmission, the: 

formation and completion of cognitive structures imply a whole series of exchanges 

and a stimulating environment; the formation of operations always requires a 

favourable environment for ‘co-operation’, that is to say, operations carried out in 

common (e.g. the role of discussion, mutual criticism or support, problems raised 

as the result of exchanges of information, heightened curiosity due to the cultural 

influence of a social group, etc.) (p. 44) 

Vygotsky (1926/1986) criticised Piaget on this point. Piaget’s (1962) response upon reading 

this was to clarify that:  

All logical thought is socialised because it implies the possibility of communication 

between individuals. But such interpersonal exchange proceeds through 
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correspondences, reunions, intersections, and reciprocities, i.e., through 

operations…[a]ctions, whether individual or interpersonal, are in essence co-

ordinated and organised by the operational structures which are spontaneously 

constructed in the course of mental development (p. 11). 

Piaget agreed that the environment, including the social environment, plays a role in cognitive 

development, but viewed interaction with this environment as being operational in itself. The 

interaction would therefore be of a nature fitting the developmental level of the child and would 

not shape the development itself. 

3.2.4  Piaget in the context of this research 

Piaget’s relevance in this research is for the value his stage theory has in understanding the 

development of thinking in concepts, particularly measurement concepts. The ability to 

measure object attributes and to arrive at accurate conceptualisations of them, is reliant on the 

individual having interacted with their physical environment and operated on objects. Their 

eventual ability to apply hypothetic-deductive reasoning allows the measurement of object 

attributes in the absence of an object, and the conceptualisation of more complex measurements 

that represent relationships, such as rate. This is, however, dependent on the achievement of 

earlier stages of thought and prior knowledge and constructed conceptualisations derived from 

experiences with the environment.  

3.3 DAVID TALL AND THE DEVELOPMENT OF MATHEMATICAL THINKING 

David Tall’s (2013b) neo-Piagetian work, detailing the development of mathematical thinking 

and three worlds of mathematics, is particularly useful in attempting to understand the 

development of measurement conceptualisations as well as understanding what prior 

knowledge is required to perform certain measurement tasks. As a student of Richard Skemp, 

Tall (2013b) was also influenced by his notions on the formation of mathematical concepts. 

This section opens with an outline of Skemp’s (1989) work in that regard before proceeding 

with a description of Tall’s (2013b). 

3.3.1 Skemp and the formation of mathematical concepts 

Skemp (1989) defines concepts as representing “not isolated experiences, but regularities 

abstracted from these” (p. 52). Learning is therefore about “discover[ing]…these regularities 

and organising them into conceptual structures which are themselves orderly” (p. 52). He writes 
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that the abstract nature of mathematics means that, from the earliest stages, conceptual learning 

is necessary if learners are to successfully move toward more abstract abilities. 

In describing successive abstraction, Skemp (1989) distinguishes between primary and 

secondary concepts. Primary concepts he describes as being derived from sensory experiences, 

while secondary concepts are dependent on primary concepts for their definition (Skemp, 

1989). An example would be ‘rectangle’ and ‘triangle’ which arise from an experience of such 

shapes in the environment and as such are primary concepts (Skemp, 1989). The definition of 

the term ‘shape’, which encompasses these two primary concepts, is a secondary concept 

(Skemp, 1989).  

Secondary concepts can be further divided into lower-order and higher-order concepts. That 

the shapes hold further ‘attributes’, e.g. perimeter or area, would be a higher-order, secondary 

concept. As an object in the real world, a cube is a primary concept, but the fact that it belongs 

to a group called ‘prisms’ is a secondary concept. Further to this, that the cube has the attributes 

of surface area and volume is a higher-order secondary concept. In measurement, therefore, 

where the task is to measure attributes of objects, the understanding of which is built on an 

abstraction of primary concepts and lower order secondary concepts, conceptual learning is 

essential. 

Skemp (1989) writes that, “[t]he process of abstraction involves becoming aware of something 

in common among a number of experiences, and if a learner does not have available in his own 

mind the concepts which provide these experiences, clearly [they] cannot form a new higher 

order concept from them” (p. 62).  

Symbols, argues Skemp (1989), can aid the synthesis of ideas and concepts for a learner. They 

are “mental objects about which and with which we can think…[or] physical objects – marks 

on paper, sounds – which can be seen or heard” (p. 90). Once attached to a mathematical 

concept, symbols facilitate one’s own access to the concepts as well as allowing for 

communication between individuals. 

3.3.2 David Tall and the development of mathematical thinking 

According to Tall (2006), the development of mathematical thinking requires “powerful ideas 

to be compressed into thinkable concepts that apply in new situations” (p. 1). Flexibility in 

mathematical thinking arises as a learner builds on experiences that influence how they 
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interpret new ideas (Tall, 2013a), as is argued by Piaget (1964) and Skemp (1989). How 

learners then complete a mathematical task is based on an individual learning trajectory built 

on met-befores. A met-before is defined as a “mental structure that we have now as a result of 

experiences we have encountered before” (Tall, 2013a, p. 5). These met-befores can, 

understandably, be either supportive or problematic (Tall, 2013a). It is therefore important to 

explore the prior knowledge students have about measurement in order to inform the way 

forward in terms of their learning of it as is the aim of this research. 

3.3.2.1 Proceptual thinking 

Gray and Tall (1994) provide a multi-faceted explanation of the development of thinking in 

concepts that is useful in considering mathematical expertise. They introduced the idea of a 

procept as an “amalgam of process and concept” (p. 116). Symbols act as pivots, which can 

switch from a process to a concept: adding two numbers would be a process (e.g. 3+4), whereas 

the concept would be that the sum of 3+4 is 7 (Pegg & Tall, 2005). This proceptual fact is not 

the same as a rote learned fact. Proceptual understanding is characterised by a “rich inner 

structure which may be decomposed and recomposed to produce derived facts” (Gray & Tall, 

1994, p. 118). 

3.3.2.2 The development of mathematical thinking 

Tall (2008, p. 1) outlines what he terms the “three worlds of mathematics”: the conceptual-

embodied world; the proceptual-symbolic world and the axiomatic-formal world. Conceptual 

embodiment arises as innate mental structures develop with brain maturation, particularly 

“recognition of patterns; repetition of sequences of actions and the [use of] language to describe 

and refine how we think” (p. 6). Knowledge structures are built and categorised according to 

what we think about and perceive. This is facilitated by our practical interaction with the 

physical world, as is argued by Piaget (1964). 

Growing out of the embodied world is the proceptual-symbolic world in which physical actions 

and experiences become symbolised as “processes to do and concepts to think about” (Tall, 

2008, p. 7). Reliant on the cognitive development in these two worlds is the formal-axiomatic 

world where formal concepts are based on linguistic definitions that will have been formed 

during prior developmental stages (Tall, 2008). This is the most sophisticated level of 

mathematical thinking. 
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Tall (2013b, p. 13) provides a model of three different ways of thinking in mathematics: 

 (Conceptual) embodiment – builds on human perceptions and actions developing 

mental images that are verbalised in increasingly sophisticated ways and become 

perfect mental entities in our imagination 

 (Operational) symbolism – develops from embodied actions into symbolic procedures 

of calculation and manipulation that may be compressed into procepts to enable flexible 

operational thinking 

 (Axiomatic) formalism – builds on formal knowledge in axiomatic systems specified 

by set-theoretic definition, whose properties are deduced by mathematical proof. 

These encompass three spheres of mathematics, those of practical mathematics, theoretical 

mathematics and formal mathematics. Formal mathematics is described by Tall (2013b) as that 

encountered at university level. This would be encountered by those students wishing to pursue 

engineering as a profession. For NC(V) students preparing initially to enter the workforce as 

artisans, the first two worlds are most relevant and form the focus of this research. Tall (2013a) 

describes these as comprising natural mathematics, which is based on “perception, operation 

and imagination” (p. 2).  

Tall’s (2013b) definition of practical mathematics is that which involves “recognition and 

description of ideas in space and shape and the practical experience of arithmetic based on 

growing familiarity with the operations and the effects of those operations” (p. 30). Physical 

measurement of objects, using measuring equipment would constitute practical mathematics. 

Theoretical mathematics is defined as involving the use of the properties that have been 

observed as “definitions that can be used as the basis of deduction and proof” (p. 30). Once 

learners have been introduced to the use of formulae to calculate various measurements, in the 

absence of the object to which the measurement refers, they would be able to engage in 

theoretical mathematics.  
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The figure below shows Tall’s (2013a, p. 2) organisation of these ideas: 

Figure 3.1 Tall’s organisation of mathematical thinking and development 

Tall (2013a, p. 2) 

There are three directions in which Tall (2013b) claims the development of mathematics 

proceeds. First, from the embodied world in practical mathematics to the embodied formal 

world of theoretical mathematics; secondly, from the symbolic world in practical mathematics 

to the symbolic formal world of theoretical mathematics, and lastly, from embodiment to 

symbolic formal work. These are indicated by the arrows on Figure 3.1. This notion of 

progression is reflected in the expected learning trajectory regarding measurement in South 

African curricula. Learners first encounter measurement in a strongly embodied way, and work 

in increasingly abstract and symbolic ways with measurements as they progress through their 

schooling. 

3.3.3 Applying Tall’s theory to measurement 

Tall’s (2013b) theory is a useful lens with which to view both the expected learning trajectory 

for South African learners and students in terms of their measurement learning within the 

confines of the school curricula, as well as the measurement activities themselves. In Tall’s 

(2013b) own words, “measurement requires the blending of embodiment and symbolism” (p. 

188). It develops initially from embodied actions, e.g. the physical measuring of length, to 

where learners are expected to apply symbolic formal thought to calculate measurements in the 

absence of the object to which the measurements apply.  
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3.3.3.1 Classifying measurement tasks 

A mapping of the South African mathematics curricula was provided in Chapter 2 (see Section 

2.7 and Appendices E - I), and the foci of each curriculum classified as either exclusively 

focused on the use of physical measurement or the use of formulae to calculate measurements. 

In some cases, there was a dual focus. 

Figure 3.2 provides examples of assessment items from the 2015 ANAs for Grade 4 and Grade 

5 (DBE, 2015a; 2015b). It is evident that the work, while being assessed in a pen and paper 

test, is closely linked to physical measurement. The Grade 5 example requires that learners 

know the definition of a rectangle and the definition of perimeter, but does not require the use 

of any formula. It does, however, provide evidence of a slight move toward more symbolic 

understanding, while requiring function in the conceptual embodied world. 

Figure 3.2 Grade 4 (left) and Grade 5 (right) ANA test items  

(DBE, 2015a, p. 7; 2015b, p. 11) 

In Figure 3.3 an excerpt from the Grade 6 2016 workbook issued by the DBE (2016a). It shows 

a decisive shift to symbolic work in measurement., and it is clear that learners are starting to 

use formulae to calculate measurements. The Grade 7 ANA item, in Figure 3.4, reveals that 

the use of this formula to calculate the volume of a rectangular prism should have been 

established by the end of that grade. Grades 6 and 7 maintain a dual focus, but with a shift 

evident towards formal symbolism. 
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Figure 3.3 Introducing the calculation of volume in a Grade 6 workbook  

(DBE, 2016a, p. 156) 

Figure 3.4 Grade 7 ANA test item  

(DBE, 2015c, p. 14) 

It can be seen in the Grade 9 ANA item below (Figure 3.5), as well as the Grade 12 Mathematics 

NSC examination item (Figure 3.6), that learners are required to work in the symbolic formal 

world using definitions of objects and operations to calculate measurements. In the Grade 9 

items, the Theorem of Pythagoras and the definition for the area of a circle are required, and 

the Grade 12 NSC item requires the application of the definitions for the calculation of the 

volume of a cone in a practically-oriented calculus problem. 

 



57 

 

 Figure 3.5 Grade 9 ANA test items 

(DBE, 2015d, pp. 18-19) 

Figure 3.6 Grade 12 Mathematics NSC examination item 

 (DBE, 2015g, p. 9) 

The NSC Mathematical Literacy (DHET, 2016b) examination paper provides an excellent 

example of a problem which maintains a link to the conceptual embodied world while requiring 

students to operate in the symbolic formal world. It reveals the dual nature of the focus in NSC 

mathematical literacy, but also provides an illustration arguing for the point that real-world 

measurement requires a blend of conceptual embodiment and operational symbolism. The 

practical use of measurement in the real world can otherwise not be realised.  
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Figure 3.7 Grade 12 Mathematical Literacy NSC examination item 

(DBE, 2016b, p. 10) 
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3.3.3.2 Using Tall to understand the measurement learning trajectory 

The following flow diagram shows the path from Grade 4 to the FET Band, comprising the 

NSC subjects as well as the NC(V) subjects. It classifies the focus of each grade according to 

Tall’s (2013b) three worlds. Where the focus of a particular grade is exclusively on physical 

measurement, it is classified as ‘conceptual embodiment’; where there is a dual focus on 

physical measurement and calculation using formulae, it is classified as ‘transitional/blend’ 

and if the focus is exclusively on calculation using formulae and definitions, it is classified as 

‘formal symbolism’. 

Figure 3.8 Applying Tall to the measurement learning trajectory in South African school 

curricula 

 

Regardless of the path taken, the trajectory proceeds from conceptual embodiment to 

increasingly symbolic and formal calculations. If we look back to Tall’s (2013b) model, and 

the diagonal developmental trajectory he proposed, it is worth noting that the embodied world 

becomes separated (see Figure 3.9). According to this model, once operating with formal 

symbolism alone, no link exists to the embodied world. 
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Figure 3.9 Tall’s diagonal development trajectory 

Tall (2013a, p. 2) 

The expected measurement learning trajectory established for South African learners (see 

Section 2.7) mirrors Tall’s (2013a) diagonal trajectory, thus similarly losing the link to the 

embodied world as students progress through the grades 

3.4  MEASUREMENT 

There is a distinction that needs to be drawn between spatial object measurement and more 

complex measurements that are required by engineers. The overwhelming focus at school level 

is on spatial object measurements. Objects possess attributes that can be measured directly, e.g. 

perimeter, area or volume and learners are taught how to physically and symbolically do so. 

Engineers, however, need to be competent in complex measurement and it is this about which 

there is very little research published.  

The dominant focus in spatial object measurement at school, and the fact that learners are not 

performing well in this, means that the learning and teaching of this type of measurement, at 

primary school level, has been the most obvious need regarding research in measurement 

education. This dominant focus, however, also means that engineering students are likely to 

encounter complex measurements for the first time late in their schooling if not only during 

their post-school qualification. 

This section will define object measurement, and explore each domain of measurement relevant 

to this research, including the more complex measurement of rate. 
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3.4.1  What is object measurement? 

Gooya, Khosroshahi and Teppo (2011, p. 709) define measurement as “the process of assigning 

a numerical value to an attribute of an object by comparing the attribute to some preselected 

unit”. Piaget, Inhelder and Szeminska (1960) explain that “to measure is to take out of a whole 

one element, taken as a unit, and to transpose this unit on the remainder of a whole: 

measurement is therefore a synthesis of subdivision and change of position” (p. 3). In order to 

do this, the learner “requires the understanding that (a) the size of the unit is conserved and (b) 

that the unit can be used iteratively” (Nunes, Light & Mason, 1993, p. 40). 

Measurement not only requires bodily movement and transposing of unit objects, it also 

requires representation of this change of position and linkage to reference points (Piaget et al., 

1960). If the length one rod (A) is measured with reference to a smaller rod (B), as depicted in 

Figure 3.10, the length measurement after iterating B along the length of A would be 8 small 

rods. The numeral 8 represents the change of position and the ‘small rod’ is the referent unit. 

Figure 3.10 Iteration of unit (B)  

A  

         

B         

 

Feikes et al. (2008) outline several key related underlying concepts of measurement that further 

clarify the process Piaget et al. (1960) are describing. These generalise across measurement 

domains: 

Iteration or repeating a unit: 

“Measurement involves learning to repeat a unit and the mental ability to place 

the unit end-to-end” (Feikes et al., 2008, p. 218). This includes leaving no gaps 

between successive units, and allowing no overlaps. 

Partitioning or subdividing: 

“Partitioning is the mental activity of slicing up an object into the same sized 

units” (p. 219).  
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Number and measurement (Measurement is more than counting): 

This refers to the understanding that “different numbers can be used to represent 

the same distance if one uses different units of measure” (p. 219) 

Transitivity and Conservation: 

Transitivity refers to the ability to order quantities according to their measure 

(Piaget, 1970), for example, placing different length segments in order from 

longest to shortest. Conservation, for example, of length means that if an object 

is moved or its parts rearranged, its length does not change (Piaget, 1970).  

Smith et al. (2011) summarises: “In measurement, a continuous quantity becomes discrete 

when we choose a suitable unit and iterate that unit to determine the number of copies to 

exhaust the quantity. Its measure is the count of those units” (p. 618).  

3.4.2  Units in measurement 

It is clear, from the definitions of measurement offered above that the notion of a unit is critical. 

Barrett et al. (2011, p. 638) notes that “comparative reasoning underlies every act of 

measurement” in that every time one measures, a particular object is related to another unit 

object, resulting in a measure in terms of the unit object.  

Barrett et al. (2011) highlight that students frequently have poorly formed unit concepts, and 

that while some may be able to use unit names accurately to label a quantity, they are often not 

able to provide an explanation of the meaning of this unit. They cite as an example students 

who are unable to make use of a broken ruler to measure the length of an object (Barrett et al, 

2011). Outhred and Mitchelmore (2000, p. 144) explain that how “units fit together spatially 

and how they may be counted systematically are unique to each domain of application”. There 

are certain quantities for which students experience particular difficulty in conceptualising the 

unit (Sarama & Clements, 2009). Sarama and Clements (2011) mention area and volume 

among these. Students count lengths when measuring area and count faces when measuring 

volume (Sarama & Clements, 2009). 

Interestingly, MacDonald (2011), in research conducted in Australia with children of 4 to 6 

years old, found that some of these children “were able to demonstrate equal partitioning of 

units and represent this in a spatially appropriate manner” (p. 487). There were children who 
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were even able to explain the purpose of the units in the measurement of the length of a piece 

of paper (MacDonald, 2011). Although these children would not yet have started formal 

schooling, the beginning of the development of the concept of units in measurement became 

evident, and was more sophisticated than expected (MacDonald, 2011). The findings suggest 

that should these developing conceptualisations be better understood, perhaps “in-school 

measurement learning [could be made] more relevant and meaningful” (p. 490) and later 

difficulty with unit concepts minimised. 

3.4.3  Rational numbers in measurement 

Lamon (2008) explains that when students start working with natural numbers, measurement 

takes its simplest form in the counting separable objects. When they begin to encounter rational 

numbers, the measurement of continuous quantities becomes possible (Lamon, 2008). This is 

done by segmenting the quantity to form whole units, then subdividing the whole units and 

iterating the resulting part units to determine the measurement. 

As Gooya et al. (2011, p. 710) point out, “units of measure can be used in fractional ways as 

well as [by] iteration of the whole unit”. Measurement of discrete, separable objects is easier, 

according to Yujing and Zhou (2005), as the units are already subdivided and all that is required 

is to count. Measurement of continuous quantities, however, is more difficult as “continuous 

amounts need to be segmented [or subdivided] into equal units before they can be enumerated” 

(p. 39). 

In subdividing the unit into fractional pieces, the degree of precision of the resulting 

measurement is increased (Gooya et al., 2011; Lamon, 2008). The density of rational numbers, 

that “there is an infinite number of fractions between any pair of fractions” (Lamon, 2012, p. 

213), or rather that “between any two numbers there is always an intermediate number, which 

implies that there are infinitely many intermediaries” (Vamvakoussi & Vosniadu, 2010, p. 

181), is what allows this increase in precision.   

The notion of discreteness of natural numbers, however, can provide a stumbling block to 

students’ understanding of rational number density (Vamvakoussi & Vosniadu, 2010). 

Torbeyns, Schneider, Ziqiang and Siegler (2015) write that it is frequently the case that 

students’ early understanding of natural numbers can interfere with the development of 

understanding of rational numbers. They write that “faulty generalisation of understanding of 

number as counting units [can] interfere with…learning of fractions” (p. 6). This is known as 
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natural number, or whole number, bias (Torbeyns et al., 2015), an example of which would be 

if a student assigns a value of 
1

𝑥
  (where x ≠ 0) to a section of a whole unit and assigns a value 

of 
1

𝑥+𝑦
  (where y >0) to a larger piece of the same unit. The student has, in this case, erroneously 

applied their natural number understanding that a larger number indicates a larger measure. 

When working with fractions a larger denominator indicates a smaller measure if the numerator 

is constant. Students can also hold similar misconceptions regarding the magnitude of decimals 

(Durkin & Rittle-Johnson, 2015, p. 21), believing, for example, that 0.1004 > 0.102 because 

1004 > 102.  Vamvakoussi and Vosniadou (2010, p. 182) indicate that “typically this 

phenomenon is explained as an adverse effect of students’ prior knowledge and experience 

with natural numbers”. 

Barrett et al. (2011, p. 638) explain that “measurement units are closely related to rational 

number units and proportional thinking”. In their research, they proposed teaching the unit 

concepts of length, area and volume concurrently, rather than in a sequence. Their argument 

was that in integrating unit concept development in multiple dimensions concurrently, students 

would acquire an understanding that “measures are in fact ratios between a unit quantity and 

other quantities” (p. 647). This is a sophisticated level of knowledge of measurement and 

requires proportional thinking (Barrett et al., 2011). Rational numbers, unit conceptions and 

measurement are therefore inseparable concepts.   

3.4.4 Estimation 

Competence in measurement includes the essential numeracy skill of estimation (Gooya et al., 

2011). When physical tools are unavailable or impractical to use, one needs to be able to make 

a quick judgment about the magnitude of the attribute being measured, in other words an 

estimation (Gooya et al., 2011). As Gooya at al. (2011) explain, it is as learners gain experience 

using measurement tools, that they develop a sense of the magnitude of a particular unit and 

thereby develop in their ability to perform estimations. As the following quote highlights, this 

is a complex task. It involves:  

“recalling an image of a standard unit…, repeatedly comparing that image to the 

object that is to be estimated, keeping track of where the last unit ended and the 

next one should begin, and maintaining a running tally of the units while continuing 
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to perform the tasks [mentioned]” (Joram, Gabriele, Bertheau, Gelman & 

Subrahmanyam., 2005, p. 5). 

One method of estimation would be to mentally hold an image of a single unit as it would 

appear on a standard measuring tool and estimate based on an image of this unit and its 

iteration. Another strategy is to form a mental reference point. This is “an object to which an 

estimator can psychologically connect a measurement unit or multiple units” (p. 5). This may 

include such connections as: the width of a thumb is approximately equal to 1cm or ½ of the 

height of a door is approximately 1m. Having internalised this mental reference point, the 

learner moves to being able to mentally measure objects by iterating this ‘object’ and counting 

the number of iterations (Joram et al., 2005).  

Estimation requires knowledge and application of the core principles of measurement, for 

example, that units should be iterated with no gaps or overlaps, and units should be equal in 

size. It is possible that a learner may be able to read measurements from a measurement tool, 

like a ruler, but be unable to estimate as the principles of measurement are not understood. The 

tool provides the correctly iterated, equally sized units, and it is not necessary to mentally apply 

the principles of measurement. Joram, Subrahmanyam and Gelman (1998, p. 414) therefore 

highlight the value of using estimation in the classroom as a “convenient conduit for teaching 

the principles of measurement”. 

3.4.5 Conceptual and procedural knowledge in measurement 

When considering measurement, it is useful to consider the distinction between conceptual and 

procedural knowledge. Hiebert and Lefevre (1986, p. 6) define procedural knowledge as 

comprising “the formal language, or symbol representation system, of mathematics [and] the 

algorithms, or rules, for completing mathematical tasks”. They contrast this with conceptual 

knowledge “that is rich in relationships…, a connected web of knowledge… in which the 

linking relationships are as prominent as the discrete pieces of information” (p. 4). Lima & Tall 

(2010) describe the fragility of a procedural approach. It becomes an obstacle when 

encountering new but related learning. It is acknowledged, however, that mathematical 

knowledge, if it exists in its fullest sense, must include significant relationships between the 

two. 

Key measurement activities include, most fundamentally, the act of measuring, as well as 

conversion and computation (Preston & Thompson, 2004). It is, however, possible that students 
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use measurement tools, apply formulae and perform conversions in a routine manner with some 

success, but to be proficient at measuring, students also need to have a conceptual 

understanding of what they are doing (Preston & Thompson, 2004). They need this in order to 

estimate, as explained in the previous section, as well as to select the correct measurement tool, 

select the most appropriate unit and engage in the reasoning required to think critically about 

measurement (Preston & Thompson, 2004).  

Lamon (2008) distinguishes between the act of measuring and measurement and emphasises 

that this is a critical distinction to make. She, like Preston and Thompson (2005), explains that 

students may be able to “carry out the act of measuring with reasonable accuracy (i.e. choosing 

a unit of measure and displacing it without overlap or empty intervals)” (Lamon, 2008, p. 40) 

but that this does not guarantee that the student has grasped the conceptual principles of 

measurement. In school, however, measurement is often taught as procedures, and students are 

frequently not afforded the opportunity to grapple with the foundational concepts of 

measurement (Lehrer, Min-Joung & Jones, 2011). As Tan-Sisman and Aksu (2016, p. 1311) 

write, it is “both knowing how to…measure and knowing what and why to measure” that are 

important. 

3.4.6 Domains of measurement in this research 

The domains of measurement addressed in this research are those of area, volume and flow 

rate. Area and volume were selected as they are the dominant focus of school curricula, and 

therefore represent domains in which every student would have constructed measurement 

conceptualisations.  

Flow rate is a slightly more complex measurement. It is defined as a relation between two 

quantities: volume and time, and has been included in the research for the insight it can bring 

as to how students work when measuring non-spatial attributes linked to objects. In addition, 

this is not a concept that students will have worked with previously. Because speed is, similarly, 

a rate, the work of Thompson and Thompson (1994; 1996), regarding the learning of the 

concept of speed is included.   

3.4.6.1 Area measurement 

As Cavanagh (2008) describes, area measurement finds its basis in the iteration of a unit until 

a flat surface is completely covered, with no gaps or overlaps. Sarama and Clements (2009) 
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propose a developmental progression for area measurement from ‘pre-area qualitative 

recognition’ in which a child of 0 – 3 years of age would be perceiving just “space and objects 

within that space” (p. 300).  

What is described here is the progression from the stage at which students start applying an 

explicit understanding of area (Sarama & Clements, 2009), as this holds relevance for older 

students who have had prior experience in the formal measurement of area. Table 3.1 

summarises Sarama and Clements’ (2009) progression. The examples provided refer to 

measurement of a rectangular surface with whole units that require no subdivision. One row 

and column, subdivided according to the unit, was provided within the rectangle, as shown in 

the figure below: 

Figure 3.11 Row and column subdivision 

 

Table 3.1 Area measurement progression 

Area/Spatial 

Structuring 

Description Example 

Primitive Coverer Draws a complete covering, but with 

some errors of alignment.  

Counts around the border, then 

unsystematically in the interior, counting 

some twice and skipping others.  

(from Sarama & 

Clements, 2009, p. 302) 
Area Unit Relater 

and Repeater 

Draws as above, but can also tile area 

using manipulatives and counts correctly, 

aided by counting one row at a time  

Partial Row 

Structurer 

Draws and counts some, but not all, rows 

as rows.  

 



68 

 

May make several rows and then revert to 

making individual squares, but aligns 

them in columns.  

Does not coordinate the width and height. 

(from Sarama & 

Clements, 2009, p. 302) 

Row and Column 

Structurer 

Draws and counts rows as rows, drawing 

with parallel lines.  

Counts the number of squares by iterating 

the number in each row, either using 

physical objects or an estimate for the 

number of times to iterate.  

Those who count by ones usually do so 

with a systematic spatial strategy (e.g. 

row by row) 

 

(from Sarama & 

Clements, 2009, p. 303) 

Area Conserver Conserves area and reasons about additive composition of areas (e.g. 

how regions can look different but have the same area) and can 

recognise the need for space filling in most contexts 

Array structurer With linear measures or other similar indications of the two 

dimensions, multiplicatively iterates squares in a row or column to 

determine the area.  

Drawings are not necessary, children can compute the area from the 

length and width of rectangles and explain how that multiplication 

creates a measure of area. 

Adaptation of Sarama and Clements, 2009, pp. 302-304 

The summit of development in area measurement, according to this progression, would be 

where students no longer require a surface, or a drawn representation of a surface, to measure 

area. Rather they are able to calculate the area of a rectangular surface given only its length 

and width (Sarama & Clements, 2009). This is symbolic formal work (Tall, 2013b). Students 

apply formulae at this level in order to calculate the area of a surface in the absence of the 

object to which the problem refers. 

It is important to note that at the ‘array structurer’ level, students can “explain 

how…multiplication creates a measure of area” (Sarama & Clements, 2009, p. 304). This 

requires a conceptual grasp of area measurement. Cavanagh (2008) cautions that students who 

are able to use a formula to calculate area do not necessarily have the conceptual understanding 
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to explain how the formula works. It is possible for the student to apply the procedure, without 

needing to rely on a conceptual grasp of how and why it works (Cavanagh, 2008). 

Baturo and Nason (1996, p. 239) note that the “formal cultural practice of calculating area 

measurements” can occlude the conceptual nature of the task. This practice is not to physically 

apply area units, but rather “to obtain two measures of length and use them in formulae that 

will give a result in area unit” (Baturo & Nason, 1996). We do not use, as with length, a tool 

(e.g. a ruler) that will physically allow measurement of the quantity. Area is calculated 

indirectly from two linear measurements. 

Outhred and Mitchelmore (2000, p. 145) write that poor performance in area measurement is 

often attributed to the “tendency to learn the formula by rote”. They cite as an example students 

who were able to calculate the area of a rectangle when provided with the length and width, 

but who were unable to calculate the area of a square when provided with the length of only 

one side, despite knowing that a square has four equal sides (Outhred & Mitchelmore, 2000). 

The students “[did] not understand the conceptual basis for the formula [and had] difficulty in 

generalising the procedure they ha[d] learned” (p. 145). A similar observation was made by 

Cavanagh (2008), who noted that the Grade 7 learners in his research had difficulty 

understanding the relationship between rectangular and triangular areas. They did not “make 

use of the fact that the area of a triangle is half that of the rectangle which shares a common 

base and perpendicular height” (p. 57), thus revealing an inability to generalise the procedure 

of calculating the area of a rectangle to find a method for calculating the area of a triangle. 

Tan-Sisman and Aksu (2016) conducted a study in which students’ misconceptions and errors 

in conceptually and procedurally-oriented measurement tasks were explored. Their research 

revealed that the following were common areas of difficulty for students when measuring area:  

(a)  realising how length units produce area units 

(b)  grasping the conservation of area 

(c)  understanding array and grid structure 

(d)  comprehending two-dimensional structure of area 

(e)  understanding the difference between not only the concept of area and 

perimeter, but also the formulae for these concepts 

They seem able to apply basic formulae to shapes with which they are most familiar, but when 

required to generalise, or deduce a formula, the conceptual weaknesses in their understanding 

are exposed. 
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3.4.6.2 Volume measurement 

Similar to their proposed developmental progression for area measurement, Sarama and 

Clements (2009) also propose a developmental progression for volume measurement. At the 

earliest level, a child of 0 – 3 years of age would again simply “perceive space and objects 

within that space” (p. 306), although rather than in 2 dimensions, this is in relation to volume 

or capacity. This level is called ‘volume quantity recogniser’ (Sarama and Clements, 2009). 

What is described here is the progression from the stage at which students are able to visualise 

a space as being filled with objects (Sarama & Clements, 2009), as this holds relevance for 

older students who have had prior experience in the formal measurement of volume. Table 3.2 

summarises Sarama and Clements’ (2009) proposed progression.  

Table 3.2 Volume measurement progression 

Volume/Spatial 

Structuring 

Description Example 

Primitive three-

dimensional [3D] 

Array Counter 

Partial understanding of cubes as filling a 

space.  

May eventually count one cube at a time 

in carefully structured and guided 

contexts, such as packing a small box 

with cubes. 

Packing a small box with 

cubes: 

 

Capacity Relater and 

Repeater 

Uses simple units to fill containers, with 

accurate counting.  

Can fill a container by repeatedly filling a 

unit and counting how many.  

Partial 3D Structurer Understands cubes as filling a space, but 

does not use layers or multiplicative 

thinking.  

Moves to accurate counting strategies, 

e.g. counts the number of cubes in one 

row or column of a 3-D structure and 

uses skip counting to get to the total.  

Applies the composite unit (i.e. the row 

or column) repeatedly, but not 

One layer forming a 

composite unit 
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necessarily exhaustively as its application 

remains intuitive. 

3D Row and 

Column Structurer 

As with Partial 3-D Structurer but 

applies the composite unit repeatedly and 

exhaustively to fill the 3-D array 

3D Array structurer Can compute the volume of rectangular prisms from their dimensions 

and explain how that multiplication creates a measure of volume.  

Constructions and drawings are not necessary. 

Adaptation of Sarama and Clements, 2009, pp. 306-308 

Of the relationship between length, area and volume, Sarama and Clements (2009, p. 302) write 

that measurement of area and volume “leads to multiplicative relationships involving the 

lengths of the sides”. This is relevant to the final stage in the area and volume progressions 

they propose, where drawings are no longer necessary if the linear dimensions of the object are 

known to the student. At this level the procedure for area and volume measurement becomes 

purely symbolic. Outhred and Mitchelmore (2000, p. 145) emphasise that as with area 

measurement, “student difficulties in volume measurement have also been linked to an early 

emphasis on formulae”. 

Sarama and Clements (2009) note that constructions and drawings representing volume are no 

longer necessary in order for students to compute volume at the 3D array structurer level, but 

this cannot be taken imply that constructions and drawings simplify the task of measuring 

volume. Ben-Haim, Lappam and Houang (1985) explains that the representation of a three-

dimensional world in two-dimensions is complex to interpret, and “by no means immediately 

recognisable” (Ben-Haim et al., 1985, p. 389). For example, to measure the volume of the block 

shown in Table 3.2, in which the diagram is subdivided according to the cubic unit to be used 

requires the student to first correctly visualise the object from the diagram, and then to mentally 

manipulate it in order to ‘read’ how many unit blocks it comprises (Ben-Haim et al., 1985). 

This is a complex visualisation task that also requires a sound conceptual understanding of 

volume in order to count the number of cubic units making up the object. 
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Tan-Sisman and Aksu’s (2015) research also explored student errors and misconceptions 

related to volume measurement. Their findings revealed the following common areas of 

difficulty:  

(a) treating three-dimensional figures as two-dimensional ones 

(b) counting visible faces/unit cubes 

(c) enumerating the cubes in 3D arrays incorrectly  

(d) confusing the concept of volume with the concept of surface area and their 

formulae 

As was evident in the listed ‘areas of difficulty’ for area, those listed for volume are conceptual. 

Students were not operating with a clear and accurate conception of volume. 

3.4.6.3 Measurement of rates 

The measurement of more tangible quantities, like those of length, area and volume already 

discussed, leads to composite quantities, such as rates (Smith et al, 2011).  Kent, Bakker, 

Hoyles and Noss (2011, p. 748) explain that “measurement of material objects is common in 

the workplace, but the data generated by taking measurements are frequently used for a 

subsequent layer of measurement in terms of abstract constructs”. A rate may be considered 

such a concept.  

The scientific concept of a rate is a combination of basic measurement concepts (Basson, 

2002), like that of distance and time in relation to speed. Lamon (2012, p. 242) describes speed 

as “the most important rate” as it is one that we all encounter every day and while speed can 

be considered a more abstract construct, it is a one that is directly experienced. Speed is “a 

quantification of motion” (Thompson & Thompson, 1994, p. 284) and motion is a concept that 

even young children have an everyday understanding of (Thompson, 1994).   

Lamon (2012) explains that we all encounter the distance-time-speed relationship daily and 

that most students will have encountered the formula speed = distance ÷ time. The actual 

system of the relationships between the three, however, takes a long time to understand 

(Lamon, 2012). For example, if the distance travelled by an object is divided by the amount of 

time the object was travelling, one obtains a value with a new structure. The resulting value 

reflects distance, reported according to a selected unit of length, subdivided per selected unit 

of time, e.g. if 200 kilometres are travelled in two hours, the speed is 100km/h. Speed is 

therefore “quantified motion” (Thompson, 1994, p. 205). Thompson (1994) cautions, however, 
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that to introduce students to the concept of speed with the definition of distance divided by time 

denies them the opportunity to construct for themselves the concept of speed as a rate.  

Thompson (1994, p. 182) states that “one crucial part of sound mathematical development is 

students’ construction of powerful and generative concepts of rate”. Lamon (2012, p. 236) 

defines rates as “descriptions of the way quantities change with time…they are identified by 

the use of the word per in their names and they can be reduced (or divided) to a relationship 

between one quantity and 1 unit of another quantity (a unit rate)”.  

Thompson’s (1994, p. 189) more formalised explanation of rate is that it is a type of quantitative 

operation, where “a quantitative operation is a mental operation by which one conceives of a 

new quantity in relation to one or more already-conceived quantities”. This creates a structure, 

a new quantity that relates to the original quantities operated on (Thompson, 1994). Rate is the 

result of “the quantitative operation of comparing two quantities multiplicatively, originat[ing] 

in matching and subdividing with the goal of sharing”.  

Consider the example of speed. Speed can be described as the distance travelled in a particular 

amount of time (Thompson, 1994), thus distance and time are the two quantities to be operated 

on in order to establish a measure of the speed. It is a “created quantity in relation to the 

quantities operated upon to make it” (Thompson, 1994, p. 191). The speedometer of a car, 

however, is an instrument that “reinforces the notion that speed can be measured directly” 

(Lamon, 2012, p. 242),  

Genesis of a concept is not its formalisation 

Thompson and Thompson (1994) conducted a teaching experiment with a 10 year-old student 

to explore how she constructed the concept of speed as a rate through observing her play with 

a computer programme in which a rabbit and a turtle could be made to run at different speeds. 

The rabbit and/or turtle could be assigned different speeds, could be stopped at any time or 

distance, and could be made to run separately or together. They were to travel ‘over’ (to the 

right) and ‘back’ (to their starting position).  
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Figure 3.12 Over and Back user interface 

   

From Thompson & Thompson, 1994, p. 284 

Thompson and Thompson (1994, p. 280) describe how they intended that the student construct 

her image of speed through this experiment: 

1. Speed is a quantification of motion 

2. Completed motion involves two complete quantities – distance travelled and 

amount of time required to travel that distance 

3. There is a direct proportional relationship between distance travelled and the 

amount of time required to travel that distance 

4. Speed as a quantification of completed motion is made by multiplicatively 

comparing distance travelled and amount of time required to go that distance 

This practical game, involving the calculation and interpretation of speed, became central to 

instruction she received over 7 sessions. Each lesson was built around a problem to solve. Three 

examples of such problems included (Thompson & Thompson, 1994, p. 284): 

1. Turtle is going over at 20 feet per second, coming back at 30 feet per second. 

How much time does he take? 

2. Give Rabbit a speed that will make him go over and back in 7 seconds. 

3. Turtle goes over at some speed and comes back at 70 feet per second. Rabbit 

goes over and back at 30 feet per second. Give Turtle a speed so that he and 

Rabbit will tie. 

The computer game, and the associated questions, required the student to use a “dual 

measurement focus” (Thompson & Thompson, 1994, p. 285) by forcing a focus on time and 

distance, which provided a “foundation for [her] conceptualising constant speed as a rate” (p. 

285).  Her understanding of speed had developed from viewing the components of distance and 
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time as being dependent on one another, to accurately conceptualising them as independently 

covarying quantities (Thompson & Thompson, 1996). 

In the 8th session she was presented with a problem involving flow rate when filling a 

swimming pool, and as she had constructed a conceptually sound understanding of rate through 

the lessons on speed, she was able to generalise the reasoning she applied in solving the speed 

problems, to solving the flow rate problems (Thompson & Thompson, 1994). Thompson and 

Thompson (1994) considered this to be evidence that she had developed a stable 

conceptualisation of rate through the lessons centred around the ‘over and back’ computer 

game focused on speed. 

As Basson (2002) points out, where there are inadequacies in students’ conceptualisation of 

basic concepts, these are transferred to learning environments where these concepts are to be 

integrated to create more formalised structures, such as rate. Which… requires deep conceptual 

understanding of, not only the component concepts, but a “coherent conceptual model of 

[these] concepts” (Carrejo & Marshall, 2007, p. 55) and how they are connected. The 

formalisation of strongly embodied constructs like speed in the form of a rate, is complex and 

requires the relationship between the components to be revealed. As Thompson and Thompson 

(1996) demonstrated, when this is effectively done, the learning is sufficiently powerful to 

enable generalisation to other situations in which rate is a key concept. 

In this research, students’ conceptualisation of rate is explored through an experiment involving 

the calculation of fluid volumetric flow rate. Fluid volumetric flow rate can be defined as the 

“volume of fluid flowing past a section per unit time” (Inamdar, 2012, p. 7). In this case, 

Thompson and Thompson’s (1994) list explaining the construct ‘speed’ as a rate can be adapted 

to read: 

1. Flow rate is a quantification of the motion of a fluid 

2. Completed motion involves two complete quantities – volume of fluid moving 

past a point and amount of time required for this volume of fluid to pass this 

point 

3. There is a direct proportional relationship between volume of fluid flowing past 

a point and the amount of time required for the volume to flow past this point 
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4. Flow rate as a quantification of [static] completed motion is made by 

multiplicatively comparing volume of fluid flowing past a point and amount of 

time required for this volume to flow past this point 

3.5 VYGOTSKY AND THE PROCESS OF CONCEPT FORMATION 

Vygotsky’s (1926/1986) theory emphasises the role of the social world in prompting the 

development of thinking, and it is here that his work differs most markedly from Piaget’s. 

Where Piaget’s theory is centred on individual processes as driving intellectual development 

with an influence from the environment, Vygotsky makes the following definitive statement: 

“thinking and behaviour of adolescents are prompted not from within but from without, by the 

social milieu” (p. 108). His position is that should the social milieu not make intellectual 

demands on the person, their thinking will not reach any higher stages. 

The following discussion will outline Vygotsky’s theory of the development of thinking in 

concepts, focusing on the role of words and the social world. Thereafter, the stages of this 

development will be described followed by a discussion of scientific and everyday concepts, 

as Vygotsky defines them. A further section considers the work of Margot Berger in applying 

Vygotsky’s theory to the development of mathematical concepts. 

Thereafter, the zone of proximal development [ZPD] as well as mediation, will be described.  

3.5.1  The role of words in concept formation 

Concept formation, to Vygotsky (1926/1986), involves the participation of all intellectual 

functions, but it is not these functions that undergo changes themselves. Rather, the use of signs 

or words “direct our mental operations, control their course, and channel them toward the 

solution of the problem confronting us” (p. 107). These intellectual functions, e.g. attention, 

perception, memory, or imagery, do not in themselves dramatically change. As Vygotsky 

(1926/1986) explains, once concept formation has begun they reappear “in an entirely different 

form” (p. 107). 

None of this is possible, according to Vygotsky (1926/1986), without the use of words as signs, 

or “functional tools” (p. 107) that drive the formation of concepts. Development of the 

physiologically based intellectual processes, e.g. perception, does not lead to higher forms of 

intellectual ability. It is verbal thinking that is necessary for the qualitatively “radical change” 

(p. 109) that makes thinking in concepts possible.  
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Berger (2006) explains that children use words that they initially do not fully comprehend, but 

as they use it in communicating with adults, the meaning of the word and its associated concept 

evolves. In other words the concept “undergoes substantial development for the child as [they] 

use the word or sign in communication with more socialised others” (Berger, 2005, p. 155). 

3.5.2  The process of concept formation 

Vygotsky writes that “direct instruction in concepts is impossible [and leads to] mindless 

learning of words” (Vygotsky, 1987, p. 170). Concept formation, he explains, involves all basic 

intellectual functions (Vygotsky, 1926/1986, p. 106). He (1926/1986) distinguishes between 

three phases that lead to thinking in real concepts, arguing that the transition from one stage to 

the next is reliant on a child’s verbal interaction with adults. These stages are: 

Syncretic heap 

Objects are grouped together randomly and words do not hold stable meanings 

(Vygotsky, 1926/1986). 

Thinking in complexes 

Maximally similar objects are grouped in the child’s mind, no longer only 

based on their subjective ideas, but by “bonds actually existing between these 

objects” (p. 112). These bonds are concrete, however, and not yet abstract and 

logical as they would be in conceptual thinking (Vygotsky, 1926/1986). 

Thinking in potential concepts 

Objects are grouped together in the child’s mind based on a single attribute 

(Vygotsky, 1926/1986).  

Vygotsky (1926/1986) describes thinking in potential concepts as developing parallel to 

thinking in complexes. There is a “bridge” (Vygotsky, 1926/1986, p. 119) that Vygotsky 

describes as linking thinking in complexes to the highest stage of concept formation. This link 

is a type of complex, called a pseudoconcept.  

Pseudoconcepts phenotypically resemble thinking in concepts, in that children begin to 

communicate in a way that suggests mature conceptual thought. This is a “functional 

equivalence” (p. 121). As Vygotsky (1926/1986) explains, when children communicate 

verbally with adults, they acquire vocabulary as well as the “meaning a given word already has 

in the language of adults” (p. 120). On using these words, the mutual understanding that results 
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between adult and child would suggest that the achievement of conceptual thought has been 

reached. However, this mutual understanding remains largely coincidental. There is an 

intellectual and operational structural change that needs to happen in the child’s thinking, as 

they use the word more frequently, in order to progress from thinking in complexes to thinking 

in real concepts (Vygotsky, 1926/1986).  

When operating with pseudoconcepts, the child is operating conceptually without awareness 

of this. There is a resulting smooth, unobservable, transition from thinking in pseudoconcepts 

to thinking in concepts. Vygotsky (1926/1986) explains: “The concept-in-itself and the 

concept-for-others are developed in the child before the concept-for-myself. The concept-in-

itself and the concept-for-others, which are already present in the pseudoconcept, are the 

genetic precondition for the development of real concepts” (p. 124).  

3.5.3  Scientific and everyday concepts 

Where Piaget (1962) writes of spontaneous and non-spontaneous concepts, Vygotsky (1987) 

differentiates between scientific and everyday concepts and argues that they develop 

differently. The broad defining characteristics of everyday concepts are that they develop 

without any formal instruction and are acquired informally by a child (Miller, 2011). Vygotsky 

(1987) uses the terms spontaneous and everyday interchangeably when speaking of these. 

Scientific concepts, however, are “real concepts [that are] distinct from less-developed 

formations, such as complexes and pseudoconcepts” (p. 98). It is important to note that by 

scientific concepts, Vygotsky is not speaking of the natural sciences, but of the social sciences 

(Miller, 2011). He refers to concepts such as ‘exploitation’ when providing examples of 

scientific concepts. 

Vygotsky (1987) defines everyday concepts in the same manner as Piaget. His position is that 

these concepts are the result of a child’s interaction with their immediate environment (Miller, 

2011). His position is that after “a long period of development…the child can operate abstractly 

with [the] concept and move from the thing to the concept” (p. 125), however, it remains an 

everyday concept. Scientific concepts, however, follow the opposite path in their development. 

They are not encountered in the child’s immediate environment but “as a mediated relationship 

to the object and follow the opposite path from the concept to thing” (p. 125).  

Vygotsky (1987) provides the example of the concepts ‘brother’ and ‘Archimedes’ law’ to 

illustrate the relationship of experience to scientific concepts. He argues that children would 
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find it easier to define Archimedes’ Law, after it has been taught in school, than the concept of 

‘brother’. The concept of ‘brother’ is understood in an everyday form, “saturated with the 

child’s personal experience” (Miller, 2011, p. 106). The development of these two types of 

concepts therefore follow different paths. 

Another useful analogy Vygotsky (1987) in order to explain the relationship of everyday to 

scientific concepts and their influence on one another is the learning of a foreign language. 

Learning a foreign language, he explains, is different to learning one’s home language, but 

success in learning a foreign language is largely dependent on proficiency in one’s home 

language. In turn, the process of learning the foreign language allows the underlying form of 

the home language to become more explicit, thus contributing to further developing use of the 

home language. As Miller (2011) explains, “in the same way that the native language stands 

between the foreign language and the world of things, spontaneous concepts mediate between 

the conceptual systems in which scientific concepts are embedded” (p. 106). Scientific 

concepts, in the process of their formation and once formed, are “transferred structurally to the 

domain of everyday concepts, restructuring the everyday concept and changing its internal 

structure from above” (Vygotsky, 1987, p. 192).  

3.5.4  Concept development in mathematics 

In mathematics, Berger (2005) argues, the individual is required to construct the concept such 

that its meaning agrees with how it is used by the mathematics community. This construction 

happens as the individual communicates with learned others, for example, in interaction with 

a lecturer, a more knowledgeable peer or by the use of a textbook. These mathematical concepts 

are thus socially integrated (Berger, 2005).  

Berger (2006) reports on her observations of university students encountering mathematical 

signs with which they were previously unfamiliar. These students worked as if they were 

proceeding through preconceptual stages as would a child encountering words for the first time. 

She noticed that students were making use of heap or complex thinking as they worked with 

these new ideas and signs before conceptual thinking was possible. 

In her own practice, Berger (2006) observed that students were initially making idiosyncratic 

uses of the signs and operated in a manner akin to the heap and complex stages. Non-logical 

activities, such as imitation and manipulations, were used to solve problems using these 

mathematical signs. The students had varying levels of success with these strategies, but, 
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Berger (2006) argues that this “preconceptual thinking is a necessary part of successful 

mathematical concept construction” (p. 17). She elaborates: 

…[it] is not how [emphasis in original] the student uses the signs but rather that 

[emphasis in original] [they] use the signs. Through this use, the student gains 

access to the ‘new’ mathematical object and is able to communicate (to better or 

worse effect) about it. And…it is this communication with more knowledgeable 

others which enables the development of a personally meaningful concept whose 

use is congruent with its use by the wider mathematical community (p. 17). 

Therefore, despite the dismissal by many mathematics educators of activities that allow 

functional, idiosyncratic uses of a sign, Berger (2006) argues that it is essential if conceptual 

thinking is to be achieved.  

3.5.5  Signs and tools 

The notion of ‘signs’ and their role in concept formation has already been discussed, but signs 

can also be understood as an “auxiliary means of solving a given psychological problem” 

(Vygotsky, 1978, p. 52). For example, words can be used to assist someone in remembering 

something and thus the “sign acts as an instrument of psychological activity” (p. 52). It is an 

internal activity. Tools, on the other hand, are also an auxiliary means by which problems can 

be solved, but are focused outwards, on the object of activity. Their use is a “means by which 

human external activity is aimed at mastering, or triumphing over, nature” (p. 55). Daniels 

(2005), in his Introduction to Vygotsky, takes care to point out that Vygotsky (1978) did not 

imply that human behaviour is controlled by external forces. The symbolic systems that come 

to form psychological signs, as well as the physical tools used in activity, are only useful 

because of the meaning the individual has come to ascribe to them. In other words, external 

operations have been “internal[ly] reconstructed” (Vygotsky, 1978, p. 56).  

Wertsch (2007), writing of Vygotsky’s notions of signs and tools, explains that our actions in 

the world are never direct, they are always mediated by these. The figure below is used by 

Vygotsky (1978) to represent the relationship between signs and tools, in which “each concept 

is subsumed under the more general concept of indirect (mediated) activity” (p. 54). Vygotsky 

(1978) regarded as “higher psychological function or higher behaviour” (p. 55) the combined 

use of sign and tool. 
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Figure 3.13 Sign and tool mediation 

 

 

 

(Vygotsky, 1978, p. 54) 

3.5.6  The Zone of Proximal Development 

Vygotsky (1978, p. 84) points out that “any learning a child encounters in school always has a 

previous history”. He proposed that a student who is unable to complete a task successfully 

may well be able to complete it with some assistance, indicating a potential for learning. He 

calls this the zone of proximal development [ZPD], which is “the distance between the actual 

developmental level as determined by independent problem solving and the level of potential 

development as determined through problem solving under adult guidance or in collaboration 

with more capable peers” (Vygotsky, 1978, p. 86).  

Unlike Piaget (1962), who contends that maturation is a necessary precondition for learning, 

Vygotsky (1978) argues that “the developmental processes lag behind the learning processes 

[and] this sequence then results in zones of proximal development” (p. 90). Activities and 

experiences that can be described as within a child’s ZPD would be those that are “challenging 

but attainable” (Hedges, 2012, p. 146). It is a “zone where children’s everyday understandings 

interact with conceptual knowledge provided by mediators of learning, such as teachers” (p. 

146). Engagement in the activities in this zone does not require a particular developmental level 

to have been attained, in fact, Vygotsky (1978) argues that engagement in such activities can 

urge mental development forward. 

Vygotsky’s (1978) notion of the ZPD therefore indicates that conceptualisations can be either 

stable or emerging. Stable conceptualisation or understanding would be present for a student 

able to complete a task requiring this conceptual knowledge independently, while conceptual 

understanding could be described as emerging for a student only able to do so with assistance. 

The ZPD in this way provides “a tool through which the internal course of development can be 

understood” (p. 87). 

MEDIATED ACTIVITY 

TOOL SIGN 
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3.5.7  A note on mediation 

The term ‘mediation’ is one that appears in Vygotsky’s (1978) explanation of signs and tools 

as subsumed under the category of mediated action. It also appears in discussions of the ZPD 

(e.g. Hedges, 2012) to describe the person whose conceptual knowledge allows them to guide 

children in their completion of tasks within their ZPD.  

Wertsch (2007) applies his understanding of the Vygotskian term ‘mediation’ to encompass 

two concepts of  his own: implicit and explicit mediation. He defines explicit mediation as “an 

individual, or another person who is directing this individual, overtly and intentionally 

introduc[ing] a ‘stimulus means’ into an ongoing stream of activity” (p. 180). Implicit 

mediation is taken to be the opposite in that it is “less obvious and therefore more difficult to 

detect” (p. 180). In a measurement situation, an example of an explicit mediational means 

would be the use of a calculator in computing the area of a triangle, whereas the use of 

terminology such as ‘height’, ‘base’ or ‘hypotenuse’ would represent implicit mediational 

means (Miller, 2011), in other words, differentiating between tools and signs. Wertsch (2007) 

makes a careful argument for these concepts but is deliberate to point out that these are based 

on his readings of Vygotsky. Miller (2011) is critical of this reading and argues that these two 

contrasting meanings of mediation are not present in Vygotsky’s text.  

In this research, the terms implicit and explicit mediation are used, although not in the sense 

that Wertsch (2007) uses them. In addition, no claim is made that the use of these terms can be 

interpreted from any of Vygotsky’s original texts. The terms are used for their utility in 

describing the two broad types of ‘mediation’ that will be provided by the interviewer in the 

task-based interviews. The mediation provided is classified on a continuum from most implicit 

to most explicit depending on the degree of assistance it is considered to provide to the student 

as they engage in the task. This is discussed and described in full in Chapter 4. 

3.5.8 Conceptualisation of the act of measuring for this research 

As mentioned in the introduction to this chapter, it is the psychological concepts that Vygotsky 

(1978) offers that are applied in this research for their utility in describing the act of 

measurement. Both Vygotsky and Piaget, in their theories on the development of thinking in 

concepts, frame this development in the context of a child’s interaction with their physical and 

social environment.  
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The student, as they interact with a measurement task, may be conceptualised as comprising a 

mental self, which relates to the constructed measurement conceptualisations, and a physical 

self whose actions in the environment can be observed. The actions of the physical self are led 

by these mental conceptualisations, but this interaction in the physical and social world in turn 

contributes to shaping the intrapersonal mental conceptualisations, as is proposed by Piaget 

(1964) and Vygotsky (1978).  

Together, these two comprise what can be referred to as the embodied subject. This subject 

cannot be fully known, however its actions can be observed. The embodied subject engages in 

the activity of measuring the object or phenomenon as mediated by signs and tools. This is 

represented in Figure 3.14. 

Figure 3.14 The individual engaging in measuring activity  

 

This view of the individual as they engage in the measurement task is key to the understanding 

of the mediated measurement interaction proposed at the conclusion of this chapter. 
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3.6  DYNAMIC ASSESSMENT 

In assessing the prior knowledge of measurement and existing measurement proficiency of 

adult students, it is necessary to structure that assessment in such a way that it is not only those 

stable understandings of measurement that are accessed, but also those that are in the process 

of emerging. Dynamic, rather than static, assessment offers a means of revealing both 

developed and developing conceptualisations.  

Static assessment captures only what has already been learned, but it is possible that this is a 

reflection rather of an individual’s background (de Beer, 2006). In contexts where there are 

large disparities in the quality of prior education, dynamic assessment is a “more 

compassionate, fair and equitable” (p. 9) means of assessment.  

3.6.1  What is dynamic assessment? 

It involves the integration of assessment and instruction to include forms of mediation that 

promote the students’ development, while allowing the assessor insight into both their current 

state of development and their potential to learn (Zhang, 2010). It rests on Vygotsky’s (1978) 

notion of the ZPD, which is arguably the first theory of dynamic assessment (de Beer, 2006).  

Vygotsky (1978) explained that the actual developmental level, which would be captured by a 

static assessment, “characterizes mental development retrospectively, while the zone of 

proximal development characterizes mental development prospectively” (p. 88). What the ZPD 

can offer educators is a “tool through which the internal course of development can be 

understood” (p. 88), thus allowing a view of achieved concepts as well as those in the process 

of maturation and development (Vygotsky, 1978).  

3.6.2  Approaches to dynamic assessment 

Dynamic assessment traditionally takes a test-teach-retest interventionist approach (de Beer, 

2006). In this model, students complete a static pre-test that is completed without assistance, 

and after an assisted learning experience they complete a similar post-test (Fuchs, Compton, 

Fuchs, Hollenbeck, Hamlett & Seethaler, 2011). The post-test gives an indication of the 

individual’s potential to learn.  

Poehner and van Compernolle (2011) argue, however, that the full potential of dynamic 

assessment is realised through “collective, transformative activity undertaken with learners” 
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(p. 183). Such interactionist dynamic assessments are characterised by mediation that is 

negotiated with the individual and adjusted accordingly rather than rigidly prefabricated clues 

and hints (Poehner & Lantolf, 2010). What is measured becomes “the amount of scaffolding 

required during the assisted phase of assessment to reach criterion performance” (Fuchs et al., 

2011, p. 374).  

This collaborative framing of dynamic assessment foregrounds the engagement with the 

assessment task, while the assessor works with the learner on this task. Framed in this way, it 

is possible to identify “kinds of mediation to which learners are responsive during task 

completion” (Poehner & van Compernolle, 2011, p. 184). Mediation therefore has a dual 

function in this case: it “offers affordances to which learners may respond in a variety of ways, 

and careful observation of these responses forms part of the diagnosis of their development, 

indicating how near they are to being able to function more independently” (p. 184). Diagnosis 

and enrichment can therefore co-occur (Poehner & van Compernolle, 2008). 

As Lantolf and Poehner (2011) explain, shifting the view slightly to focus on responsiveness 

to mediation, rather than performance in a post-test, provides richer evidence of development. 

It thus becomes possible to obtain a more nuanced view of the students’ measurement 

understanding. For example, a student who is able to complete a task after only implicit 

mediation has more “control over what is to be learned and is therefore further along the way 

towards autonomous performance” (p. 20) than a student who requires more explicit mediation. 

An example of implicit mediation might be a prompt as simple as a pause, while  correction of 

an error would constitute explicit mediation (Lantolf & Poehner, 2011). By focussing on the 

degree and type of mediation required, it would be possible to distinguish between individuals 

at different stages in the emergence of measurement understanding.  

3.6.3  Problems with quantification and the solutions offered by computer-based tests 

The practical value of dynamic assessment in a more widespread and general manner has been 

called into question (de Beer, 2006). The difficulty in using dynamic assessment techniques as 

a diagnostic tool is that a consistent means of quantifying learning potential has not been 

established (de Beer, 2006). In addition, very little research has been published regarding its 

validity and reliability, without which dynamic testing cannot be transformed into “robust 

psychological diagnostic tools” (p. 9). Some of the problems, de Beer (2006) explains, include: 

“subjective scoring of some procedures; problems with measurement accuracy of…the 
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difference or improvement scores, the lack of standardisation, which limits generalisation and 

the practice effect if the same instrument is used in the pre-test and in the post-test” (p. 11). 

There has been some success in overcoming these with the use of computer-based tools. The 

Learning Potential Computerised Adaptive Test [LPCAT] (de Beer, 2000), developed in South 

Africa, is one such example. This programme measures an individual’s ZPD based on the 

difference in the scores on a pre-test and post-test (de Beer, 2000). The LPCAT interactively 

selects items which are at the correct level for the student. It adjusts the level of difficulty as 

the student responds either correctly or incorrectly to the items.  

This addresses all of the problems listed by de Beer (2006), but it can be questioned whether 

this is a valid measurement of prior knowledge and learning potential. The reported result, if it 

is to allow fair comparison across individuals, is more complex than a simple difference score, 

and so it is also necessary to combine this score with the individual’s pre-test and post-test 

score. A low difference score may be achieved by an individual who has already achieved a 

high score in the pre-test. Their future projected ability level would be high, but their difference 

score alone would seem to indicate a low learning potential.  

Another example of such a computer programme is the Graduated Prompting Assessment 

Module [GPAM] used by Wang (2011) in the remedial teaching of high school mathematics 

learners. In this case, dynamic assessment was not only used as a means of assessing learners, 

but as a tool for teaching. Learners were required to respond to test items, and if they were 

unable to respond correctly, instructional prompts were provided in a graded manner until the 

learner was able to respond correctly (Wang, 2011). The system “directly interacts with 

learners and provides them with timely feedback carrying instructional messages to facilitate 

learning” (p. 1063). Feedback provided in this way is individualised and because it is a prompt 

rather than explicit instruction, learners correct their own mistakes and resolve misconceptions 

for themselves (Wang, 2011).  

Wang (2011) was able to show that using the GPAM was significantly more effective than 

traditional remedial mathematics teaching, and “not only for those [learners] most lacking in 

different types of mathematical problem-solving knowledge but also all the other students” (p. 

1062). Not only does a programme of this nature produce assessment results that are 

comparable across students, as does the LPCAT, but the graduated instructional prompting 

approach also provided a powerful learning experience for the learners. 
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3.6.4  The application of dynamic assessment in this research 

In this research, generalisability was not being sought. It focused on a relatively small group 

of students in an attempt to explore, in as much depth and detail as possible, their prior 

knowledge and existing measurement conceptualisations. The complexity of this task required 

an instrument with flexibility that allowed for the fair assessment of an extremely diverse group 

of students and a sensitivity that allowed for adjustment depending on the needs of each student 

as they engaged in the task. In-built subjectivity is necessary in such a case. Each student, as 

they engage in a task, can be expected to have different needs and will demonstrate different 

prior knowledge profiles. A standardised dynamic assessment does not capture these subtleties.  

While this subjectivity has value, it remains the case that the results need to be valid and reliable 

within the study. In order to ensure this, the types of mediation and the way in which the 

mediator would interact with the student was carefully planned. A full description of the 

process of designing the interviews is provided in Chapter 4. The figure below provides an 

illustration of the positioning of the student and mediator relative to the task: 

Figure 3.15 Interaction with the mediator in the mediated measurement task 

The mediator is depicted as central as they control the task situation and their decisions about 

when and how to mediate influence the course of the activity. As the student engages in the 

measurement activity, the mediator observes and interprets the actions of the student. The 

student continues engaging in the activity independently until the mediator interprets their 
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actions as indicating that they do not know how to proceed, or that they are veering off a path 

that could lead to the solution. At this point, the mediator provides a form of mediation that 

can assist the student to proceed in the task. 

This form of mediation is carefully chosen. The most implicit form of mediation is provided 

first. If the student remains unable to move forward, increasingly explicit forms of mediation 

are provided until the student is able to continue engaging in the activity. The more explicit the 

required mediation, and the more moments in which mediation is required, is understood as 

providing an indication that the prior knowledge required for the task is lacking, or still 

emerging.  

In this research, mediation was provided at the level of signs through verbal interaction with 

the mediator. The mediator did not engage in the measurement with the student, hence there is 

no link between the mediator and the actual measurement task.  

3.7 RECONSIDERING THE USE OF PIAGET AND VYGOTSKY  

In the introduction to this chapter, it was pointed out that the theories of both Piaget and 

Vygotsky find their application in this study, in various forms. The broad overlap of their 

theories is that both view a learner as actively constructing knowledge rather than passively 

receiving it (Rowlands & Carson, 2001). From there, their theories diverge to provide 

explanations of learning that can be considered as parallel, rather than oppositional. The 

following three central ideas represent important differences between their theories (S. Lerman, 

personal communication, Jan 18, 2017): 

Table 3.3 Key differences between the theories of Piaget and Vygotsky 

Piaget Vygotsky 

Development leads to learning Learning leads to development 

Knowledge proceeds from the concrete to the 

abstract 

Knowledge proceeds through the ascent from 

the abstract to the concrete 

The cognising individual is at the centre of 

the learning process 

Mediation and the mediators are central 

 

If the aim of the study was to explore the process of internalisation, these would represent 

incommensurable differences. The research questions, however, seek to uncover the product 
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of internalisation – the existing measurement conceptualisations of the students – and not to 

uncover the process by which these were, or can be, acquired. 

Tools have been designed, utilising these theories, with the specific purpose of providing a 

snapshot of these conceptualisations. None of the three core ideas of either theorist, as 

summarised in Table 3.3, are applied in the analysis of the data. This is discussed in more detail 

in Chapter 4. 

3.8  MEDIATED MEASUREMENT INTERACTION 

The model of the dynamic assessment interview situation (Figure 3.15), and the model of the 

student as they engage in measurement activity (Figure 3.14) which are proposed here, together 

form a model which functions to define mediated measurement interaction in this study. Figure 

3.16 below outlines this model (also provided as Appendix J): 

Figure 3.16 The mediated measurement interaction model 
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The position of the mediator in relation to the task and the student has already been presented, 

but the process of this mediation, and the potential insight it provides requires expansion. As 

mentioned, the mediator in this interview situation is not involved in completing the 

measurement activity itself. The mediation takes the form of signs, in the form of verbal 

interactions with the student. In order for the student to make sense of the mediation provided 

in relation to the measuring activity, the sign needs to be interpreted. This interpretation 

influences the mental subject in terms of deciding how to adjust their approach and engage 

further in the activity. 

While the mental subject cannot be directly known, and therefore the existing measurement 

conceptualisations cannot be directly known, careful observation of the student as they work, 

and careful observation of their responsiveness to the mediation provided can allow a degree 

of insight into this. A student’s actions after sign mediation is provided can provide an 

indication of how that student has interpreted the sign, and this therefore provides a view into 

the existing measurement conceptualisation of the student. 

3.9 SUMMARY 

In this chapter, the theories guiding this research have been outlined and discussed for their 

relevance in answering the research questions. The theories of Piaget (1964) and Vygotsky 

(1926/1986; 1978) guided the structure of the chapter. Piaget, and neo-Piagetian David Tall, 

informed the view of mathematical understanding and measurement, while Vygotsky’s work 

provided a frame within which to view mediated measurement interaction. 

Tall’s (2013b) theory about the development of mathematical thinking, and the three worlds of 

mathematics, provides a structure that allows the classification of the demands of various 

measurement tasks, as well as progression in measurement learning according to South African 

curricula. A detailed discussion followed in which measurement and related concepts were 

defined and the domains of measurement relevant to this research were explored. 

Concepts derived from Vygotsky (1978) were synthesised to form a model that is used in this 

research to structure the methodology and allow insight into students’ measurement 

conceptualisation. 
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CHAPTER 4 

METHODOLOGY 

4.1  INTRODUCTION 

Cohen, Manion and Morrison (2011) explain that the design and planning of any research 

project centres on the purpose of the research. It is the research goal and questions that should 

guide the design of the research and the chosen methodology, and this requires careful 

consideration (Cohen et al., 2011). 

This chapter therefore opens with an explicit statement of the goals and questions to be 

addressed in this research. Thereafter, the research approach will be outlined. First the 

paradigm, ontology, epistemology and methodology will be discussed. Thereafter, the details 

of the design will be described, including site selection and participants as well as the methods 

employed. Following this, the data analysis approach and method will be outlined. 

It is also crucial to consider issues of validity and reliability, as well as ethical concerns related 

to the research. The chapter closes with a discussion of these.  

4.2  RESEARCH QUESTIONS 

The goal of this research is to explore the prior conceptual understanding of first year National 

Certificate (Vocational) Engineering students. The specific aims and questions are as stated 

below: 

Research aims  

• To explore the stable measurement conceptualisation of the students as evident in 

their engagement with mediated measurement tasks 

• To explore the partial or emerging measurement conceptualisation of the students 

as evident in their engagement with mediated measurement tasks 

• To explore where the break between what is needed as stable measurement 

conceptualisations, and what is possessed as emergent measurement 

conceptualisations, occurs 

 

 



92 

 

Research questions  

1. What stable measurement conceptualisations are evident in students’ engagement 

with mediated measurement tasks? 

2. What partial or emerging measurement conceptualisations are evident in students’ 

engagement with mediated measurement tasks? 

3. Therefore, based on the analysis of stability and emergence as evident in students’ 

engagement in mediated measurement tasks, where does the break between what 

is needed as stable conceptualisations, and what is present as emergent 

conceptualisations, occur? 

4.3  RESEARCH APPROACH 

This research is an exploratory, qualitative case study that takes an interpretive position and is 

located in a constructivist paradigm. In this section, the philosophical underpinnings of the 

research will be outlined in a discussion of the chosen paradigm and an explanation of the 

ontological, epistemological and methodological positions the research takes. 

Thereafter, the qualitative and exploratory nature of the research will be explained, and an 

argument for the case study design will be made. The case under investigation will also be 

explicitly delineated and the role and positioning of the researcher described. 

4.3.1 Research paradigm 

This research takes an interpretivist position within the paradigm of constructivism. The term 

‘constructivism’ encompasses a wide variety of  possible positions, of which this research has 

selected a very specific stance. This is described in the following section. 

4.3.1.1 Interpretivism as a research position 

Bhattacharya (2008) defines interpretivism as a practice or framework that encompasses a set 

of paradigms, among them constructivism. Tobin (2000, p. 487) similarly explains that 

interpretivism is “an umbrella term used to describe studies that endeavour to understand a 

community in terms of the actions and interactions of the participants”. This research takes 

interpretivism as its overarching frame, within which the chosen paradigm of constructivism is 

defined.  

As Tobin (2000) further points out, interpretive researchers engage in systematic activity that 

is focused on efforts to understand interactions between participants in a study. While Tobin 
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writes in particular of the interactions between participants, Cohen et al. (2011) explain that 

interpretive research “begin[s] with individuals and set[s] out to understand their interpretations 

of the world around them” (p. 60).  

In this research, the interaction in question is that between the individual student and the 

measurement task with which they are engaged, as well as the interaction between students and 

the mediator during the task-based interviews. The primary understanding sought is how these 

individuals interpret the world around them in terms of their conceptual engagement in tasks 

requiring the measurement of the attributes of real-world objects. 

4.3.1.2 Constructivism 

There are many variants of constructivism, and this study needs to position itself firmly in 

terms of the particular constructivist position it takes. In the following sections the key issues 

of constructivism will be outlined and an argument will be made for the particular theoretical 

stance, within the paradigm of constructivism. This chosen stance holds the most pragmatic 

value in seeking answers to the research questions.  

Where there is consensus among constructivists is in the notion that “the learner is not a passive 

recipient of knowledge but that knowledge is constructed by the learner in some way” 

(Rowlands & Carson, 2001, p. 1) as well as the view that this knowledge is actively constructed 

in response to social and physical interactions (Golafshani, 2003). There is agreement that there 

is cognitive potential present at birth, but knowledge and the methods used to acquire 

knowledge, are constructed through interactions between human beings in our “multiple and 

diverse realities” (p. 603) within our social and physical contexts. This study is broadly 

informed by this view of the individual student.  

These descriptions of constructivism are, however, an “oversimple gloss” (Phillips, 1995, p. 5) 

on the complex nature of constructivism, and there is “an enormous number of authors, 

spanning a broad philosophical or theoretical spectrum” (p. 6) that would call themselves 

‘constructivist’. Phillips (1995) criticises constructivism for its “rampant sectarianism” (p. 5) 

regarding positions taken as to what exactly is constructed, and how it is constructed. He also 

writes that in many constructivist texts the reader is left to infer for themselves what position 

the author is taking (Phillips, 1995).  
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Phillips (1995) provides a description of three continua, representing key issues, along which, 

he argues, the various forms or sects of constructivism would position themselves. Each 

continuum will be discussed in order to make explicit the particular constructivist stance taken 

in this research. 

These continua are: 

1. Individual psychology versus public discipline 

Is the researcher concerned with “how the individual learner constructs knowledge in 

his/her own cognitive apparatus… [o]r with the construction of human knowledge in 

general” (p. 7)? 

2. Humans the creator versus nature the instructor 

Is the construction of knowledge a process that is “influenced chiefly by the minds or 

creative intelligence of the knower or knowers, together with socio-political factors that 

are present when the knowers interact…[or] is the knowledge imposed from the 

outside…[with] nature serv[ing] as an instructor or…template” (p. 7)? 

3. Individual cognition versus social and political processes 

Is the activity of knowledge construction “described in terms of individual cognition or 

else in terms of social and political processes, or…in terms of both” (p. 8)? 

Individual psychology versus public discipline 

The focus of this study is on individual students as they engage in measurement tasks. 

Observations of the students as they perform these tasks are used to infer the measurement 

conceptualisation of the students in their own minds. Measurement as a knowledge domain is 

a public discipline, but this research is not concerned with the construction of human 

knowledge of measurement in general. It is concerned with the individual’s subjective view of 

this objective public discipline and is therefore positioned at the extreme end of this continuum: 

‘individual psychology’.  

Humans the creators versus nature the instructor 

Phillips (1995) provides the figure below in order to explain his second continuum, in 

particular, to differentiate two different meanings of the ‘humans the creators’ category. 

Humans are creators when individually constructing knowledge within their own minds. 

Humans are also creators in terms of the socio-political construction of disciplinary bodies of 
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knowledge (Phillips, 1995). One can therefore take a ‘humans as creators’ view and still 

maintain a focus on the cognition of an individual student. This position does not imply that 

the constructivist stance should be ‘public discipline’ on the first continuum, and/or ‘social and 

political processes’ on the third continuum if the research is to be paradigmatically coherent. 

Figure 4.1 Complexities of the second continuum 

 

(Phillips, 1995, p. 8) 

In its perspective on the mathematical domain of measurement, which is a public discipline, 

this particular research is positioned between the two poles of this continuum. In the case of 

practical measuring activities, the attributes of objects (e.g. area or volume) exist independent 

of the knower. They are “tangible and directly experienced quantities…and remain strongly 

connected to the measurer’s physical world” (Smith et al., 2011, p. 618). The public discipline 

itself links to the position of ‘nature the instructor’.    

The material tools used to measure these quantities; the language used to describe them; the 

symbolic conventions used to represent them and the computational strategies used to calculate 

them, however, can all be viewed as social constructions. They are “essentially social 

agreements…and this philosophical position implicates the social” (Ernest, 1998, p. 134). 

Humans are therefore the creators of these. 

When considering the mathematical domain of measurement, therefore, nature is an instructor 

in so far as the attributes of the objects to be measured exist independent of the student whose 

task it is to measure it. The tools and signs used by these students in the activity of 

measurement, however, reflect the cognitive work of scholars over generations (Phillips, 1995), 

and are thus viewed to be the creation of humans.  

Research Questions 1 and 2 ask about students’ existing measurement conceptualisations. The 

position this research takes regarding students’ constructed conceptualisation of measurement 
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is that of ‘humans as creators’. The individual student is born with “some cognitive or 

epistemological equipment or potentialities…but by and large human knowledge [is] 

constructed”.  

Research Question 3 asks where the break between what students need as stable measurement 

conceptualisations, but rather possess as emerging measurement conceptualisations, might 

occur. When considering the process of students’ construction of their measurement 

conceptualisations, it is the perspective of this research that these conceptualisations have been 

shaped by both students’ interaction with their physical world, and by their interaction with 

measurement tools, domain-specific language, symbolic conventions and computational 

strategies when these are introduced.  

Their learning is therefore due in part to informal learning, but is also due to the public domain 

disciplinary knowledge (the human creation) as it is introduced (see Section 3.4). Measurement 

always has a link to the physical world, but students’ interaction with the humanly created 

disciplinary knowledge plays a core role in this learning. As the mathematical domain of 

measurement is taken to involve both ‘nature as instructor’ and ‘human as creator’, answering 

Question 3 will similarly involve consideration of both, but with an emphasis on the 

conceptually accurate public domain knowledge that these vocational students are expected to 

have constructed. 

Individual cognition versus social and political processes  

Figure 4.1, provided by Phillips (1995) to explain his second continuum, contains within it a 

reference to the third. The distinction made within ‘humans as creators’, between socio-

political construction and individual creation of knowledge, is the distinction made here. 

In Chapter 2, the South African schooling context and the TVET college context were 

extensively described, and it is without question that social and political influences within these 

contexts have had an influence on the participating students’ mathematics education and 

thereby the degree to which they were able to construct conceptually stable and accurate mental 

representations of measurement concepts.  

This research does not, however, seek to explore the influence of social, political and cultural 

processes on knowledge construction. The focus is specifically on students’ individual 

cognition. It takes the view that although social and political influences exist, it is nevertheless 



97 

 

the individual cognitive activity of the student that results in their measurement 

conceptualisation. Social and political influences may strongly impact on the individual’s 

environment within which the individual interacts, but is the individual’s own mental processes 

that are involved in actual construction of their mental representations of measurement 

concepts based on this situation. It is this individual construction process that is the focus of 

this research. 

The perspective taken in seeking answers to Questions 1 and 2 is that the measurement 

conceptualisations are cognitive ‘human creations’ of each individual student. Question 3 asks 

about how best to facilitate students’ creation of accurate measurement conceptualisation. As 

knowledge construction is described in terms of individual cognition and not social and 

political processes in this research, this also positions the research with regard to Question 3 at 

‘individual cognition’ on this continuum.  

Summary 

The constructivist analytical position taken for the purpose of this research is that the learning 

of measurement concepts involves active, individual, cognitive construction. Learning 

“proceed[s] from an individual’s uniquely and individually constructed interpretation of [the] 

world” (Schuh & Barab, 2008, p. 78).  

As a basic summary, Figures 4.2 – 4.4 provide the constructivist positioning of the study on 

Phillips’ (1995) three continua.  

On continuum 1, the research selects as its focus on the individual psychology of the student. 

Figure 4.2 Continuum 1: Individual psychology vs Public discipline 

On continuum 2, the public discipline of measurement, is viewed to have been influenced by 

both ‘nature as instructor’ and ‘humans as creators’ 
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Each research question, however, is directed at understanding students’ individual construction 

of measurement concepts and these individual constructions are cognitive human creations. 

Figure 4.3 Continuum 2: Nature as instructor vs Humans as creators 

 

On continuum 3, the research uses the perspective of measurement knowledge as cognitively 

constructed by the individual student. 

Figure 4.4 Continuum 3: Individual cognition vs Social and political processes 

4.3.2 Ontology, epistemology and methodology 

In the following section, the general ontological and epistemological position of the research, 

as well as how they relate to the methodological position, will be outlined. The ontological 
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view is realist, the epistemological view is constructivist and the methodology is interpretivist. 

In keeping with the interpretivist methodology, the overall approach to the research is 

qualitative. 

4.3.2.1 Realism as ontology 

This research adopts a realist ontology. Realism is defined by Schuh and Barab (2008) as an 

ontological view that “there is some sort of reality that is separate from the mind” (p.68). 

This is not incommensurable with the chosen constructivist paradigm. Maton (2014) writes 

that knowledge and reality are frequently confused in discussions of ontology and 

epistemology. The realist ontological view that there is a real world does not preclude the claim 

that knowledge is constructed (Maton, 2014) by the individual.  

4.3.2.2 Constructivist epistemology 

This research claims a constructivist epistemology. That there are many variants of 

constructivism has already been explored, but there is an epistemological core that can be 

considered to run through these. This core is that “each individual mentally constructs the world 

of experience through cognitive processes” (Young & Collin, 2004, p. 375). As Young and 

Collin (2004) further explain “the world cannot be known directly, but rather by the 

construction imposed on it by the mind” (p. 375). 

The interpretation of the data will remain a personal interpretation of the researcher, based on 

internal cognitive processes, given the constructivist epistemology (Stake, 2010). Measures 

have been taken in the design of the research to enhance the validity and reliability of these 

interpretations (see Section 4.6).  

4.3.2.3 Interpretivist methodology 

Methodology is defined here as the overall approach to the research, rather than the specific 

methods for data collection (MacKenzie & Knipe, 2006; Schensul, 2008). It forms the frame 

of reference for the research design and is therefore strongly linked to the chosen research 

paradigm (MacKenzie and Knipe, 2006) and underlying epistemology. The methodology in 

this research is accordingly interpretivist.  
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Schensul (2008) writes that interpretivist methodologies “focus on the meanings attributed to 

events, places, behaviours and interactions, people, and artefacts” (p. 517). This is in keeping 

with the focus of this research, which lies in interpreting students’ behaviours and interactions 

as they engage in measurement-related tasks in order to discover their constructed meanings of 

measurement concepts. Just as constructivism is a paradigm that is encompassed by 

interpretivism, so is the focus on the constructions of the students in the research questions 

commensurable with an interpretivist methodology. 

Schensul (2008) further explains that the researcher’s own involvement is in the research is 

key. In an interpretivist study, meaning emerges “both through interaction among [the] 

participants and between the researcher and the participants” (p. 517). It is for this reason that 

part of the design of the task-based interviews, the core data collection method in this research, 

the researcher took the role of interviewer.  

4.3.2.4 Qualitative approach 

This research takes a qualitative approach to its design for its value in answering the research 

questions. This approach is in keeping with the interpretivist and constructivist paradigms 

within which it is situated as it is predominantly qualitative methods used in studies of that 

nature (MacKenzie & Knipe, 2006). 

According to Stake (2010), qualitative research is often defined as being interpretive research. 

Mardis, Hoffman and Rich (2008), however, write that the term ‘qualitative research’ is used 

in a variety of ways that are not always equivalent. Some of the terms used to define it include 

“method, methodology, tradition, framework and paradigm” (p. 174), with little consistency 

between authors. For the purposes of this research, it is described as an approach that has 

informed the design of the study 

Qualitative research is frequently defined negatively, that it is ‘not quantitative’, rather than 

providing an explanation of what it is (Mardis et al., 2008). Denzin and Lincoln (2005) provide 

a more substantial definition:  

…qualitative research is a situated activity that locates the observer in the world. It 

consists of a set of interpretive, material practices that make the world visible. These 

practices transform the world…attempting to make sense of, or interpret, 

phenomena in terms of the meanings people bring to them (p. 3) 
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The research questions require data to be drawn from students’ engagement in measurement 

tasks. It is not the final result of their efforts that is sought, but evidence from their engagement 

as they work to arrive at their solutions. What is needed is an in-depth analysis the detailed text 

and image data that a qualitative approach will emphasise (Cresswell, 2014) and descriptions 

of “the action, the dialogue, the people… and the passage of time” (Stake, 2010, p. 48). It is 

this qualitative data that provides “richness and colour” (Wellington, 2014, p. 29) to the 

descriptions and therefore greater depth to the possible interpretations. 

4.3.3 Exploratory research 

As has been established, the area of research is one about which there is relatively little known, 

therefore the nature of the research is exploratory. Stebbins (2007) explains that “when 

researchers possess little or no scientific [knowledge] about the group, process, activity or 

situation they want to examine” (p. 327) their research is frequently exploratory in nature. 

Exploratory research is designed to take an “open, flexible and inductive approach” (Durrheim, 

2006, p. 41) in attempting to maximise the discovery of new insight. The research is not 

predicated by a collection of a priori theoretical predictions (Stebbins, 2007), rather, it is out 

of the data that further questions and hypotheses emerge (Cohen et al., 2011). 

The first two research questions are exploratory in nature. They aim ‘to explore’ students’ 

conceptualisations. The third question, turns from the exploratory to propose emergent 

hypotheses from the data. While the design of the measurement tasks themselves was carefully 

based on theory, the structure of the interviews was such that the students lead the process – 

the enquiry was not steered too tightly (Cohen et al., 2011). In addition, no a priori predictions 

were made for the analysis. Patterns and categories were permitted to emerge from the data as 

it was explored (Wellington, 2015). 

4.3.4 Case study research 

Cresswell (2007) lists five approaches to qualitative inquiry: narrative research, 

phenomenology, grounded theory, ethnography and case studies. This research takes the form 

of a case study. He defines a case study as being research that “involves the study of an issue 

explored through one or more cases within a bounded system” (p. 73). The issue being explored 

was the nature of students’ constructed measurement conceptualisations, and this was studied 

through a number of cases within a bounded system.  
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Blatter (2007) writes that case studies focus on “one or a few instances, phenomena, or units 

of analysis, but they are not restricted to one observation” (p. 68). The phenomenon under 

investigation was ‘students’ engagement in measurement tasks’, and it was not restricted to 

one observation. There were five measurement tasks that students engaged in, and this was 

viewed in five sets of observations. 

Stake (2005) differentiates between intrinsic, instrumental and collective case studies. 

Collective case studies involve the selection of multiple cases that are selected because it is 

“believed that understanding them will lead to better understanding, and perhaps better 

theorising, about a still larger collection of cases” (p. 46). With this definition in mind, the 

individuals as they interact with the measurement tasks can be defined as the cases.  

Case studies are also defined by the fact that they are ‘bounded’ (Cresswell, 2011). According 

to Stake (2005), these boundaries define what is inside and what is outside the system. This 

case study was not situated in a naturalistic setting. Students were placed in a problem solving 

situation that was created by the researcher. Tasks were given, as well as the resources with 

which to complete them, and a specified time was set aside to engage in them. This created 

very clearly defined boundaries of time and place.     

In summary therefore, the research took the form of a collective case study. The issue being 

explored was the ‘nature of students’ constructed measurement conceptualisations’. The 

specific phenomenon being investigated was ‘students’ engagement in measurement tasks’, 

which was conducted in a series of five sets of observations. The cases were defined as ‘the 

individuals as they interacted with the tasks’ and the case study was bounded by the time and 

space of the interview situation.  

4.3.5  Position of the researcher 

This research required the students to complete five measurement tasks. The first four tasks 

were completed in task-based interviews with the researcher acting as the interviewer. The final 

task was a written test. The researcher was not present for this task and thus did not influence 

the participants or the setting. The documents were accessed and analysed off-site. In this 

section the different roles of the researcher will be described. These include participant-

observer, mediator and nonparticipant observer. 
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4.3.5.1 Participant-observer 

Blatter (2007) explains that for case studies in which the ontological view is realist, the purpose 

of the case is to “reveal the authentic nature of a phenomenon by getting as close as possible” 

(p. 69). Similarly, Stake (2010) points out that in qualitative research, the standard design 

requires the person who will be interpreting the data to be making the observations in the field. 

Both Blatter (2007) and Stake (2010), in their explanations, imply that the researcher should in 

some way participate directly in the research.  

In this research, the researcher takes the position of a participant-observer in order to get as 

close as possible to the students as they engage in the measurement tasks, thus making a more 

in-depth interpretation of the resulting data possible. The researcher takes the role of the task-

based interviewer, thus participating in the research. Observations were made and noted during 

the interview, and video data from the interviews were used to make further observations.  

Wellington (2015), however, cautions that the very presence of the researcher will have an 

influence on the research situation, before even taking into account the nature of their 

participation. This holds implications for the validity and reliability of the research, a full 

consideration of which is made in Section 4.6. 

4.3.5.3 Unobtrusive nonparticipant observation 

The participant-observer position was not the only one taken in this research. The final task 

was a written test, during which the researcher was not present. The researcher therefore 

adopted the role of a nonparticipant observer. Savenye and Robinson (2004) write that it is 

often the case that the observer is present, and therefore still influences the situation to an 

extent, in this case, however, the researcher was not present, nor did they influence the design 

of the assessment. The researcher’s observations were made by examining the students’ test 

papers after they had been written. This document analysis would be classified as an 

unobtrusive form of non-participant observation (Savenye, Robinson, Niemczyk & Atkinson, 

2008).  

4.3.6  Summary of research approach  

This research takes an interpretivist position within the paradigm of constructivism. It takes a 

very specific position within constructivism, which is in itself a vast paradigm. This position 
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has been described in terms of the view this research takes on individual psychology, individual 

cognition and knowledge.  

The ontology, epistemology and methodology have also been established, and details regarding 

the approach, nature, methods and position of the researcher have been outlined. 

Appendix K provides a summary of the research approach. 

4.4  RESEARCH DESIGN 

The research design involved conducting task-based interviews to dynamically assess the 

students’ existing measurement conceptualisations. First year students were selected from a 

TVET college Engineering programme to engage in five measurement tasks, one of which was 

a written assessment. Thirty-nine students participated in the research project, ten of whom 

completed all five tasks. 

The details of the research design are described in the following sections. 

4.4.1 Site selection and participants 

An Eastern Cape TVET college was selected for this research. This college serves both a highly 

industrialised urban area, as well as the western half of the Eastern Cape, a rural region 

characterised by high rates of unemployment and poverty (DHET, 2016c). It was formed in 

2002 by the merger of four Eastern Cape technical colleges, and has eight campuses across the 

province (DHET, 2016c). The campus chosen for this research was situated in the industrial 

area of a small Eastern Cape town.  

From the 2014 intake of NC(V) Level 2 Engineering and Related Design students, 39 were 

selected to participate in this study. These students were studying one of three NC(V) 

programmes: Automotive Repair and Maintenance, Fitting and Turning or Welding. It was 

compulsory for all students in these programmes to take Mathematics as a subject. There were 

7 mathematics classes with 25 students per class.  

In the following two sections, the process of site and participant selection will be described, 

and the student demographics of the sample group will be outlined.  
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4.4.1.1 Sampling methods 

Purposive sampling, a type of non-probability sampling (Cohen et al., 2011), was used in this 

study. Intentional decisions were made regarding what site, and which student participants, 

would provide the richest information regarding the phenomenon being explored (Cresswell, 

2011). Cohen et al. (2011) provide the argument that while purposive sampling allows greater 

depth of data, it restricts the breadth of the study, therefore limiting the generalisability of the 

findings. As the purpose of the research is to conduct an in-depth exploration of a phenomenon, 

this is a strength of this sampling method rather than a limitation. 

There are several types of purposive sampling. Critical sampling is one example. Wellington 

(2015, p. 120) defines this as “choosing special cases for certain purposes”, citing as an 

example, selecting a college reputed to show ‘good practice’. This is the strategy that was 

employed in selecting the site for the research. 

There are eight, multi-campus, TVET colleges in the Eastern Cape. During the time when the 

process of site selection and negotiation of access was started for this research, the majority of 

these colleges were enduring protracted, and at times violent, student unrest, as well as 

undergoing forensic investigations while under administration (see Fengu, 2013; Gillham, 

2013; Gowa, 2013; Nkonkobe, 2013; Parliament of South Africa, 2013). The college that was 

chosen for the research, experienced student unrest at one of its campuses, but not the campus 

offering NC(V) engineering programmes (see Dayimani, 2013). The critical sampling-led 

choice was to approach the most stable of the eight colleges to request access and this was 

granted. 

Maximum variation sampling was used to select the student participants. This type of sampling 

involves “searching for cases or individuals who cover the spectrum of positions and 

perspectives in relation to the phenomenon one is studying” (Palys, 2008, p. 698).  

The prior schooling of TVET students, in terms of the highest grade passed, and the results 

they obtained, varies widely (see Sections 2.3 and 2.6). Students’ prior engagement in 

constructing measurement concepts, as would have happened during schooling, is taken to have 

had an impact on the students’ current constructions of measurement, therefore the sample 

needed to reflect a variety of such student backgrounds. The students’ lecturers assisted the 

researcher in identifying students who varied in their prior schooling experience and the sample 
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was selected accordingly. This is what Wellington (2015) terms a guided sampling strategy, in 

which “a knowledgeable guide…directs the researcher to people or settings” (p. 120).  

4.4.1.2 Sample group demographics 

There were 39 students who participated in this research. A list of these students, together with 

the relevant demographic information, is provided as Appendix L. Of these students, 18 were 

female and 21 male. They ranged in age from 18 to 34, the distribution of which is shown in 

Figure 4.5. The median age was 22. 

Figure 4.5 Age of student participants 

 

Students differed with regard to their prior schooling level of mathematics (see section 2.3.1 

for the descriptions of the South African qualification levels). The highest level of mathematics 

passed ranged from NQF Level 1 (Grade 9 and ABET Level 4) to NQF Level 4 (Grade 12 

Mathematics or Mathematical Literacy). The number of students per qualification level is 

shown in Figure 4.6. 

 

 

 

0

2

4

6

8

10

12

14

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

N
u

m
b

e
r 

o
f 

st
u

d
e

n
ts

Age

Age of student participants



107 

 

Figure 4.6 Number of students per qualification level  

 

The qualification level of the programme in which they were enrolled was Level 2, however, 

as can be seen in Figure 4.6, many of the students had some experience of mathematics at 

Levels 3 and 4. 

As reported in Section 2.6.1, the quintile status of the schools attended prior to entering the 

college is accepted to reflect the quality of education they received (van Wyk, 2015). It does 

not indicate the real learning that took place within each individual, as there are more complex 

individual and social factors that also contribute to an individual’s development of concepts. 

Statistics do show, however that overall performance varies greatly between quintiles (Spaull, 

2013). For this reason, students were requested to indicate what school they had attended 

previously. 
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Figure 4.7 Quintile status of schools previously attended by participants  

 

The students were studying one of three NC(V) programmes: Automotive Repair and 

Maintenance; Fitting and Turning and Welding. 18 students in the sample were enrolled for 

Automotive Repair and Design, 11 for Fitting and Turning and 10 for Welding. The breakdown 

of the sample in terms of NC(V) programmes is represented in Figure 4.8.  

Figure 4.8 Students per NC(V) programme 
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4.4.1.3 Contextual influences on sample selection 

Two weeks into the data collection phase student protests had started at this college. The 

student protests led to the eventual closing of all campuses of the college for a period of a 

month (reference excluded to maintain confidentiality). Later in the same year, college 

lecturers engaged in protest action, again causing the college to close for a period of time 

(reference excluded to maintain confidentiality).  

This influenced the composition of the student sample. As will be detailed in section 4.4.2, 

there were five measurement tasks completed by the students. The initial sample consisted of 

27 students. Following the student strikes, student attendance at classes dropped considerably. 

Appendix M provides a list of the students participating in the study indicating which tasks 

they completed. As is evident in this appendix, the number of students from the sample who 

were still available for interview 3 had decreased.  

The initial plan for interview 4 was to allow students from within the sample to form pairs to 

complete task 4. The number of students available from the sample by the time interview 4 was 

conducted had decreased to the extent that the researcher allowed students to select a peer from 

outside the sample for the task. This expanded the number of student participants to 39. 

The final task took the form of their formal mathematics test. The results for this test 

contributed towards the students’ final mathematics result, therefore even students who had not 

been attending class arrived to write this assessment. This accounts for the increase in the 

number of students completing task 5. Only 8 students from the initial 27 completed the full 

set of 5 tasks.  

4.4.2 Methods 

Two methods were used to gather data in this research: task-based interviews and a formal 

written test. Four task-based interviews were conducted, each involving a measurement task. 

The formal test represented the fifth measurement task.  

The data was collected in the form of video recordings of the task-based interviews, and the 

test scripts from the formal written test were collected as a documentary source of data. 

In the following sections the design of the task-based interviews and the formal test will briefly 

be discussed, as well as the method of using video recordings as a means of gathering data. 
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4.4.2.1 Task-based interviews 

Structured task-based interviews were the primary means of data collection in this research. 

Goldin (2000) defines such interviews as involving “a subject (the problem solver) and an 

interviewer (the clinician), interacting in relation to one or more tasks (questions, problems or 

activities) introduced to the subject…in a pre-planned way” (p. 519). He also notes that such 

interviews can be adapted to reveal the subject’s mathematical knowledge, as well as to 

improve the teaching of mathematics (Goldin, 2000). Given that the aims of this research 

include investigating students’ conceptualisation of measurement, as well as to derive from the 

results suggestions regarding how to improve the teaching and learning of these concepts, this 

method is particularly appropriate.  

Early behaviourist criticisms of task-based interviews as a research method claimed that it is 

only the subjects’ physical responses that were observable and measurable and that any derived 

conclusions regarding cognition and internal representations were scientifically indefensible 

(Goldin, 2000). Constructivism, however, “allows and encourages the construction of models 

for cognition or mental processes” (p. 536). Goldin (1997, p. 40) explains that task-based 

interviews generally serve two processes in research: 

(a) observing…mathematical behaviour…usually in an exploratory problem-

solving context 

(b) drawing inferences from the observations to allow something to be said about 

the problem-solver’s possible meanings, knowledge structures, cognitive processes, 

affect or changes in these in the course of the interview 

Hurst’s (2008) study of primary school students’ mathematical thinking included in its aims a 

consideration of how effective task-based interviews were in identifying modes and levels of 

mathematical thinking in the participants. He examined three components of numerate 

behaviour: mathematical knowledge, contextual knowledge and strategic knowledge, and 

concluded that “task-based interviews can be useful tools for helping teachers assess the 

mathematical thinking of their students” (Hurst, 2008, p. 295). As Maher and Sigley (2014) 

note, there is “substantial and growing evidence that clinical task-based interviews and their 

variations provide important insight into subjects’ existing and developing knowledge, 

problem-solving behaviours and ways of reasoning” (p. 581). When compared to traditional 

written tests, task-based interviews allow a deeper insight into students’ process and reasoning 

about mathematical ideas (Maher & Sigley, 2014). 
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4.4.2.2 Dynamic assessment design of task-based interviews 

The approach taken in designing these task-based interviews was one of dynamic assessment 

(see Section 3.6). The tasks were structured in such a way as to access both the students’ stable 

measurement conceptualisations as well as to ascertain what conceptualisations were in the 

process of emerging. Mediation was therefore a key part of the design.  

The researcher took the role of mediator during the task-based interviews. The tasks were not 

given to the students to complete without available assistance, rather, the researcher provided 

mediation when students were unable to continue moving forward in their measurement 

activity after attempting to do so for some time.  

Students were provided with certain tools to measure the object in question, and the students 

possessed psychological signs, in the form of their existing constructed measurement 

conceptualisations and knowledge, that mediated their actions as they engaged in the task (see 

Section 3.5.5 for a discussion of tools and signs).  

The mediator was conceptualised to be the provider of implicit or explicit mediation (see 

Section 3.5.7 for a discussion on the difference between implicit and explicit mediation), in the 

form of signs, when observation of the students’ measuring activity was interpreted to indicate 

that they required assistance in moving forward. Figure 4.5 shows the position of the mediator 

in relation to the measuring activity of the subject. Appendix J, which provided the model for 

understanding the mediated measurement interaction developed in Chapter 3, provides a more 

detailed illustration depicting the position of the mediator during the task-based interviews. 

As Goldin (2000) cautions, “it should be completely clear…that it is the presented task, not the 

interpreted task, that is subject to…control” (p. 526). As Figure 4.9 shows, the mediator 

observes the activity of the student as they engage in the measuring activity and makes a 

decision about whether to provide mediation, and what mediation is to be provided, based on 

their interpretation of the student’s activity. Furthermore, the student engages in the measuring 

activity according to how they have interpreted it. 
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Figure 4.9 The position of the mediator 

 

 

 

 

 

In order to answer the research questions, the amount and level of mediation required by 

students in order to complete the task was recorded, as well as observations of the capacity they 

were able to demonstrate without mediation. Mediation from the interviewer was only provided 

if students were unable to move forward after attempting to do so for some time, or if students 

deviated significantly from a course of action that would bring them closer to an accurate 

solution. The students’ responsiveness to this mediation allowed insight into their constructed 

measurement conceptualisations.  

The design of the tasks used in the interviews was similar to those used by Simon, Saldanha, 

McClintock, Akar, Watanabe and Zembat (2010) which involved the use of carefully designed 

mathematical tasks intended to promote activity that is expected to result in the development 

of a new concept. Simon et al. (2010, p. 72) “create[d] a simplified situation to study an aspect 

of learning at a fine-grain level”. This research explored existing measurement 

conceptualisation, rather than learning, but the same approach was used. What Simon et al. 

(2010) argue is that the complexity of mathematical conceptual understanding is difficult to 

study, therefore the “simplified situation can…provide insight that might not have been gleaned 

without that effort” (p. 72).  

Students were encouraged to choose their own strategies and were told that there was no fixed 

strategy that needed to be recalled or adhered to. This allowed the researcher to observe their 

freely chosen strategy, and prevented the provision of “premature guidance” (Goldin, 2000, p. 

542) which would compromise the depth of the information gained from observing the student. 

As Goldin (2000) advises, the researcher should accept “for the time being all productions 

generated during the interview, without imposing preconceived notions about appropriate ways 

to solve the problem” (p. 542). He notes that flexibility by the interviewer is essential in task-
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based interviews (Goldin, 1997). This means “being able to pursue a variety of avenues of 

inquiry with the learner or problem solver, depending on what takes place during the interview” 

(Goldin, 1997, p. 53). 

Mediation was categorised broadly as being either implicit or explicit (see Section 3.5.7). A 

student able to complete a task after only implicit mediation was understood to have more 

“control over what is to be learned and is therefore further along the way towards autonomous 

performance” (Lantolf & Poehner, 2011, p. 20) than a student who required more explicit 

mediation. Examples of implicit mediation included prompts as simple as pointing, while 

mediation of a more explicit nature included cases where the interviewer provided brief 

instruction on how to carry out a particular method.  

A further distinction was made regarding the type of mediation occurring in the interviews. At 

times mediation was focused on conceptual issues, such as asking a leading question requiring 

the student to recall that area is about coverage. At other times mediation was about helping 

students to recall a particular method for calculating area. Method-level mediation does not 

intervene at the concept-level, therefore, if a student is able to complete the task without 

conceptual mediation, they can be considered to hold a more stable and accurate 

conceptualisation of the domain of measurement. For this reason, concept-level mediation was 

taken to be of a higher-order than method-level mediation. 

The following were the basic levels of mediation used: A – none; B – reassurance; C – prompt 

(method/concept); D – leading question (method/concept); E – instruction (method/concept); 

F correction (method/concept). A to D represent what was considered implicit mediation, and 

E and F represent explicit mediation.  

The figure below provides a visual representation of these levels on a continuum from their 

least to most explicit forms. 

Figure 4.10 Basic levels of mediation 

 

none Implicit mediation Explicit mediation 
 *(m) – method; (c) - concept 

A B  - C(m)  - C(c)  - D(m)  - D(c) E(m)  - E(c)  - F(m)  - F(c)
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These levels can be considered to be a part of the design of the interview. They formed the 

basic framework of the types of mediation anticipated to be required by the students, based on 

the work of Lantolf and Poehner (2011), as described in Section 3.7. Basic examples of each 

type are provided in Appendix N.  

Goldin (2000, p. 544) writes that task-based interviews should be designed to be “alert to new 

or unforeseen possibilities”. Despite the researcher anticipating certain levels and types of 

mediation as part of the “criteria for major contingencies” (p. 541) in the design, it was 

recognised that there may be adjustments required.  

In some interviews, where the most explicit levels of mediation were not enabling students to 

make progress in the measuring activity, this meant that the task was abandoned in favour of 

using it as a teaching moment. At other times, it meant providing a type of mediation that was 

not anticipated to be needed prior to the interview.  

The detailed design of each interview is provided in Chapter 5. 

4.4.2.3 Video recordings 

The depth of the observations that were made during the interviews was affected by the fact 

that the researcher adopted the role of interviewer and mediator as well as making observations. 

The interviews were therefore video and audio recorded in order to “capture the minutiae of 

social interaction and behaviour that [was] not possible with observation alone” (Gibson, 2008, 

p. 917).  

The video and audio recording was made by setting a small camera up on a tripod and allowing 

it to record continually from the moment the interviewer left to fetch the student participant to 

the moment the student left the interviewing room. The camera captured an audio recording 

with the video recording. This was done in order to minimise the attention drawn to the camera 

as the interviewer did not need to turn it on or off while the student was present. No additional 

individual was required to enter the interviewing situation in order to manage the video 

recording. 

The students’ permission to record the interviews was acquired during the first interview, but 

at the beginning of each interview the student’s attention was briefly drawn to the camera to 



115 

 

remind them that the interview was being recorded. This was done for ethical reasons so that 

students were not being recorded without their knowledge.  

Significant decisions are made when setting up the video-recording equipment. The researcher 

needs to decide whether to take the participant or observer perspective (Hall, 2000), as shown 

in Figure 4.11. The image on the left shows the scene from an observer perspective, and that 

on the right shows the interaction from the perspective of one of the participants. 

Figure 4.11 Observer and participant perspectives in video recording 

 

(from Hall, 2000, p. 657) 

The researcher also needs to decide what lies in the frame (Gibson, 2008). This forms a type 

of theoretical commitment (Hall, 2000). In this case, the researcher decided to acquire an 

observer perspective recording of the student as they engaged in the task. The frame focused 

only on the students and showed only the area in which the students were working. Below is a 

screenshot from a video of students as they completed task 4. 

Figure 4.12 Observer perspective and framing of video of interview 4 
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This perspective and framing allowed a close view of the students’ engagement with the 

measurement task, which is the focus of the research questions. It allowed the close analysis of 

every move the students made as they completed the task.  

4.4.2.4 Formal written test 

This task represented a “traditional means [of] evaluat[ing]…knowledge or skills” (van Gog, 

Remy, Rikers & Ayres, 2008, p. 784). Maher and Sigley (2014, p. 580) emphasise, in their 

description of task-based interviews as a data collection method, that written assessments of 

mathematical knowledge “do not address conceptual knowledge and the process by which a 

student does mathematics and reasons about mathematical ideas and situations”. They are, 

however, the means by which students are summatively assessed in the TVET college context 

(DHET, 2011), and therefore warrant inclusion in the data collected for the study.  

Tall’s (2013b) three worlds of mathematics includes the symbolic formal world, in which 

students work at a formal level with the abstract formulae and symbols associated with 

measurement. A written test can provide evidence of students’ work in this world, particularly 

where students have shown in detail the processes by which they have arrived at their solutions.  

The formal written test was administered after the students had attended classes in which the 

measurement content of the Mathematics Level 2 curriculum (DHET, 2011) was taught. These 

lectures were conducted by the mathematics lecturers, without the influence of the researcher, 

in 8 one-hour lectures. The documents were accessed by the researcher for analysis. This 

particular test assessed the students’ ability to calculate area, total surface area and volume. 

A detailed description of the test is provided in Chapter 5.  

4.4.3 A summary of the research design 

This section has described the research design, from site selection and sampling to providing 

details of the methods. Thirty-nine students participated in the research, with ten completing 

all tasks included in the research. The research design included four task-based interviews in 

which the students engaged in mediated measurement tasks, and the final task took the form of 

a written test. The task-based interviews were designed to dynamically assess the students’ 

existing measurement conceptualisations. Included in their design was careful consideration of 
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the role of the interviewer as mediator and the form of mediation that would be available to the 

students. 

4.5  DATA ANALYSIS 

Although there was a strong influence of theory in the design of the measurement tasks used 

in the task-based interviews, the open and inductive approach taken in the analysis of the data 

is minimally theory-led. It is strongly linked to the data gathered and the observations made 

during the interview.  

4.5.1  Overall approach 

The overall approach to the data analysis in this research can be described as “open, flexible 

and inductive” (Durrheim, 2008, p. 41). Understanding and knowledge of students’ constructed 

measurement conceptualisations has been pursued by establishing a relationship between 

observations made during their engagement with measurement tasks (Fox, 2007) and theory. 

The researcher builds “patterns, categories and themes from the bottom up by organising the 

data into increasingly more abstract units of information” (Cresswell, 2014, p.186). 

Through the process of inductive reasoning, the researcher is able to “develop generalised 

propositions, hypotheses and theory from empirical observations” (Fox, 2007, p. 430). 

Wellington (2015, p. 40) emphasises that “the theory is firmly grounded in [the data] and [is] 

derived from it”. This process allows the researcher to propose theory based on the data 

gathered regarding students’ measurement conceptualisations, including propositions 

regarding how to best facilitate the students’ construction of accurate and stable measurement 

conceptualisations. One can therefore categorise the purpose of the overall data analysis 

approach taken in this research to be ‘generative’ (Clement, 2000). 

Both constructivist and sociocultural researchers have developed theoretical tools that could 

have been used for analysis in this study, however, the exploratory nature of the research 

demanded a more grounded approach. Inductive analysis was guided by the data as it emerged, 

and theory was later referred to in order to better understand the “propositions, hypotheses and 

theory” (Fox, 2007, p. 430) that arose.  

The potential conflict in utilising ideas from both Piagetian and Vygotskian perspectives, as 

discussed in section 3.7, also contributed to the decision to apply a grounded approach to the 
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analysis. This allowed the use of tools derived from their work to be blended in order to view 

the product of learning, without imposing the analytical perspective of either one.  

4.5.2 Analysing the task-based interviews 

Data collection can be viewed as both prior and parallel to data analysis (Lesh, 2000). In 

offering mediation during the interview, the interviewer interpreted the actions and utterances 

of the students and, based on this interpretation, made a decision as to the type of mediation 

that was most appropriate. This was itself a form of analysis, and is represented in Figure 4.13. 

Figure 4.13 Parallel data collection and analysis 

From Lesh, 2000, p. 665 

A process of inductive, generative data analysis then followed the data collection. The video 

recordings allowed repeated viewings of the interviews, thus continual, constant comparison 

was possible in repeated iterative cycles. The figure below best represents the timing of the 

analysis in this research: 

Figure 4.14 Timing of data analysis 

 

 

Adaptation of Lesh, 2000, p. 665 

4.5.2.1 First steps in processing raw data 

The raw data from the task-based interviews (observation notes, artefacts and video recordings) 

and the raw data from the written tests (test scripts) were collected and filed. The observation 

Data collection and interpretation 

occur in parallel during the interview 

DATA COLLECTION 

DATA ANALYSIS 

} 
DATA ANALYSIS 

DATA COLLECTION 

DATA ANALYSIS 
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notes, artefacts and test scripts were scanned and filed electronically as well as in their original, 

hard copy form.  

The process of summarising the data was then initiated. Observation notes and the video-

recordings were summarised together in order to arrive at a comprehensive description of the 

interviews. A descriptive narrative of the interview was created that included observation notes 

made during the interview, a description of the mediation provided by the interviewer and the 

actions and utterances of the student. As the primary role of the researcher was that of 

‘interviewer’ during the task-based interviews, it was not possible to make extensive 

observation notes while the student worked, but there were a number made.  

Figure 4.15 serves as a basic illustration of the composition of this narrative. The arrow denotes 

the passage of time from the beginning to the end of the interview. The aim at this point was 

“not to codify abstract regularities but to make thick description possible” (Geertz, 1973, p. 

26). The figure shows the components of the narrative with the codes ‘S’, ‘M’ and ‘O’, but it 

should be noted that the data itself was accordingly still in its “thick” (p. 26) descriptive form 

and these moments were not yet coded. 

Figure 4.15 The composition of the interview narrative 

 

 

4.5.2.2 The inductive process 

The next step in processing the data, and the first major step in its analysis, was to code the 

interviewer mediation. As there were a number of predetermined types of mediation built into 

the design of the task-based interviews, this provided a starting point for the process. As 

described in Section 4.4.2.2, these were coded according to the categories shown in Figure 

4.10. 

Student Action/Utterance 

S1  S2 S3 S4 S5  

Interviewer Mediation 

 M1   M2  M3 

Informal Observations 

  O1 O2   O3 

NARRATIVE 

S1 M1 O1 ; S2 O2 ; S3 M2 ; S4 S5 O3 ; M3 
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A further layer was therefore added to the narrative: the code assigned to the level of 

interviewer mediation in the manner shown in Figure 4.16. 

Figure 4.16 First level of coding of the narrative 

 

 

Only one interview narrative was created at a time, with its initial mediation coding. After the 

creation of each narrative, the codes and details of the new narrative were closely compared to 

the existing ones in search of possible patterns and themes. This signalled the true beginning 

of the inductive process of “working back and forth between the themes and the data base” 

(Cresswell, 2014, p. 186).  

Iterative cycles of data analysis were performed in what can be defined as “constant 

comparison” (Savenye et al., 2008, p. 772). This iterative process was continued until there 

were no new categories of student action, or mediation, emerging (Savenye et al., 2008). In 

order to verify each emergent pattern of category, the thickly described narrative as well as the 

raw video data was consulted. 

In some instances, a code appeared so frequently that it became clear that there were subtleties 

to each example of its use that allowed the category to split. In others, several coded moments 

could be collapsed into one category. 

Wellington (2015) provides the following diagram summarising the constant comparative 

method of refining categories, which reflects the process taken in this research: 

 

 

 

 

 

 

NARRATIVE 

S1 M1 O1 ; S2 O2 ; S3 M2 ; S4 S5 O3 ; M3 

 (M1 code)   (M2 code)  (M3 code) 
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Figure 4.17 Process of constant comparison 

 

From Wellington, 2015, p. 263 

Saturation in the analysis (Saumure & Given, 2008) was considered to have been reached when 

no further patterns could be discerned and no further categories were emerging from the data. 

Wellington’s (2015) diagram (Figure 4.16) reveals the questions asked to determine whether 

this point had been reached: 

1. Can any categories be combined to form one? 

2. Can any one category be split into two (or more) categories? 

3. Do the categories account for all the data? 

4. Are the categories mutually exclusive? 

Data divided into 'units 
of meaning'

Units grouped/classified 
into categories

New units of meaning 
subsumed under these, 
or used to develop new 

categories

Search for similar 
categories (could two be 

merged into one?)

Examine large, 
amorphous categories 
(could one be split into 

two?)

Check: (a) Do all the 
categories cover all the 
data? (exhaustive) (b) 
Are they different, not 
overlapping? (mutually 

exclusive)

Integrating: looking for 
connections, contrasts 

and comparisons 
between categories
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An answer of ‘no’ to questions 1 and 2, and ‘yes’ to questions 3 and 4, was taken to indicate 

that saturation had been reached. 

4.5.2.3 The role of critical incident analysis  

Critical incident analysis is a qualitative research method that is effective as an exploratory and 

investigative tool (Butterfield, Borgen, Amundsen & Maglio, 2005). It was utilised in this 

research in the selection of events for analysis from the task-based interviews. 

This method was developed by John Flanagan in 1954 as a procedure for “collecting observed 

incidents having special significance and meeting systematically defined criteria” (Flanagan, 

1954, p. 327). Flanagan (1954, p. 327) defines what is meant by an incident: 

By an incident is meant any observable human activity that is sufficiently complete 

in itself to permit inferences and predictions to be made about the person 

performing the act. To be critical, an incident must occur in a situation where the 

purpose or intent of the act seems fairly clear to the observer and where its 

consequences are sufficiently clear to the observer and where its consequences are 

sufficiently definite to leave little doubt concerning its effects. 

The method was developed for use in the field of aviation (Flanagan, 1954), but has since been 

applied more widely, including in the field of education research (Butterfield et al., 2005).  It is 

a flexible approach that Flanagan (1954) noted should be adapted to the particular research 

problem and context.  

Harrison and Lee (2011), for example, explored the value of critical incident analyses in initial 

teacher education by allowing student teachers to identify what they considered to be critical 

incidents in their classroom experiences. These critical incidents were used to initiate 

professional learning dialogue with the aim of improving “critical reflective practice” (Harrison 

& Lee, 2011). Similarly, Lister and Crisp (2007) provided student and practice teachers with a 

structured critical incident analysis framework developed to guide student teachers in reflective 

practice. These teachers found that the use of this technique assisted them in understanding 

“how theoretical concepts influenced their thoughts and actions” (Lister & Crisp, 2007, p. 52) 

during their teaching placement. 

In this research, critical incident analysis was utilised during data summary and analysis of the 

task-based interviews. Critical incidents were identified in the video data and transcribed and 

described in rich and precise detail. The criteria for an incident to be classified as ‘critical’ 
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included the following: (1) it was clear what led up to the incident; (2) it was possible to provide 

a detailed description incident; and (3) the outcome of the incident was clear (Butterfield et al., 

2005).   

Critical incidents included for analysis in this research were those moments in which students 

performed actions in their measurement of the objects in the task, verbalised what they were 

thinking as they performed the task, made gestures during their verbal explanations or recorded 

in writing their calculations as they worked. In addition, they included the moments in which 

mediation was offered, and the students’ subsequent actions. These formed the broad, basic 

data considered during data analysis. As Cohen et al. (2011) point out, a behaviour may occur 

only once in the research data, but should not be ruled out on the basis that it occurred only 

once. Every such critical incident was therefore included for analysis.  

At a more detailed level, there were critical incidents identified from the video and written data 

as points of data that were ‘richer’ than others, or that stood out in their uniqueness. This 

included examples where students provided more detailed and in-depth explanations of their 

working or where they wrote more detailed and in-depth notes during the task. In addition, it 

included those moments in which students approached a task with an original method different 

to those used by the majority. Cohen et al. (2011) explain that: 

…sometimes one event can occur which reveals an extremely important insight into 

a person or situation…[these] appear to the observer to have more interest than 

other ones and therefore warrant greater detail and recording than other events; they 

have an important insight to offer (p. 424). 

These more detailed critical incidents were crucial to the constant comparison process, as in 

their richness they suggested certain initial categories and permitted insight into the slightly less 

descriptive critical incidents. As analysis progressed, these deeper critical incidents, where they 

arose, served to confirm or disconfirm the validity of the initial categorisation, and therefore 

further informed the process. This is, according to Butterfield et al. (2005), a hallmark of the 

critical incident technique as applied to data analysis.  

4.5.2.4 Basic and emergent mediation codes 

The basic mediation levels and types were provided in Section 4.4.2.2. Those had been built 

into the design of the interviews. As the data was analysed through iterative cycles of constant 

comparison, there were a number of additional categories that emerged when patterns revealed 
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that “large, amorphous categories” (Wellington, 2015, p. 263) could be split into two. The full 

list of mediation levels and types are provided in the figure below: 

Figure 4.18 List of basic and emergent mediation levels and types 

none Implicit mediation Explicit mediation 

*(m) – method; (c) – concept; (a) – artefact 

These codes refer to the following: 

A: no mediation 

B: reassurance 

C(m):  prompt (method) 

C(c):  prompt (conceptual) 

P(a): provision of an additional artefact 

D(m): leading question (method) 

D(p):  leading question (process) 

D(c): leading question (conceptual) 

R(a): reference made to artefact 

E(m): instruction (method) 

E(c): instruction (conceptual) 

F(m): correction (method) 

F(c): correction (conceptual) 

Artefacts are defined as objects within the space of the measurement activity. The mediator did 

not become involved in the performance of the task, but did at times refer to (by pointing) an 

object already present, or add an object, e.g. a calculator, to the tools available to the student. 

This was still considered sign mediation, as no explanation was provided as to how to make 

use of the object in question and in what way it would be useful. This interpretation was left to 

the student.  

The category D(m), when analysing the data, contained many examples in which the mediator 

had merely provided an extra artefact, thus leading the student to understand that this artefact 

would be useful, but without any further explanation. This is more implicit than a verbalised, 

method-level leading question, and was thus separated out into its own, more implicit, category 

as P(a). 

A B  - C(m)  - C(c)  - P(a) - D(m)  - D(p) - D(c) - R(a) E(m)  - E(c)  - F(m)  - F(c)
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Similarly, the category of E(m) contained many examples in which the mediator made less 

instructive reference to an artefact already present, rather than providing more descriptive, 

verbal instruction about the method to follow to solve the problem. Therefore, this category 

(R(a)) is less explicit than E(m). 

Appendix N provides a full list of the mediation levels, including examples of each. Their 

emergence will be described in each relevant presentation and analysis chapter (Chapters 6 to 

9). 

4.5.3  Analysing the written test 

The researcher accessed the student scripts from the written measurement test that they wrote 

subsequent to two weeks of instruction on measurement in their mathematics classes.  

Students had been instructed to show as many of the steps taken in their calculations as 

possible, and not to simply provide a final solution. As such, their responses could be 

summarised and analysed for recurring patterns. Iterative cycles of data analysis, involving 

constant comparison, were carried out in a manner similar to that used in the analysis of the 

task-based interviews. 

4.5.4 A summary of data analysis techniques 

The overall approach to the analysis of the data was “open, flexible and inductive” (Durrheim, 

2008, p. 41).  

Interview narratives were constructed from the raw data by noting moments of mediation, 

student actions and further informal observations as critical incidents. A narrative was 

constructed for each interview before the full group of interviews was examined as a whole. 

As a first step in analysis, moments of mediation were coded according to the basic levels 

identified during the design of the interviews. Several iterative cycles were performed when 

coding the mediation and new categories emerged from the data. 

A similar approach was taken to analysing students’ performance on the written test. Responses 

were summarised and analysed and iterative cycles of analysis similarly highlighted recurring 

patterns. 
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4.6 VALIDITY AND RELIABILITY 

It is recognised that one of the major criticisms in studies where the researcher is a participant 

in the research is the question of the validity of the findings (Savenye & Robinson, 2004). In 

addition, the inductive and generative approach to the analysis of the data has similarly been 

criticised for being “less scientific” (Clement, 2000, p. 548) and therefore lacking in validity 

and reliability. Particular care has been taken to address such criticisms while designing this 

research as well as analysing and interpreting the data.  

Denzin and Lincoln (2005) argue that the traditional criteria for evaluation, validity and 

reliability, need to be reconceptualised when evaluating qualitative, interpretive research.  

Lincoln and Guba’s (1985) trustworthiness criteria of credibility, transferability, dependability 

and confirmability are frequently used to evaluate qualitative research. Schwandt (2007, p. 

299) provides definitions for each of Lincoln and Guba’s (1985) criteria: 

Credibility:  “providing assurances of the fit between respondent’s views…and 

the inquirer’s reconstruction and representation of the same” 

Transferability: “providing readers with sufficient information on the case studied 

such that readers [can] establish the degree of similarity between 

the case studied and the case to which findings might be 

transferred” 

Dependability:  “ensuring that the process was logical, traceable and documented” 

Confirmability:  “call[ing] for linking assertions, findings, interpretations … to the 

data in discernible ways” 

Onwuegbuzie and Leech (2007) have identified several methods to increase the accountability 

of the qualitative researcher and address Lincoln and Guba’s (1985) trustworthiness criteria. 

Among these are: persistent observation; triangulation; leaving an audit trail; member 

checking; clarifying researcher bias; peer debriefing; rich and thick description; and 

quantitising data (Onwuegbuzie & Leech, 2007).  

4.6.1 Persistent observation 

In this research, persistent observation was made possible by recording the interviews. This 

allowed the researcher to carefully “separate relevant from irrelevant observations” 

(Onwuegbuzie & Leech, 2007, p. 239) when identifying patterns and categorising data into 

codes during the constant comparison process. The same was the case for the written test as 
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the researcher was able to keep copies of the tests in order to return to the originals multiple 

times. This persistent observation of the original data, as well as the persistent scrutiny of the 

emergent patterns and categories during the constant comparison process supports the claims 

made in the interpretation of the data in this research. 

4.6.2 Triangulation 

Triangulation “reduces the possibility of chance associations” (Onwuegbuzie & Daniel, 2003) 

and can be defined as the use of more than one data collection method (Cohen et al., 2011). In 

this research two main methods were used to explore students’ engagement with measurement 

tasks: task-based interviews and a formal written test. The triangulation of methods, however, 

extends beyond this distinction. The task-based interviews themselves were structured 

differently and focused on different types of measurements and measurement activity. 

The first two interviews were similar in their structure, with the student working on a 

simplified, non-contextualised measuring task. The measuring task and concepts would also 

have been school-met for these students. In the third interview they were presented with the 

task of calculating a composite measurement, and in the fourth they collaborated with a peer 

to solve a practical, real-world measurement problem. Together the interviews allowed a more 

nuanced view of the students’ measurement conceptualisations than a single design would have 

permitted.  

4.6.3 Leaving an audit trail 

Leaving an audit trail involves careful compilation and storage of all documents and records 

pertaining the data collection, analysis and interpretation. Cohen et al. (2011, p. 312) list “raw 

data, records of analysis and data reduction, reconstructions and syntheses of data [and] process 

notes” as some of the information required. While the research report cannot include all of 

these, they are available for scrutiny. The video data, for ethical reasons, are not available for 

viewing, but their transcriptions are. 

4.6.4 Member checking 

Member checking was incorporated in the task-based interviews. Where appropriate and non-

intrusive the researcher asked probing questions in order to elicit students’ explanations of what 

they were thinking and doing as they worked. This informal member checking assisted the 
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researcher in interpreting the interview data both in parallel to the data collection process (see 

Figure 4.13) and subsequent to the interviews (see Figure 4.14).  

4.6.5 Clarifying researcher bias 

It was crucial to carefully assess any possible researcher bias, in particular due to the researcher 

playing a number of roles in the research. Onwuegbuzie and Leech (2007, p. 236) define 

researcher bias as “when the researcher has personal biases or a priori assumptions that he/she 

is unable to bracket” and warn that when this remains unchecked there is the possibility of 

contamination of data collection, analysis and interpretation.  

The researcher had experience working in the TVET context as a mathematics lecturer, which 

was the stimulus for this research. This experience, however, did lead to several assumptions 

as to what will occur in the interviews. One assumption that needed to be deliberately bracketed 

was that students would struggle in some way with the measurement tasks. While the researcher 

did not hold the personal view that TVET students are somehow ‘less capable’ than students 

in other settings, the pervasive language used in discussions around TVET mathematics 

performance is negative and it is easy to slip into viewing and describing the students’ 

performance in such terms.  

In order to prevent this from contaminating the data collection, particular care was taken to 

delay mediation for as long as possible during the interviews. This was to allow the students 

sufficient time and space to display their knowledge, rather than mediating too quickly on a 

premature assumption that the student was struggling. The data could then speak to the 

capabilities of the students rather than to exclusively highlight the moments in which they 

required mediation. 

Bias was also a risk in the data analysis and interpretation phases. The researcher needed to 

allow patterns and categories to emerge independent of her own views about the students’ 

performance in the interviews or the test. By remaining cognisant of this risk, and by constantly 

returning to the raw data to confirm whether codes had been correctly assigned, this bias was 

minimised.  

In constructivist research the results will always be a report of an interpretation of events, but 

acknowledgement of potential biases and consistent reflection on the part of the researcher can 

limit the risk of the researcher contaminating the research with their own assumptions.  
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4.6.6 Peer debriefing 

Peer debriefing involves acquiring “external evaluation of the research process” (Onwuegbuzie 

& Leech, 2007, p. 244). In order to acquire such evaluations an effort was made to present 

emergent findings at a number of conferences and speaking opportunities both prior to data 

collection (see Vale, 2014), during data collection and parallel analysis (see Vale, 2015a; 

2015b) and in the later stages of data analysis and interpretation (see Vale 2015c; 2015d; 2016). 

This peer debriefing provided feedback from those Cohen et al. (2011) might refer to as 

“disinterested peer[s], in a manner akin to cross-examination, in order to test honesty, working 

hypotheses and to identify the next steps in the research”. 

4.6.7 Rich and thick description 

Rich and thick data was gathered in this research. From the video recordings of the interviews, 

descriptions were written that focused on the dialogue between the interviewer and the student, 

the gestures made by the students while speaking and the actions taken by the students while 

working. This focus on multiple levels of action deepened the data and provided support to the 

claims made when interpreting the data.  

As described in Section 4.5.2.3, critical incident analysis was utilised as part of the data analysis 

approach. Data points that were considered particularly ‘critical’ included those that contained 

more detail than others, i.e. more detailed verbalisations and more detailed written work. These 

lent themselves to richer and thicker description. The identification of these particular critical 

incidents, and their use to confirm or disconfirm certain categorisations, served to enhance the 

trustworthiness of the claims made in this research.  

The critical incident analysis technique has, in itself, been shown to be reliable and valid. 

Butterfield et al. (2005) describe two historical studies that sought to establish the reliability 

and validity of the critical incident analysis approach to data analysis: that of Andersson and 

Nilsson (1964) who focussed on the job performance of grocery store managers, and Ronan 

and Latham’s (1974) who studied the performance of pulpwood producers. Both of these 

focussed on establishing the reliability and validity of their selection of critical incidents, and 

their subsequent analysis of these (see Andersson & Nilsson, 1964; Ronan & Latham, 1974). 

Both studies arrived at the conclusion that this method has satisfactory reliability and validity. 
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In contemporary qualitative research, it is the trustworthiness and credibility of the technique 

that is sought, rather than the more positivistic measures of validity and reliability. Butterfield 

et al. (2005) note that “there appears to be a lack of literature regarding a standard or 

recommended way to establish the trustworthiness or credibility of the results in a critical 

incident technique study” (p. 485). They describe a review of 19 masters and doctoral 

dissertations from the Counselling Psychology programme at the University of British 

Columbia, in which the credibility and trustworthiness checks were examined and used to 

establish a list of nine credibility checks that can be used to “enhance the robustness of 

…findings” (p. 486). Of those nine, those used in this study included (Butterfield et al. 2005): 

Conducting more than one interview: each student participated in more than one 

interview, and each interview was conducted with multiple students 

Discussion of tentative categories with an expert: as patterns and categories 

emerged these were discussed with a more experienced researcher in mathematics 

education and the categories considered for refinement when insights were gained 

during these interactions 

Creation of main categories was based on the number of participants demonstrating 

a specific type of incident: while unique incidents were noted and described, it was 

the incidents which were displayed by a larger number of students that informed 

the categorisation of data 

Comparing the categories to the existing research and literature in the field to 

determine whether there is support for them: existing research and literature was 

sought and consulted as each category emerged 

Video recording the interviews in order to attain an accurate reproduction of the 

action and words of the participants: the video recordings of the task-based 

interviews, as well as the students’ written tests, as an audit trail available for 

verification of the veracity of the transcriptions and descriptions. 

4.6.8 Quantitising qualitative data 

Onwuegbuzie and Daniel (2003) write that qualitative researchers do make use of terms such 

as ‘frequently’, ‘more’, ‘most’ or ‘less’. Despite their relative nature, these are, however, 

quantitative concepts (Onwuegbuzie & Daniel, 2003). If a qualitative researcher makes such 

claims in relation to their data, without supporting this with the counts of the observations that 

allowed them to make these conclusions, the reader is forced to accept the researcher’s 

interpretation without evidence. Cohen et al. (2011) use the term ‘data transformation’ to 
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describe the counting of qualitative observations, while Onwuegbuzie and Daniel (2003) refer 

to it as quantitising. Quantitative terminology has been used in this research to make certain 

claims, and where this is done, the supporting counts are provided in the form of tables and 

graphs. 

4.6.9 Summary of approach to ensuring trustworthiness 

In this research, eight of the measures suggested by Onwuegbuzie and Leech (2007) to enhance 

trustworthiness, were applied. These included persistent observation; triangulation; leaving an 

audit trail; member checking; clarifying researcher bias; peer debriefing; rich and thick 

description; and quantitising data.  

4.7  ETHICAL CONSIDERATIONS 

Savenye and Robinson (2004, p. 1063) write that “all researchers must be concerned with 

preventing subjects from being harmed, protecting their anonymity and privacy, not deceiving 

them and securing their informed consent”. The design of this research and each step in the 

data collection, analysis and reporting was guided by these principles.  

Prior to engaging in the research, a proposal was presented for approval and ethical clearance 

from the Rhodes University Education Faculty Higher Degrees’ Committee. Subsequent to 

obtaining this approval, official permission to conduct the research was sought from 

“gatekeepers” (Cresswell, 2011, p. 24) at various levels at the chosen TVET college. 

Permission was granted by the campus manager, the head of NC(V) mathematics, the head of 

NC(V) Level 2 Mathematics, and the two Level 2 Mathematics lecturers with whom I directly 

worked. 

The students approached to participate in the research were informed about the purpose of the 

research. This knowledge allowed the students to consider themselves partners in the research 

and assisted in building rapport with the researcher. Time was devoted to informal conversation 

and the building of rapport. It was acknowledged that the situation may have felt uncomfortable 

due to the researcher being a stranger, and students visibly relaxed after this.   

After the purpose of the research had been explained, the students were also explicitly told 

what participation in the research would involve. Each interview would require a sacrifice of 

time, but would offer the benefit of a learning experience in measurement. After explaining the 
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costs and probable benefits, the students were asked whether they would be prepared to 

participate.  

It was emphasised that participation was voluntary, and that they could withdraw at any stage 

in the project without affecting their relationship with the college or their lecturers. Students 

were guaranteed anonymity in any reports (pseudonyms have been used throughout), and were 

assured that all records from the interviews would remain confidential and would be stored 

securely.  

Students were required to sign a consent document (attached as Appendix O) before the task-

based interview was started, but this document was not used to coerce them into participating 

in any of the subsequent interviews. The students were all over the age of 18, and were therefore 

able to give consent without the need for additional permission from a parent or guardian.  

As Gibson (2008, p. 917) emphasises, “video recording raises unique ethical issues related to 

maintaining privacy and confidentiality”. Students’ attention was drawn to the video camera at 

the beginning of the first interview and the purpose of the recording was explained. Students 

were assured that the recording was for the researcher to use for analysis and that no one outside 

of the research project, including their lecturers, would view it. The videos would also not be 

used in any public presentation in a manner that would compromise anonymity. One of the 

measures taken to ensure this has been to be highly selective of the images used in this report. 

No screenshots have been included in which the whole face of a student can be seen, and images 

of the interviews have been used sparingly.    

There were unique ethical challenges in this research as a result of the student and staff protests 

which disrupted college activities during the time of data collection. The campus was evacuated 

during one of the task-based interviews. This interview was terminated and all staff members 

were asked to leave the site for the remainder of that week while safety concerns were 

addressed. Safety could not be guaranteed for a month after this evacuation, and it was decided 

that data collection would only resume once the campus was fully operational and secure. 

Furthermore, because of lost academic time, lecturers were providing extra lessons after 

college hours in order to assist students to catch up. This required the researcher to adjust the 

timing of the task-based interviews so as not to conflict with these additional lectures. It is 

essential in any research to be “respectful to the research site” (Cresswell, 2011, p. 230) as well 
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as safeguard the welfare and interests of the students (Savenye & Robinson, 2004). In this case 

it required the adjustment of some of the data collection plans.  

In the data analysis and the reporting of the findings of this research, the primary concern was 

to uphold the ethical principle that “data should be reported honestly, without changing or 

altering the findings to satisfy certain predictions or interest groups” (Cresswell, 2011, p. 24). 

Every data point from every interview has been included in the analysis. No data or findings 

have been altered or eliminated to serve any purpose, and all has been reported honestly.  

4.8  SUMMARY 

This chapter has presented the research approach, research design and data analysis techniques 

employed in this study. In addition, care has been taken to describe how trustworthiness was 

enhanced, as well as to describe the measure taken to ensure that the research was conducted 

in an ethical manner. 

The task-based interviews were described here only in broad terms. Their detailed description 

is provided in Chapter 5 before the presentation and analysis of the data that emerged from 

them is provided in Chapters 6 to 9. 
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CHAPTER 5 

THE FIVE MEASUREMENT TASKS 

5.1  INTRODUCTION 

Four measurement tasks were designed to explore the constructed measurement 

conceptualisations of the student participants during the task-based interviews. The fifth 

measurement task in which students engaged was a formal written test. The purpose of these 

tasks was to allow a snapshot of the existing measurement conceptualisations of students to be 

taken. While the task-based interviews were conducted over a period of time, there is no 

longitudinal follow-through from Task 1 to Task 5 built into the design. Each task in itself 

permitted a view of a specific set of aspects of measurement conceptualisation.  

The first two were classic tasks that had appeared in several other studies assessing students’ 

basic conceptual knowledge in the domains of area (e.g. Barrett et al, 2011; Feikes, 

Schwingendorf & Gregg, 2009) and volume measurement (e.g. Ben-Haim et al., 1985; 

Voulgaris & Evangelidou, 2004). These measurements were both chosen as examples of 

“tangible and directly experienced quantities” (Smith et al., 2011, p. 618).  

These tasks were not contextually situated, nor did they represent tasks that students would 

realistically be required to complete in a workplace situation. They were, however, chosen for 

their faithfulness to the conceptual essence of the measurement. To complete each task, 

students required a strong grasp of the embodied measurement concept in question and did not 

need to employ any symbolic procedures in order to measure the quantity.  

Due to the fact that more tangible quantities lead to composite quantities, such as rates (Smith 

et al, 2011), the third task required students to measure fluid volumetric flow rate. Volumetric 

flow rate is defined by Inamdar (2012) as “volume of fluid flowing past a section per unit time” 

(Inamdar, 2012, p. 7). The task was modelled on that used by Inamdar (2012) in which the 

volumetric flow rate was calculated for a tank with an aperture through which fluid flowed out. 

Work is very seldom performed by an individual in isolation and “problem solving work 

carried out in the world today is performed by teams” (PISA, 2015, p. 4). For this reason, the 

fourth task matched a more realistic workplace situation in allowing students the opportunity 

to collaborate with a peer while working on a more complex, contextually situated 
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measurement task. The students were not viewed, for analysis, as a dyad. The focus remained 

on one student and their responsiveness to mediation, which in this case originated from the 

interviewer as well as the peer. Sign mediation was provided by the interviewer, while tool and 

sign mediation could be considered to be provided by the peer due to the collaborative nature 

of the task.  

The form of assessment chosen by the TVET college to assess students’ ability to measure and 

calculate measurements was a formal written test. This was therefore selected as the fifth task 

for analysis. 

Chapter 4 (Section 4.4.2.1) provided information about the overall design and process followed 

in the task-based interviews. This chapter will provide a detailed description of each of the 

tasks presented to the students in these interviews, as well as the written test.  

5.2 TASK ONE: MEASURING THE AREA OF AN IRREGULAR SURFACE 

Twenty-seven interviews were conducted for Task 1. Students were asked to calculate the area 

of an irregular surface, and were given a small, square tile to use as a unit. Only one unit tile 

was provided so that students were required to devise an iteration strategy. While the question 

was of an abstracted nature in that it provided no context to the problem, it did require a strong 

conceptual grasp of measurement, area, as well as the use of units. Students were provided with 

the unit, rather than needing to make a choice between artefacts and/or units so that the analysis 

could be focused on the application of an embodied understanding of area. This focus would 

have been diminished should the extra requirement of an appropriate choice of artefact and unit 

be included in the task.  

In order to complete the task, area needed to be understood as “an amount of region (surface) 

that is enclosed within a boundary and … that this amount of region can be quantified” (Baturo 

& Nason, 1996, p. 238). The key understanding of the measurement process required in this 

task was that of the “repetition (or iteration) of units” (Outhred & McPhail, 2000, p. 491) as it 

required students to place the tile systematically over the area with no gaps or overlaps. 

Different covering strategies could be expected depending on the student’s understanding of 

area.  

Students needed to apply comparative reasoning, in which “one must relate each object to some 

unit object and report its size in terms of those units (Barrett, Cullen, Sarama, Clements, 
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Klanderman, Miller & Rumsey, 2011) as well as to understand that the number of these units 

represents the measure of the area (Outhred & McPhail, 2000). Therefore, the area of the 

surface would be calculated as the number of tiles that would be required to cover the surface. 

Students were provided with a 2-dimensional irregular shape, a single tile (1cm × 1cm), a 

straight edge (uncalibrated ruler), a pencil and a piece of paper. They were instructed to 

measure, as accurately as possible, the area of the surface using the tile as a unit. 

To construct a rectangular array within the surface would require approximately 48 tiles. When 

considering the remaining area, approximately 14 additional unit tiles would be required. The 

approximate solution was therefore 62 square units.  

Figure 5.1 The question: Measure the area of the surface using the tile as a unit 

  

Surface 

 Unit 
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Figure 5.2 Student working on Task 1 

 

5.3 TASK TWO: MEASURING THE VOLUME OF A CUBE 

Twenty-six interviews were conducted for Task 2. Students were required to calculate the 

volume of a given cube, and were given a small unit cube to do so. Only one cube was provided 

so that students would need to devise a strategy that would allow them to iterate the unit. The 

task was explained, but before starting the measurement process, the interview opened with the 

question “what is volume?” 

Volume needed to be understood to be the amount of space that an object occupies, and the 

size of the volume was to be reported in terms of the size of the unit cube. Students required 

the same key understanding of the measurement process (Outhred & McPhail, 2000) and 

comparative reasoning (Barrett et al, 2011) as for Task 1. 

In order to calculate this volume, the three-dimensional unit cube needed to be iterated to create 

a three dimensional array of cubes (Revina, Zulkardi, Darmawijoyo & van Galen, 2011), in 

essence ‘packing’ cubes to create an identical solid. Given that only a single unit was provided, 

an efficient means of doing so would be to use a “spatial structuring strategy…to determine 

the number of cubes in terms of layers and then multiply…to obtain the total number of cubic 

units” (Revina et al., 2011, p. 129). 

Students were provided with a solid wooden block (4cm × 4cm × 4cm), a single unit cube 

(1cm × 1cm × 1cm), a straight edge, a pencil and a piece of paper. The metric dimensions of 
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the solid were not provided and students were not told that it was a cube. The task required 

students to measure the volume of the solid using the smaller cube as a measurement unit. 

The volume of the solid was 64 cubic units. 

Figure 5.3 The question: Measure the volume of the block using the small cube as a unit 

 

Figure 5.4 Student working on Task 2 

 

5.4 TASK THREE: MEASURING VOLUMETRIC FLOW RATE 

There were eighteen interviews conducted for Task 3. In this task, students were required to 

observe as water flowed from various holes in a cylindrical container and to calculate the 

average volumetric flow rate for each of four given situations. The diameter of the holes and 
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their positioning differed in each example. The pressure was not kept constant as the water 

flowed out. 

An illustration of the cylindrical container used in Task 3 is provided in Figure 5.5. The relative 

diameters and positions of the holes can be seen on the illustration, as well as the linear scale 

used to calibrate the cylinder to show the 6 units of volume.  

Figure 5.5 Cylindrical container used for Task 3 

 

Figure 5.6 shows an image of the interviewer and a student as they complete this task. In the 

first frame, the student can be seen observing the water flow out of the container, and using a 

stopwatch to measure the amount of time it took. In the second frame the student is inspecting 

the container after the water has flowed out to determine the quantity that flowed out.  

Figure 5.6 Student and interviewer participating in Task 3 

     

There were four subtasks: the first pair of subtasks involved students calculating average 

volumetric flow rate over ten seconds, the second pair involved students calculating the same 

for a given volume. These will be described in the sections that follow. 
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5.4.1  Subtasks 1 and 2: Calculating average volumetric flow rate for a given period 

In Subtask one, a hole with a diameter of 2mm was opened for a period of 10 seconds. Students 

were asked two questions:  

(1) What is the volume of water that flowed out in 10 seconds?  

(2) What is the average flow rate? 

Figure 5.7 shows the front view of the cylinder indicating the position of the hole, and the side 

view when time = 0 seconds and at time = 10 seconds. One can see that 2 ¾ units flowed out 

in 10 seconds.  

Figure 5.7 Task 3, Subtask 1 

          

In Subtask two, a hole with a diameter of 1mm (half of that in Subtask 1) was opened for a 

period of 10 seconds. Before commencing with the task of measuring, students were asked 

what volume they predicted would flow out in ten seconds. Students were asked the same two 

questions: 

(1) What is the volume of water that flowed out in 10 seconds?  

(2) What is the average flow rate?  

Figure 5.8 shows the front view of the cylinder indicating the position of the hole, and the side 

view when time = 0 seconds and at time = 10 seconds. One can see that 1 unit flowed out in 

10 seconds.  

 

 

1 1 1 

    Front view       Side view: start            Side view: end 
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Figure 5.8 Task 3, Subtask 2 

           

It is also apparent in both Figure 5.7 and 5.8 that the stream flowing out of the cylinder changed 

in shape from the beginning to the end of the 10 seconds. The pressure in the system was not 

constant, therefore as the height of the water in the cylinder decreased, so did the pressure. This 

resulted in the shape of the stream of water changing, reflecting a decrease over time of the 

volumetric flow rate. It was, however, the average volumetric flow rate that students were 

required to calculate, therefore attention to this aspect was not required. 

5.4.2  Subtasks 3 and 4: Calculating average volumetric flow rate for a given volume 

Subtasks 3 and 4 differed from Subtasks 1 and 2 in two important ways: two holes were now 

opened and the time was to be measured for a given volume that was to flow out.  

In Subtask 3, two holes with a diameter of 1mm each were opened, and 4 units of volume were 

to be observed flowing out. These holes were positioned horizontally in relation to one another. 

Students were again asked two questions. For this subtask, these were: 

(1) How long did it take for 4 units to flow out of the cylinder?  

(2) What is the average flow rate? 

In a similar manner to Subtask 2, before observing and measuring, students were required to 

make a prediction. They were asked to predict the length of time they thought it would take for 

four units to flow out. 

Figure 5.9 shows the front view of the cylinder indicating the position of the holes, and the side 

view when time = 0 seconds; volume = 6 units and when volume = 2 units. 

 

2 2 2 

    Front view       Side view: start            Side view: end 
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Figure 5.9 Task 3, Subtask 3 

          

In Subtask 4, the two holes were identical in diameter to the two in Subtask 3, but were 

positioned vertically. After making a prediction regarding the length of time they thought it 

would take for four units to flow out, they were again asked: 

 

(1) How long did it take for 4 units to flow out of the cylinder?   

(2) What is the average flow rate? 

Figure 5.10 shows the front view of the cylinder indicating the position of the holes, and the 

side view when time = 0 seconds; volume = 6 units and when volume = 2 units. 

Figure 5.10 Task 3, Subtask 4 

          

 

Figures 5.9 and 5.10 again show changes in the streams of water from the beginning to the end 

of the measuring activity. The difference was more pronounced in these subtasks than for 

Subtasks 1 and 2.  

3 3 3 

    Front view       Side view: start            Side view: end 

4 4 4 

    Front view       Side view: start            Side view: end 
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In Subtask 3 this was due to the fact that it took longer for a volume of 4 units to flow rate, and 

this increase in the length of the observation allowed the students to notice the change. For 

subtask 4 this was because when the holes were aligned vertically, the flow out of the top hole 

decreases and eventually comes to a halt during the period of observation. Students were asked 

to account for these changes at the conclusion of these subtasks. 

5.5 TASK FOUR: COLLABORATIVE AREA MEASUREMENT TASK 

Ten interviews were held in which students collaborated to complete a measurement task. Each 

interview involved one student who had participated in the earlier tasks in the research, and 

this student was invited to choose any other Level 2 classmate to join. The student whose 

engagement was analysed, was the student who had participated in the earlier tasks.  

This altered the mediation situation slightly. Sign mediation was offered by the interviewer, as 

per the other tasks, but the peer, because of their direct involvement in the task, contributed at 

a tool and sign level. The analysis of these interviews is elaborated upon in Chapter 8. 

This task required the calculation of area, but rather than the highly simplified but abstracted 

nature of the task in interview 1, a more complex and context-rich problem was posed. The 

task was designed to resemble a measurement task that may realistically be required in a 

workplace situation.  

As with the previous task-based interviews, students’ performance was dynamically assessed 

with the interviewer acting as a mediator. The interviews were video-recorded for later 

summary and analysis. 

5.5.1  The question 

Students were provided with an A3 map of a holiday resort and were asked to calculate the cost 

to build the resort. An A4 version of this map is included as Appendix P. 
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Figure 5.11 Map of holiday resort 

 

Students were given the following card containing the context-based question and the essential 

information required to respond to it:  

Figure 5.12 Information card 

In addition to the map and the above card, students were provided with: a 30cm ruler; a 15cm 

ruler; paper; pencils; erasers; and a basic calculator.  

A building contractor has provided a quotation for constructing this resort. The 

buildings that need to be built include: 

 

 19 holiday houses 

 The Bohemia Beach Bar and Grill restaurant 

 The Blu Seafood Restaurant 

 The Frigate Bay House (purple) 

 

The contractor calculates his quotation according to a price of R8500 per square metre 

(m2). 

What is the total that the contractor would charge to construct these buildings? 

The scale of the map is 1:700 
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Prior knowledge that was required for this task included the following: 

 How to use a ruler to accurately measure length 

 How to calculate the area of rectangles, triangles and circles 

 How to calculate the area of composite figures 

 How to use a scale to interpret a map 

 How to calculate cost when provided with cost per unit 

All of the above prior knowledge should have been school-met for these students. 

5.5.2 Mediation 

While mediation differed subtly for each pair, depending on their chosen approach to the 

problem, there were cards prepared with information that was anticipated to be requested. 

These cards acted as additional artefacts to which the students could refer while solving the 

problem and contained the formulae for calculating the areas of the basic shapes that appeared 

on the map. They were provided when it was judged that students were finding it difficult to 

proceed without this information.  

Figure 5.13 Artefact cards containing area formulae 

 

 

 

 

 

 

5.5.3 The interview process 

The interview opened with a verbal description of the problem. Students were instructed to 

attempt to solve the problem without the interviewer’s assistance, and informed that assistance 

would be available if they were struggling significantly at any stage. 

To calculate the area of a triangle, use the formula:  

AREA = ½ × BASE × PERPENDICULAR HEIGHT 

To calculate the area of a circle, use 

the formula 

AREA = 𝜋 × (RADIUS)2 

To calculate the area of a rectangle, 

use the formula  

AREA = LENGTH × BREADTH 
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There was particular mention made of the formulae that would be required in order to solve the 

problem. It was explained that they would only be provided after students had made an attempt 

to recall them. 

In order to observe the capacity students demonstrated while solving the problem, as well as 

the amount and level of mediation required, minimal interruption of the students’ process was 

crucial. In order to achieve this, certain errors were allowed to be carried forward to later stages 

of the problem. Interviewer mediation was delayed until the end of the interview in these cases. 

These errors were: 

 The use of the diameter, rather than the radius, in the calculation of the area of the 

circular restaurant 

 The use of a side of a triangle, rather than the perpendicular height, in the 

calculation of the area of the triangles forming the hexagonal restaurant 

 The overlap of the rectangles added together to form the composite shape of the 

hotel building 

 The exclusion of a rectangle when adding together the rectangles forming the 

composite shape of the hotel building 

As with Tasks 1 to 3, the interview was concluded with instruction, for those students requiring 

it, regarding how one could arrive at the accurate solution. Mediation addressing these 

anticipated possible errors was delayed until this stage, and was then provided in order to allow 

the students an opportunity to correct these errors. This mediation was coded and included in 

the interview analysis.  

The question was posed in such a way as to allow students to determine their own approach to 

the problem. Therefore, aside from the pre-determined guidelines described above, the decision 

to provide mediation was at the interviewer’s discretion. 

5.6 TASK FIVE: FORMAL WRITTEN TEST  

A formal written test was used by the college lecturers as the instrument for assessing the 

students’ ability to measure length, area and volume. This test is included as Appendix Q. The 

test assessed the following Subject and Learning Outcomes (DHET, 2011, p. 15): 
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TOPIC 3: SPACE, SHAPE AND MEASUREMENT 

Subject Outcome 3.1  Measure and calculate physical quantities 

Learning Outcome 3.1.2 Use symbols and Système International [SI] 

units as appropriate to the situation 

Subject Outcome 3.2  Calculate perimeter, surface area and volume in 

two- and three-dimensional geometric shapes 

Learning Outcome 3.2.1  Calculate the perimeter and surface area of the 

following laminas: square; rectangle; circle; 

triangle; parallelogram; trapezium and hexagon 

Learning Outcome 3.2.2 Calculate the volume of the following geometric 

objects: cubes; rectangular prisms; cylinders; 

triangular prisms and hexagonal prisms 

The test consisted of 16 questions. Eight questions required students to calculate the volume of 

various geometric objects, five required students to calculate the total surface area of geometric 

objects, two required the calculation of length, and one question required students to find the 

area of a two-dimensional surface. 

Eight questions were accompanied by text which provided a context to the problem. Seven of 

these included a diagram representative of the object or lamina. The remaining eight questions 

involved the calculation of the volume and total surface area of three-dimensional objects 

represented only by diagrams.  

The tests used for analysis were those written by students involved in any of the interviews. 

The total number of students who had participated in at least one interview amounted to 39. By 

this stage of the academic year, 27 students remained of this group, with the attrition due to 

specific contextual factors (see Section 4.4.1.3). The question paper was collected as well as 

the students’ answer sheets. This allowed the researcher to view the students’ calculations and 

solutions as well as the notes the students made on the question paper as they worked. 

Students were instructed to attempt all questions and to show all calculations used to arrive at 

their solutions. A formula sheet, containing most of the formulae that were required for the 

calculations, was provided as an artefact for students to refer to during the test. This is the 

practice for all NC(V) mathematics assessments (DHET, 2011). This artefact is included as 

Appendix R.  
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5.7 SUMMARY 

In this chapter, a detailed description of the five measurement tasks in which students engaged 

has been provided. The set-up of the various practical apparatus for the first four tasks has been 

shown, as well as the details of how to conduct those interviews. The written test has also been 

described and provided as an Appendix.  

These details have been provided to support the brief description of the task-based interviews 

in Chapter 4, and to provide the level of detail required to contextualise the data presentation 

and analysis that follows in Chapters 6 to 9. 
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CHAPTER 6 

PRESENTATION AND ANALYSIS OF DATA: INTERVIEWS 1 & 2 

6.1  INTRODUCTION 

In this chapter, data from the first and second task-based interviews will be presented and 

analysed. The process of summarising and analysing these interviews will be described and 

thereafter, data pertaining to the students’ performance in the interviews will be presented.  

6.2  PROCESS OF SUMMARY AND ANALYSIS 

This section describes the process of summary and analysis for both Task 1 and Task 2. Each 

interview was video-recorded for later summary and analysis, as the researcher took the role 

of interviewer and mediator. A narrative of the interviews was constructed according to the 

process described in Section 4.5.2.1. The critical incidents emerging from these narratives are 

presented here, with the results of the iterative, constant comparison process of coding the 

mediation moments.  

These critical incidents included moments of mediation, which were coded according to the 

level of mediation and special note was taken regarding what aspect of the task required this 

mediation. Pertinent excerpts from interactions between the interviewer and student were also 

transcribed, of which several are provided her as supporting evidence. 

6.2.1  Summary and analysis of Task 1 

It became clear, on observing students completing Task 1, that the task could be divided into 

three phases. Every student spontaneously completed the components of the task in a specific 

order. For the purpose of analysis, the task was therefore viewed as consisting of three phases 

based on this work. The phases were: 

Phase 1: arriving at a strategy to find the number of whole tiles contained 

within the surface without overlap, and determining the number of 

whole tiles contained within the surface (lower-bound strategy; see 

Figure 6.1) 
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      OR 

 arriving at a strategy to find the number of tiles, both whole and 

partially covered, by the surface (upper-bound strategy; see Figure 

6.2) 

Phase 2:  arriving at a strategy to calculate the area of the surface that 

remained after  Phase 1, and determining the area of this remaining 

surface (lower-bound strategy; see Figure 6.1) 

      OR 

 arriving at a strategy to deduct from the number of tiles the area not 

covered by the surface (upper-bound strategy; see Figure 6.2) 

Phase 3:  adding the results from Phase 1 and Phase 2 (lower-bound strategy) 

      OR 

 subtracting the result from Phase 2 from the result from Phase 1 

(upper-bound strategy) 

Figure 6.1 Areas measured in Phase 1 and Phase 2 (lower-bound strategy) 

 

                           

 

 

Phase 2 Phase 1 
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Figure 6.2 Areas measured in Phase 1 and Phase 2 (upper-bound strategy) 

 

 

6.2.2  Summary and analysis of Task 2 

As was the case for Task 1, students all completed the components of Task 2 in a similar 

manner. This allowed the task to be divided into two phases for the purposes of analysis. These 

phases were: 

Phase 1:  working out how many unit cubes would create one layer of the 

cube (It was evident from the data that not all the students viewed 

this as creating one layer, others viewed this as covering the area 

of one surface) 

Phase 2: Multiplying the number of cubes required for one layer by the 

number of layers (alternately, those that viewed the unit cube as 

covering a surface, multiplied the number of cubes by the number 

of surfaces 

6.3  DATA PRESENTATION AND ANALYSIS: TASK 1 

The presentation of the data concerning student performance in Task 1 has been divided into 

four main parts. The first data to be presented will be a general summary of the strategies taken 

by the students and the number of moments and level of mediation required per task phase. 
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Thereafter, detailed descriptions of the mediation provided for each of the three phases will be 

presented. 

The work of every student completing this task is included as Appendix S. 

6.3.1 General summary of task performance 

This section provides a general summary, per student and phase, of the mediation moments 

during Task 1. It also outlines what strategies students chose in order to complete Phases 1 and 

2. 

A total of four identifiable strategies were followed by students in Phase 1, with only one 

student using a strategy that did not fit these categories. These included the use of a rectangular 

array [RA], the drawing of rectangles of decreasing size [RD], iteration of the tile in rows [IR], 

and iteration of tiles around the inside perimeter of the surface [IP]. An example of each of 

these strategies is provided in Table 6.1. Two examples are provided for RA as some students 

drew an array that covered the entire surface, while others drew an array that did not extend 

into the area to be measured in Phase 2. Each example provided in the table is accompanied by 

the cross-reference to the scanned work in Appendix S. 

Table 6.1 Task 1, Phase 1 strategies 

Strategy Example Description 

Rectangular Array 

 

[Appendix S, no. 25] 

A rectangular array has been 

drawn to cover the entire 

surface [RA]. 
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[Appendix S, no. 1] 

A rectangular array has been 

drawn to cover a central 

rectangular portion of the 

surface [RA]. 

Rectangles of 

decreasing size 

 

[Appendix S, no. 21] 

A large rectangle has been 

drawn in the centre of the 

surface, and its area calculated 

with reference to the tile. 

Rectangles of decreasing size 

have been drawn in order to 

calculate the size of the 

remaining area [RD]. 

Iteration in rows 

[Appendix S, no. 16] 

The unit tile has been iterated 

in horizontal rows that do not 

form an array of rows and 

columns [IR]. 

Iteration around 

inside perimeter 

 The unit tile has been iterated 

around the inside perimeter. 

Only one corner of each unit 

clv 
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[Appendix S, no. 17] 

touches the adjacent unit, with 

triangular gaps between units 

[IP]. 

 

There were similarly a number of identifiable strategies for Phase 2. Several students drew 

rectangular arrays in Phase 1 that extended into the irregular area to be measured in Phase 2 

[EA]. They then proceeded to label each partial unit with a rational number [LR] or a decimal 

[LD] or combined pieces mentally to form whole units [CW]. All of these were later added in 

Phase 3.   

The same strategies were also observed for students who had not systematically extended their 

arrays, but with an additional category [PW] in which students added each remaining partial 

area as a whole unit. Table 6.2 shows examples of some of these strategies. Each example 

provided in the table is accompanied by the cross-reference to the scanned work in Appendix 

S. 

Table 6.2 Task 1, Phase 2 strategies 

Strategy Example Description 

Labelling partial units 

with rational numbers 

[LR] 

[Appendix S, no. 11] 

The rectangular array 

drawn in phase 1 

extends into the area to 

be measured in phase 2 

[EA].  

The partial unit areas 

are represented by 

rational numbers. 
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Labelling partial units 

with decimals [LD] 

[Appendix S, no. 6] 

The rectangular array 

drawn in phase 1 

extends into the area to 

be measured in phase 2.  

The partial unit areas 

are represented by 

decimals. 

Combining by sight to 

form whole numbers 

[CW] 

 

 

[Appendix S, no. 10] 

The rectangular arrays 

in these examples do 

not extend into the 

areas to be measured in 

phase 2. 

The student has drawn 

borders around the 

areas she has counted as 

whole units. 

Adding all partial areas 

as a whole unit [PW] 

 

 

 

 

[Appendix S, no. 20] 

In this example the 

student added each of 

the areas indicated by 

the arrows as a whole 

unit to arrive at a 

solution of 3 square 

units for this area. 

 

Appendix T provides the general summary of task performance. It gives an indication of the 

number of moments of mediation per student and per task phase, as well as the level of this 

mediation, in the order in which this was provided. The strategy chosen by each student in 

Phases 1 and 2 is also included in this summary. Asterisks indicate moments in which 

mediation was provided to specifically address difficulties students experienced in working 

with fractions in this task. Students’ work with fractions will be discussed in more detail in 

Section 6.3.3.2. 

The codes used to describe the moments of mediation (as explained in section 4.5.2.4) are 

listed, in order from the lowest to highest level of mediation, below: 
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A: no mediation 

B:  reassurance 

C(m):  prompt (method) 

C(c):  prompt (concept) 

P(a):  provision of artefact 

D(m):  leading question (method) 

D(p):  leading question (process) 

D(c):  leading question (concept) 

E(m):  instruction (method) 

E(c):  instruction (concept) 

F(m):  correction (method) 

F(c):  correction (concept) 

The emergent codes used in this task included [P(a)] and [D(p)]. Provision of an artefact 

[P(a)], in this task, involved the provision of more unit tiles. Leading questions related to 

process [D(p)] were provided where students halted at the end of Phase 1 as if having 

completed the task. For this task, the distinction between D(m) and D(p) was made as it 

was the process that halted. It was not the case that students did not know the method for 

proceeding with the calculation. This is, however, placed in the hierarchy as more explicit 

than method-level leading questions, as the confident halt in the calculation process has 

been taken to indicate more of a conceptual instability than uncertainty over a method.  

6.3.2  Summary of work in Task 1, Phase 1 

Every student started the task by first forming a strategy to count the number of whole tiles that 

would be required to cover the area and then executing this strategy. 

This section will provide a summary of the strategies chosen by the students as well as the 

mediation offered during this task phase. Several samples of student work will also be 

presented within these discussions. 

6.3.2.1 Strategies used in Phase 1 

All students understood the need to subdivide the whole area with reference to the unit, but 

chose to do so in different ways. As summarised in Appendix T, these strategies included the 

following: 

RA:  Drawing a rectangular array 

RD:  Drawing rectangles of decreasing size 

IR:  Iterating the unit in horizontal rows 
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IP:  Iterating the unit around the inside perimeter 

Figure 6.3 provides a summary of the frequency of use for each strategy. 

Figure 6.3 Strategies used in Task 1, Phase 1 

 

The use of a rectangular array of rows and columns [RA], which is the standard method to 

calculate the area of a rectangular surface (see Cavanagh, 2008) was used with the highest 

frequency. Only 2 students used the strategy of drawing rectangles of decreasing size [RD] in 

order to calculate the number of whole tiles. This was a form of strategy which utilised a 

rectangular array, but the array was confined to the rectangular area did not extend across the 

whole surface. 

Equal to the frequency of RA was the number of times the strategy of iterating the unit in rows 

[IR] was used. This could also be viewed as similar to a rectangular array. In these cases 

however, the rectangles measured 1× 𝑥 square units rather than consisting of multiple, aligned 

rows and columns. While this strategy did not match the standard method that students would 

have met in schools, it was an efficient means with which to calculate the area of this irregular 

surface. It had the effect of maximising the number of whole units that could fit along each 

horizontal row, and therefore minimised the area per row that remained to be calculated in 

phase 2.  

Strategies used in Task 1, Phase 1

Rectangular array [RA]

Rectangles of decreasing size [RD]

Iteration in rows [IR]

Iteration around inside perimeter [IP]

Other
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According to the trajectory proposed by Cavanagh (2008) this method would be viewed as 

being of a lower order, however, due to the advantages this method offered in this specific 

example, it is possible that it was used by some students who could use the array method, and 

may have done so had the surface been a rectangular. 

The least efficient method was that of iterating around the inside perimeter. It represented a 

method of subdividing the surface in terms of the unit tile, but the gaps left between the tiles 

meant that the surface area that remained to be calculated in phase 2 was much larger, and 

consisted of a multitude of small areas. This would have negatively impacted on the accuracy 

of the area measurement, as more estimation was required.  

As the students reached the end of this phase, they needed to arrive at a count of the number of 

whole units that could be fitted into the area. It was noticed that 24 of the 27 students 

interviewed counted in 1s to arrive at the total. Only Mzwakhe, Malume and Siphelele used 

multiplication to assist them in calculating at least part of the total. In doing this, these three 

demonstrated the use of the (school-met) multiplicative relationship between the number of 

rows and columns of units and the area of the surface. The remaining 8 students who had made 

use of a rectangular array of rows and columns counted in 1s to arrive at the total.  

One student, Siphelele, chose to use an upper-bound strategy, classified as ‘other’ in Figure 

6.3. His work is shown below. 
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Figure 6.4 Strategy type: Upper-bound 

 

He worked with a rectangular array of columns and rows (although incompletely drawn), but 

did so in a different manner to the other students interviewed. While those students chose to 

subdivide the area into unit tiles and then add these, Siphelele chose to draw two regular 

rectangles around the surface and then subtract the excess area, thus using an upper-bound 

strategy. 

While 27 students completed this task, only 5 different strategies were used in Phase 1. This 

suggests that there exist similarities among these students with regard to their measurement 

conceptualisations regarding area. 

6.3.2.2 Mediation provided in Phase 1  

There were students who required reassurance [B] as they decided how to start the task. This 

was provided, but was the maximum level of mediation any student required for the strategy-

formation portion of Phase 1. Once the students started working with their chosen strategy, 

mediation of all levels was available where requested or necessary.  

Figure 6.5 shows the number of moments of mediation, and their level, used in Phase 1 of this 

task. The codes used are those listed in section 6.3.1. 
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P(a), or the provision of an additional artefact, was not one of the original mediation categories 

built into the design of the task-based interviews. The category was created during the process 

of constant comparison across all four interviews (see Section 4.5.2.2). Only one student 

required this form of mediation in task 1, but across all interviews there were many such 

examples which necessitated revisiting the classification for every interview.  

Where artefacts were provided as an act of mediation, this was initially coded as a conceptual 

level prompt [C(c)]. When it was noticed that the number of such moments was inflating the 

number of moments of C(c), the question arose as to whether this “large, amorphous 

categor[y]” (Wellington, 2015, p. 263) could be split. The decision was made to create the 

distinction, with P(a) being considered less implicit than C(c). The provision of a physical 

artefact was conceptualised as being of greater assistance to students than other prompts [C], 

but as no demonstration of its use was provided, it was less explicit than a leading question 

[D]. 

The first column on the graph (representing code A), does not reflect the number of moments 

in which no mediation was required. It shows the number of students for whom no mediation 

was required. It is included on the graph for the sake of the discussion that follows. 

Figure 6.5 Mediation in Task 1, Phase 1 
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Twelve students were able to arrive at a strategy to find the number of whole tiles contained 

within the surface, and to count these, with no mediation from the interviewer. Twenty-nine 

moments of mediation were required for the remaining 15 students. For these students, the 

majority of the mediation provided was implicit, most of which was to provide reassurance to 

students that their decision to subdivide the surface was an appropriate first step in the task. 

Ndileka required 7 of these 29 moments of mediation, four of which were at the conceptual 

level. One student required three moments of mediation, five required two moments, and nine 

students required only one moment of mediation. Ndileka therefore contributed the most to the 

final count. The mediation she required included the provision of additional artefacts [P(a)] in 

the form of extra unit tiles. She was the only student to require this form of mediation in this 

task. 

She started the task by creating small 4×4 rectangular arrays, outlined in Figure 6.6 by the 

dashed lines. This was done by iterating the single unit tile. After offering a conceptual prompt 

[C(c)], a conceptual leading question [D(c)] and method-level instruction [E(m)], she was 

offered additional tiles. These were provided with conceptual instruction [E(c)]. 

Figure 6.6 below shows her work subsequent to the provision of these artefacts. 

Figure 6.6 Student work: Ndileka 
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There was evidence that she now understood the need to close the gaps in the iteration, although 

this was not done consistently. The task was abandoned in favour of using the interview to 

provide general instruction about the concepts underlying area measurement. 

6.3.3  Summary of work in Task 1, Phase 2 

As students moved into Phase 2 of this task, there was a need to decide on a strategy for 

calculating the area either remaining to be included or in excess after Phase 1 (see Figures 6.1 

and 6.2). A summary and description of these strategies will be provided, followed by a 

discussion of the mediation offered during this phase. 

6.3.3.1 Strategies used in Phase 2 

Table 6.2 provides a description of the strategy types used in Phase 2 of task. These were: 

LR:  Labelling partial units with rational numbers 

LD:  Labelling partial units with decimals 

CW:  Combining partial units mentally to form wholes 

PW:  Adding each partial area as a whole unit 

In most cases (16 out of 27) students had drawn a rectangular array in Phase one that extended 

into the area to be measured in Phase 2 [EA]. The remaining students needed to decide on a 

different strategy to subdivide the area. Figure 6.7 provides information regarding the 

frequency of use of these strategies. 
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Figure 6.7 Strategies used in Task 1, Phase 2  

 

The strategy used with the highest frequency was that of combining partial regions by sight to 

create whole units [CW]. In this manner students minimised the need to use rational numbers 

in their calculations. The reason for this choice could have been due to these students’ 

confidence in their ability to estimate without using symbolic representations such as rational 

numbers, their judgment that this strategy would be suitable for the level of precision required 

for this task, or a lack of confidence in their ability to work with rational numbers. As half of 

the students who chose this technique did so after first trying to use rational numbers, it is 

reasonable to assume that the latter was the case for most. 

Two students counted each partial region as a whole unit (a conceptual error) which lead to the 

need to provide conceptual correction [F(c)] in Phase 3 when they added these units to arrive 

at their final solution. 

Only 2 students opted to use decimal notation to represent the sizes of the partial units, while 

8 selected rational numbers as a symbolic representation for these units.  

6.3.3.2 Mediation provided in Phase 2  

In Phase 2, students required a much larger number of moments of mediation than in Phase 1. 

The majority of students required a form of leading question to enter this phase [D(p)]. This 

was conceptualised as being of a level between D(m) and D(c). It was a process-oriented 

Strategies used in Task 1, Phase 2

Partial regions labelled with
rational numbers [LR]

Partial regions labelled with
decimals [LD]

Partial regions considered
wholes [PW]

Combining partial regions by
sight to form wholes [CW]
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leading question, which was either due to the student not recognising the need to include the 

area not covered by whole units (a conceptual issue) or not knowing how to go about measuring 

it (a method issue). Neither D(m) nor D(c) were appropriate and therefore the existing 

categories were not exhaustive and an additional category was required. D(p) was therefore 

taken to be an intermediate-level leading question and an additional category was created to 

account for it. 

Figure 6.8 provides data regarding the frequency of use of each level of mediation. The codes 

used are the same as those listed in section 6.3.1, and as with Figure 6.5, the frequency of ‘A’ 

concerns the number of students who did not require any mediation, rather than the number of 

moments of mediation as with the rest of the graph. It is included for its contribution to the 

discussion that follows the figure. 

Figure 6.8 Mediation in Task 1, Phase 2 

 

 No mediation  Implicit mediation  Explicit mediation 

 

In contrast to Phase 1, only 3 students completed Phase 2 without the need of any form of 

mediation. All three students (Nobuhle, Aviwe, and Mbulelo) had drawn a rectangular array 

that covered the entire surface area in Phase 1. Nobuhle and Mbulelo had then chosen to 

combine partial units mentally to form whole units [CW], and Aviwe had selected to label the 

partial areas with decimals [LD]. 
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All of the students who made use of rational numbers as their strategy for this phase required 

mediation regarding their use of fractions. This was for a variety of reasons ranging from poor 

estimations to whole number bias. 

Figure 6.9 shows two examples of whole-number bias. In the example on the left, the student 

has provided a reasonable estimation of the two pieces labelled as ½, but for the larger piece 

has increased the denominator to 3, and has kept the numerator as 1. The example on the right 

shows a similar error. The estimation of ¼ for the smaller piece is reasonably accurate, but this 

student has also increased the denominator for the rational number representing the bigger 

piece and has left the numerator as 1. These students had difficulty with the rational number 

symbolic representations for the size of these pieces. 

Figure 6.9 Whole number bias: an example 

      

[Appendix S, no. 6] 

The student’s work shown in the example in Figure 6.10 displays an unstable or emerging 

knowledge of how to use rational number notation. The piece labelled as 
1

4
 is larger than the 

piece labelled as  
1

5
 , therefore the student’s decision to increase the denominator is conceptually 

sound. However, when comparing the piece labelled as 
1

7
 with that labelled 

1

5
, it is the latter 

section that is smaller, and it should therefore have a larger denominator than the former.  
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Figure 6.10 Evidence of unstable or emerging knowledge  

 

Two students’ work stood out in this phase of the task, as they each took a unique approach to 

the challenge of measuring the irregular area remaining after Phase 1: Neliswa and Malume. 

Figure 6.11 shows Neliswa at work. She chose to iterate the unit tile in rows in Phase 1, and 

after this process chose to physically cut away the remaining area. The resulting pieces were 

physically recombined to construct an area which could again be covered by whole tiles.  

Figure 6.11 Student work: Neliswa 

           

Malume devised an integration-like strategy to work with the partial areas. His work is shown 

in Figure 6.12. In Phase 1, he started by drawing a large rectangle in the centre of the surface, 

and measured the length and breadth of this rectangle with reference to the unit tile. He then 
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multiplied to arrive at the area of this rectangle. Upon realising that more whole units could fit 

onto the surface, he proceeded to draw rectangles of decreasing size that held whole units. 

Malume continued with this strategy as he seamlessly entered Phase 2. He started to draw half 

units and quarter units to fit into some of the smaller areas. When he started needing to draw 

1

8
𝑡ℎ units, he decided that an easier method would be to estimate by sight and combine mentally 

to form whole units. The fact that he chose to initially take an integration-like approach is 

noteworthy as this was not a previously encountered method he would have met in school 

(Malume’s highest grade of mathematics passed was Grade 11 Standard Grade), and he had 

last been in a school mathematics classroom eighteen years prior to this interview. 

Figure 6.12 Student work: Malume 

 

As with Phase 1, it is notable that of the 27 students completing the task, only 4 different 

strategies were used. This again suggests common ground regarding the measurement 

conceptualisations these students have, despite being such a heterogenous group. 

6.3.4  Summary of work in Task 1, Phase 3 

Task Phase 3 was far less demanding than Phases 1 and 2. The only requirement was to 

combine the results from Phases 1 and 2 to arrive at a final measurement for the area of the 

surface.   



170 

 

Three students did not complete the task. In the case of Ndileka (as discussed in section 6.3.2.2) 

this was the result of a decision taken by the interviewer to abandon the task in favour of using 

the opportunity for learning. For Andile and Siphelele, the time available for the interview was 

limited. In these cases Phase 3 was completed in collaboration with the student. 

Thirteen students managed to complete this with no need for mediation, but for those who did 

require mediation, this was mostly at an explicit level. Figure 6.13 shows the number of 

moments of mediation required, as well as their level. 

Figure 6.13 Mediation in Task 1, Phase 3 

 

 No mediation  Implicit mediation  Explicit mediation 

 

There were 11 students who required some form of mediation for this phase. Of those, 7 

students required mediation with regard to the use of fractions, particularly with regard to how 

to add them. Students did not know how to complete an addition sum that included rational 

numbers, and required explicit mediation in order to do so.  

6.3.5 Summary 

This section presented the results of the data analysis for the first task-based interview. It was 

noted more than once that despite the number of students who participated, the fact that only 
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five and four strategies were used for Phases 1 and 2 respectively, suggests that there are shared 

characteristics between the students with regard to their measurement conceptualisations. 

6.4  DATA PRESENTATION AND ANALYSIS: INTERVIEW 2  

This section will comprise four main parts. The first data to be presented will be a general 

summary of the work done by the 26 students who participated in this task, and the number of 

moments and level of mediation required per task phase. Secondly, there will be a short 

discussion of the definitions students provided in response to the question “what is volume?” 

Thereafter, detailed descriptions of the mediation provided for each of the two phases will be 

presented. 

6.4.1  General summary of task performance 

This section provides a general summary, per student and phase, of the mediation moments 

during Task 2. In addition, the students’ solutions to the task have been summarised.  

All students of their own accord completed the components of Task 2 in a similar manner, 

which allowed the task to be divided into two consecutive phases for the purposes of analysis. 

These phases included: 

Phase 1:  working out how many unit cubes would create one layer of the 

cube  

Phase 2:  determining the total number of cubes required for the solid 

constructed 

Appendix U provides the full summary of student performance in this Task. The moments of 

mediation are listed in the order in which they were provided. The mediation indicated in italics 

is that which was provided subsequent to the student arriving at a solution they felt was 

accurate. These solutions are listed in the final column. 

In the case of two students (Ndileka and Malusi) the task was abandoned in favour of using the 

interview to facilitate learning about the concepts underlying volume measurement. This 

decision was taken at the interviewer’s discretion when it was observed that neither student 

was managing to make progress in solving the problem through the mediation provided. 
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6.4.2 Student definitions of volume 

Volume needed to be understood to be the amount of space that an object occupies, and the 

size of the volume was to be reported in terms of the size of the unit cube. Several students 

were unable to provide a verbal explanation of their understanding of volume, but 16 managed 

to respond with more than simply “I can’t explain”. 

Certain students, while not necessarily able to provide an accurate definition, did reveal that 

they understood it was distinct from the attribute of area. These included students who provided 

solutions that indicated volume as well as several who provided solutions in terms of surface 

area. 

The definitions provided by some of those who gave answers in terms of cubic units are listed 

below. These students all provided definitions that indicated an attribute in three dimensions: 

 Mzwakhe: I think volume is…capacity…the insides 

Nomsa: [gestures with finger tracing edges equivalent to the length, breadth 

and height of the cube] 

Aviwe: The weight of the box?...it’s the shape of it… 

Linda: lengte, breedte, hoogde (length, breadth, height) 

Malume: um…space 

Of these students, only Malume was able to complete the task without the provision of extra 

cubes [P(a)] which allowed the students to partially build an identical block, thereby exposing 

the attribute of ‘volume’. 

Samkelo and Mbulelo, who both obtained the correct solution of 64 cubic units, provided 

definitions that were not clearly indicative of an understanding of the three-dimensional nature 

of volume. Mbulelo did not require the provision of extra cubes in order to complete the task, 

which indicated that he did have an accurate conceptualisation of the attribute of volume 

independent of whether or not he was able to verbalise this understanding. Samkelo, however, 

required extra cubes [P(a)] in order to start measuring in three dimensions. Their definitions 

appear below: 

Samkelo: The distance from there to there [traces one edge with his 

finger]…and all of it [holds fingers at width of the traced edge and 

places them on each of the top four edges]…all of it… 
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Mbulelo: [looks up and talks softly to himself] three, um, squared 

Several students who provided an answer in terms of surface area had provided definitions that 

showed they understood volume to be distinct from the 2-dimensional attribute of area. These 

are listed below:  

 Nobuhle: I think volume is the weight of the thing 

Andiswa: length…[long pause]…height…width 

Babalwa: the actual size [creates an enclosed space with his hands] 

Andile: we are talking about the sizes [circular gesture in air around the 

cube] 

Siphelele:  the size [holds hand out as if holding an object] 

Sisipho, who provided the solution of 64 square units, mentioned only length and breadth in 

her definition. Given that her solution was an expression of surface area, this definition hinted 

at the possibility that she conceptualised volume as being a 2-dimensional attribute of a 3-

dimensional object.   

Sisipho: [makes a circular gesture with her pen in the air] the 

size…length…breadth…length breadth 

Ndileka’s definition also hinted at a similar understanding of volume. She defined volume as 

“they have the same sides”. As the solid was a cube, and therefore had 6 identical surfaces, it 

is a strong possibility that it was the case that she had similarly conceptualised volume as a 2-

dimensional attribute of a three-dimensional object. 

Thandiwe, who also provided an answer of 64 square units, was unsure of how to define volume 

and admitted to needing to guess after the attempt: “it’s the number of [traces finger around 

three of the top edges]… I think”. 

The apparent contradiction between the students’ definition of the attribute of volume and what 

they proceeded to measure signifies a disjuncture between how they had conceptualised the 

attribute and how they understood it should be calculated. It provides evidence that their 

understanding of the attribute of volume was not yet fully formed. 
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6.4.3  Summary of work in Task 2, Phase 1 

In Phase 1, students did preliminary work that prepared them to calculate the volume of the 

solid with reference to the unit cube. All 26 students worked similarly in this phase. Students 

mapped out one surface of the cube with either a 4×4 rectangular array (21 students) or by 

iterating the unit cube along the length and breadth of one surface (5 students) and multiplying 

to obtain the number of cubes required to form one layer. 

At this stage of the task it was not yet possible to separate those students who understood the 

solution of 16 cubes to be one layer of the solid, or the area of the covered surface.  

Figure 6.14 shows the number of moments of mediation required by the students in order to 

arrive at the solution of 16 units after mapping one surface of the cube. Column A, as with the 

previous graphs in this chapter, does not reflect the number of moments, but rather the number 

of students requiring no mediation. 

Figure 6.14 Mediation in Task 2, Phase 1 

 

 No mediation  Implicit mediation  Explicit mediation 

 

Half of the students were able to complete phase 1 without mediation. For the remaining 13 

students, 16 moments of mediation were required, most of which were implicit. Five students 

required only reassurance [B] in order to proceed with their work in this phase. This is possibly 
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due to the inability of the interviewer at this point to observe whether the student was mapping 

out a preliminary measurement to calculate surface area or volume. 

Malusi required the most mediation for this phase. He started the phase requiring instruction at 

a conceptual level [E(c)] after tracing around the cube to map out the surface while leaving 

large gaps. As a result he obtained an array of 3×3 units. 

A second moment of instructions [E(c)] was required when he then proceeded to eliminate the 

gaps between the units, but left gaps instead on the outside of a new array of 3×3 units (shown 

in Figure 6.14). After declaring “the volume is 9”, conceptual level correction [F(c)] was 

provided. 

Figure 6.14 Malusi: rectangular array 

 

Despite drawing rectangular arrays in this phase, it was interesting to observe that only 5 

students either counted in 4s or calculated 4×4 to arrive at the solution of 16 units for this 

phase. The remaining students counted in 1s.  

6.4.4  Summary of work in Task 2, Phase 2 

All students ended Phase 1 with an answer of 16 to work with in Phase 2. It was in this phase 

that it became clear that students had not all understood 16 to be the number of units required 

to form one layer of the solid. They had rather understood it to be that 16 units were required 

to cover one of the surfaces of the solid.  

In order to address this, the mediation that was offered was to provide students with an extra 

15 unit cubes in order to help them to visualise the layer that these 16 cubes would create. Only 

4 of the 26 students were able to complete the task without this mediation. 



176 

 

Table 6.3 shows a summary of the solutions students provided for this task: 

Table 6.3 Student solutions to Task 2 

SOLUTIONS 

Number of 

students 

Volume correct (64 cubic units) 9 

Volume of 3 layers (48 cubic units) 2 

Area of 6 surfaces (96 square units) 7 

Area of 4 surfaces (64 square units) 6 

Could not be completed 2 

 

Two of the students, Mzwakhe and Nomsa, who worked with volume subsequent to the 

provision of extra cubes, arrived at the incorrect solution of 48 cubic units. On questioning the 

students it became clear that they had calculated how many more cubes would be required to 

build the solid. Brief method-level instruction [E(m)] allowed them to see that the solution 

should have been 64 (16 + 48). 

Mthobeli and Mbulelo made use of the formula to calculate the volume of a cube. They 

multiplied the length and breadth of the cube that they had established during Phase 1, by the 

height of the cube, which they measured in this phase. They arrived at the correct solution of 

64 cubic units. 

Twelve students calculated surface area rather than volume. The answers obtained by these 

students were either 64 square units or 96 square units. Those obtaining 64 as their solution 

indicated that they had added the surface areas of the four vertical sides of the solid. Those 

obtaining 96 units as their solution had calculated the total surface area for the object.  

Should the question have asked for the total surface area, these students would have been 

correct. It was interesting, therefore, to note that of the 7 students who gave 96 as the solution, 

5 remained adamant that their solution was correct and unconvinced that only 64 cubic units 

would build a solid of identical volume. A full cube had to be constructed using 64 units for 

these students to become convinced. None of the students who had provided 64 square units as 

the solution required this level of convincing that 64 unit cubes would be required to build the 

solid. 
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Figure 6.16 shows the number of moments of mediation provided in this phase, and the level 

of this mediation. Column A reveals that only 4 students were able to complete phase 2 of this 

task without mediation. 

Figure 6.16 Mediation in Task 2, Phase 2 

 

 No mediation  Implicit mediation  Explicit mediation 

 

It is clear from the graph that the type of mediation that was provided with the highest 

frequency was P(a) (22 moments). The category with the second highest frequency was F(c). 

Sixteen moments of conceptual-level correction were required. These were all provided to 

students who had provided a solution in terms of surface area.  

6.4.5  Summary 

Task 2, as was the case for Task 1, provided evidence of a large number of students 

demonstrating similar understandings, or misunderstandings, regarding the concept of volume. 

It reveals clear areas of stable and emerging conceptualisations, as will be discussed in the 

following section. 
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6.5 STABLE AND EMERGING CONCEPTUALISATIONS 

In order to respond to Research Questions 1 and 2, students’ performance in Tasks 1 and 2 

need to be considered in terms of what conceptualisations have been evident, and whether these 

are stable or emerging. As noted, the small number of strategies used relative to the large 

number of students completing the tasks suggest that there may be common conceptualisations 

held by a number of students.  

In addition to attempting to provide answers to the first two research questions, further insights 

which have contributed to the major findings of this research are provided in this section. 

6.5.1 Stable conceptualisations 

During Task 1, the students, with the exception of Ndileka, were able to demonstrate that they 

held a stable and accurate conceptualisation of area. The evidence in this regard lay in their 

ability to arrive at a strategy to ‘cover’ the surface with unit tiles and to recognise the need to 

‘count’ the number of tiles that would be required to do so. The strategies varied in their 

effectiveness and efficiency, but were nevertheless true to the concept of area. 

In Task 1, Phase 2 many students opted to combine the partial blocks remaining after their 

lower-bound strategy to count whole units by sight and to estimate which areas could be 

combined to form a whole. This was done exceptionally well, with these students obtaining the 

most accurate measurement for this area. This is indicative of a stable conceptualisation of the 

standard unit used in the task (Joram et al., 2005). 

Students had trouble with Task 2, initially with verbalising their understanding of volume, and 

then in confusing the concept of volume with that of surface area, which is one of the common 

areas of difficulty identified by Tan-Sisman and Aksu (2015) in their research with Grade 7 

learners. For most, an explanation of their error was sufficient for them to be reminded that 

these are two distinct attributes of objects, but there were students who required substantial 

convincing before conceding that their solution was not correct. 

What did appear relatively stable, however, was the knowledge that a formula for the 

calculation of volume is 𝑙𝑒𝑛𝑔𝑡ℎ ×  𝑏𝑟𝑒𝑎𝑑𝑡ℎ ×  ℎ𝑒𝑖𝑔ℎ𝑡. This was stable enough in their minds 

that it was the definition that many provided when asked to define ‘volume’. 

 



179 

 

6.5.2 Emerging conceptualisations 

There was evidence of instability in students’ conceptualisations of rational numbers when they 

worked with them to calculate the area in Task 1, Phase 2. Whole number bias was the most 

frequent type of error for those students electing to use fraction notation. Students were 

responsive to mediation in this regard, however, indicating that the accurate conceptualisation 

is emerging. 

6.5.3 Additional insights 

It was enlightening to observe the stability of the misconception that volume and surface area 

are terms that refer to the same attribute of an object. As Tall (2013a) argues, met-befores can 

either be supportive or problematic, and this is an example of one which is hindering the 

learning of these students. Coupled with the fact that most were defining the attribute by stating 

the formula with which to calculate the measurement, and this for only one type of object, this 

hints at problematic met-befores regarding the link between the embodied world and the 

symbolic formal world regarding the concept of volume. 

6.6 SUMMARY 

In this chapter, data from Tasks 1 and 2 were presented and analysed according to moments of 

mediation, levels of this mediation, and where in the tasks this mediation was required. This 

analysis has permitted a number of preliminary answers to research questions one and two to 

be made. These will be further discussed in Chapter 10 where the results of all Tasks are 

considered together. 
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CHAPTER 7 

PRESENTATION AND ANALYSIS OF DATA: TASK 3 

7.1  INTRODUCTION 

Data from the third task will be presented and analysed in this chapter. Students were required 

to measure flow rate in this interview, in a series of four subtasks. Eighteen interviews were 

conducted. A detailed description of the task was provided in Chapter 5. In this chapter, the 

process of summarising and analysing the interviews will be provided and thereafter, the data 

pertaining to the students’ performance in the interviews will be presented. The chapter closes 

with a discussion of the stable and emerging conceptualisations, as well as additional insights, 

that came to light during this analysis. 

7.2  PROCESS OF SUMMARY AND ANALYSIS 

As with interviews 1 and 2 each interview was video-recorded for later summary and analysis. 

Whereas interviews 1 and 2 involved relatively little dialogue between interviewer and student, 

interview 3 required a lot more verbal interaction. Due to the practical set-up of the task (the 

cylinder and the stopwatch needed to be used simultaneously), the interviewer became 

physically involved, although not collaborating with the student to solve the measurement 

problem. It was merely necessary for someone to hold the bottle while the water flowed out, 

therefore the mediation remained at the level of signs.  

At the first level of analysis, moments of mediation were identified and coded, as for interviews 

1 and 2. The resulting summary was examined through constant comparison for emergent 

patterns. In addition, students’ predictions in subtasks 2, 3 and 4 were categorised as to whether 

they were accurate, acceptable or incorrect. 

Transcriptions of the interviews were compiled, with close attention to students’ gestures and 

actions as well as their utterances. These were transcribed by the researcher, with care taken to 

return to the original video recordings several times to verify that gestures and actions had been 

accurately captured. These were regarded as crucial to the data, as the particular terminology 

was new to the students, and while all of the students had prior experience in being taught in 

English, none of them had English as their home language.  
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7.3  DATA PRESENTATION AND ANALYSIS: SUBTASKS 1 AND 2 

Data from Subtasks 1 and 2 are presented together as they were similar in form. Both required 

the calculation of average flow rate for the given time period of 10 seconds. This section is 

divided into four main parts: a general summary of performance for both subtasks; an analysis 

of data from Subtask 1; an analysis of the predictions offered for Subtask 2; and an analysis of 

data from Subtask 2.  

During each subtask, students were asked two questions, and these will structure the description 

of the students’ engagement in these subtasks. The questions were: 

(1) What is the volume of water that flowed out in 10 seconds?  

(2) What is the average flow rate? 

7.3.1 General summary of performance: Subtasks 1 and 2 

Table 7.1 summarises the moments of mediation per student, subtask and question. The level 

of mediation is indicated, and they are listed in the order in which they were provided during 

the interview. The full transcripts for these two subtasks are included as Appendices V and W. 

The codes used to describe the moments of mediation (as explained in section 4.5.2.4) are 

listed, in order from the lowest to the highest level of mediation, below: 

A:  no mediation 

B:  reassurance 

C(m):  prompt (method) 

C(c):  prompt (concept) 

D(m):  leading question (method) 

D(c):  leading question (concept) 

R(a):  referral to artefact to show physical interpretation of answer 

E(m):  instruction (method) 

E(c):  instruction (concept) 

F(m):  correction (method) 

F(c):  correction (concept) 

A new category emerged from an analysis of this interview, that of R(a).  This category 

accounted for moments in which reference was made by the interviewer to an artefact in order 

to demonstrate the physical interpretation of an answer provided by the student. For example, 

if a student erroneously predicted that four units would flow out in one second, the interviewer 

would spread their finger and thumb four units apart and place them on the cylinder. Explicit 
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explanation was not provided as it was left to the student to interpret what this meant in the 

context of their understanding of the situation. Such reference to the artefact did not fit into the 

category of explicit instruction [E] as it was not accompanied by an explanation as to why the 

student’s original response was inaccurate. It was therefore classified as implicit, although less 

implicit than a leading question [D], as it physically directed the students’ attention to a 

attribute of the artefact rather than providing an implicit lead through language.   

Students’ predictions for Subtask 2 are included in the table. They are classified as accurate, 

acceptable, or incorrect and will be explored further in Section 7.3.3. 

Table 7.1 General summary of performance: Task 3, Subtasks 1 and 2 

 Subtask 1 

Question 1 

Subtask 1 

Question 2 

PREDICTION 

Subtask 2 

Subtask 2 

Question 1 

Subtask 2 

Question 2 

Ntando F(c); F(c)  E(c) Acceptable C(c) A 

Mzwakhe D(c)  C(m)  Accurate  A A 

Neliswa A A Accurate  A A 

Nobuhle F(c)  A Incorrect  

[R(a) 

provided] 

A A 

Aviwe A D(m); R(a) Acceptable A A 

Sisipho F(c)  A Accurate  A A 

Malusi A R(a)  Accurate  A A 

Phumzile D(c)  D(c); F(c) Accurate  A A 

Sandla D(c)  A Acceptable C(m)  A 

Andiswa A E(c) Acceptable A A 

Mkhuseli A D(m); C(m) Accurate  A A 

Babalwa F(c) A Accurate  C(c)  E(m) 

Andile A R(a)  Acceptable C(m)  A 

Sanele A R(a); E(c) Incorrect 

[R(a) 

provided] 

A A 

Thandiwe A E(c) Accurate A C(c)  

Linda D(c); F(c)  R(a)  Acceptable A A 

Malume A R(a)  Acceptable A A 

Lwazi F(c) B Acceptable A A 

 

7.3.2 Performance in Subtask 1 

Figure 7.1 provides a summary of the mediation provided to students for questions 1 and 2 of 

Subtask 1. Column A provides the number of students who required no mediation for the task, 
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and not the number of moments of mediation as does the rest of the graph. It is included for the 

value it holds in the comparison of performance between questions 1 and 2. 

Figure 7.1 Mediation provided during Subtask 1 

 

In question 1, students were asked to measure the volume of liquid that flowed out of a bottle 

in ten seconds. Nine of the eighteen students were able to do this accurately without any 

mediation. For the remaining nine, only two types of mediation were required: conceptual-

level correction [F(c)] and conceptual-level leading questions [D(c)].  

There were 7 moments in which conceptual correction [F(c)] was required. Six of these 

moments were in response to the conceptual error of interpreting each of the hash marks that 

showed the calibration of the bottle as being one unit of volume. Only two of the six students 

requiring this mediation (Ntando and Babalwa) and both needed mediation for the same reason 

in Subtask 2 (see Table 7.1). 

Ntando required an extra moment of conceptual-level correction [F(c)]. This was in relation to 

his use of fraction notation. The interaction follows below: 

 

Interviewer: What is the volume that flowed out in 10 seconds? 

Ntando:  You said we had six? So we can say it's 1, 2, 3 [counting hash 

marks], and maybe let's say 4 quarters or 3 quarters 
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Interviewer:  [F(c) – correction of error in measuring volume by counting hash 

marks] 

Ntando:    two and…oh…3 quarters… 

Interviewer: F(c) [help to write correctly, was writing 1/3 instead of ¾] 

There were four moments in which a conceptually-focused leading question [D(c)] was 

required. In each of these instances a student had provided as a solution the volume remaining 

in the bottle, rather than the volume that had flowed out. As they were interpreting the linear 

scale correctly with regard to how it related to units of volume, a leading question was offered 

rather than correction. The question, ‘are we measuring the volume that flowed out or the 

volume that remained in the bottle?’, was all that was required for these students to correct 

their answer. 

Question 2 required students to calculate the flow rate in units per second by dividing the 

volume measured in question 1 by 10 seconds. More students required mediation for this 

question, and a wider variety of levels of mediation were provided. 

The level of mediation referred to by the emergent code ‘R(a)’, was provided 6 times to 

students as they calculated the flow rate. In each case it was either in response to a student who 

had applied the calculation 𝑡𝑖𝑚𝑒 ÷  𝑣𝑜𝑙𝑢𝑚𝑒, rather than its inverse, or had applied the 

calculation 𝑡𝑖𝑚𝑒 × 𝑣𝑜𝑙𝑢𝑚𝑒. For example, Andile stated, ‘I’m thinking times…2.5… times 

10’, and Malusi keyed 10 ÷ 3 into his calculator to arrive at his initial answer of 

3.3units/second.  These students were shown, with reference to the bottle, what their answer 

would mean if the flow rate they calculated was to occur for 10 seconds [R(a)]. This was only 

shown, neither the calculation nor the operation were spoken of, the students linked it to the 

process of calculation for themselves. Only one student required mediation subsequent to the 

provision of ‘R(a)’. 

Other than Ntando, whose interaction with the interviewer is given above, two other students, 

Mkhuseli and Lwazi, chose to use fractions as representations of rational numbers rather than 

decimals. Several mentioned the word ‘half’ in their answers to question 1, but used decimal 

notation as soon as they moved on to question 2. Andile is one such student who responded to 

question 1 with ‘two and a half’, but referred to this as ‘two point five’ during question 2.  

Mkhuseli referred to rational numbers in an attempt to answer question 2, and was accurate in 

the first part of his solution. He was unable, however, to complete the calculation accurately 
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and it was suggested that he use a calculator. He was immediately able to complete the 

calculation: 

Interviewer:  What is the flow rate? 

Mkhuseli: for five it’s going to be…one and a quarter 

Interviewer: [D(m)]…and for one second? 

Mkhuseli:  [calculating mentally] …an eighth…half of a quarter 

Interviewer:  [C(m) – point to the calculator] 

Mkhuseli: [presses 2.5 ÷ 10] 0.25units/sec 

Lwazi was able to complete his calculation verbally, in terms of rational numbers, without 

using decimals: 

Interviewer:  What is the flow rate? 

Lwazi:  [calculates mentally] half in 2 seconds…  

Interviewer:  [B] 

Lwazi:   [calculates mentally] a quarter units per second  

Lwazi was, however, unsure of how to record this in writing. It was evident in this interaction 

that he was able to work very well conceptually, but in his inability to record this showed that 

he was uncomfortable with the symbolic representations of these concepts. It is possible that 

this lack of comfort forced him to engage at a more conceptual level. 

Similarly, Ntando also required mediation in order to convert his answer in question 1 (2 ¾) to 

a decimal: 

Interviewer: What is the flow rate? 

Ntando:  I’ll have…let’s say…um…it’s less…is it 2.4 or 2.3? 

Interviewer: [E(c) – explained how to convert ¾ to a decimal] 

Ntando:  [presses 2.75 ÷ 10] 0.275units/sec  

The students who used rational numbers referred only to halves, quarters or eighths. Some of 

those who chose to use decimals worked with a higher degree of precision because of their 

choice of decimals as a representational tool. Andiswa, for example, measured 2.8 units as the 

solution to question 1, and Malume used 1.8 units. In both of these examples, this decimal 

value was more accurate than 2 ¾ or 3 in the case of Andiswa, and was more accurate than 1 

¾ or 2 in the case of Malume.  
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7.3.3 Predictions for Subtask 2 

Students were asked to predict the volume that would flow out for a period of ten seconds from 

a hole with half of the diameter of that in subtask 1. They were also told that the hole was at 

the same level as that in Subtask 1. Their predictions were categorised as either ‘accurate’, 

‘acceptable’ or ‘incorrect’.  

The figure below provides a breakdown of how many student responses fitted these categories: 

Figure 7.2 Student predictions for subtask 2 

 

The accurate solution was 1 unit, and responses of 1 unit or 1.25 units were considered accurate. 

Answers were categorised as ‘acceptable’ if they indicated an amount less than that for Subtask 

1. These included the responses of Andiswa, Malume and Andile who did not give a numerical 

value but did indicate that it would be ‘less’, providing an indication of ‘quality’ rather than an 

expression of ‘quantity’. This is possibly an indication that these students were not, as yet, able 

to quantify.  

Ntando’s prediction of 2 units was deemed acceptable, particularly as he provided sound 

conceptual reasoning for his response: 

Interviewer:  What do you think the volume would be that flows out in ten 

seconds if the size of the hole is halved? 
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Ntando:  …um…the hole is a little bit smaller…I think it would be…um…I 

think it would be 2 [units] 

Sisipho and Phumzile provided predictions that were considered accurate, and also gave their 

reasoning: 

Interviewer:  What do you think the volume would be that flows out in ten 

seconds if the size of the hole is halved? 

Sisipho:  1 ‘cos it’s a smaller hole and there isn’t very much that is going to 

come out 

 

Interviewer:  What do you think the volume would be that flows out in ten 

seconds if the size of the hole is halved? 

Phumzile:  [entered 2.5 ÷ 2 = on his calculator] I think 1.25 because this hole 

is half of that one [points to the hole that was open for subtask 1] 

Only 2 students were incorrect. Sanele said ‘5 units’ and Nobuhle stated ‘I think it will be 4 or 

5’. Students were asked to look at the bottle and show the interviewer how much 4 units of 

volume would be (mediation at level ‘R’). They were immediately able to realise that their 

estimate should have been less than the volume obtained in Subtask 4. These students also went 

on to correctly complete Subtask 2 without mediation. 

7.3.4  Performance in Subtask 2 

Student performance in Subtask 2 was interpreted with reference to their performance in 

subtask 1. Subtask 1 served as an opportunity to view students’ engagement with a flow rate 

task prior to gaining experience with the task. Subtask 2 provided an opportunity to view their 

performance subsequent to gaining this experience and, for all except Neliswa, subsequent to 

receiving mediation in order to complete Subtask 1. 

Figure 7.3 provides a summary of the mediation provided to students for Subtasks 1 and 2. 

Unlike Figure 7.1, which provided a comparison between each question in Subtask 1, this 

figure provides a comparison between subtasks that is inclusive of both questions. In other 

words, column A provides the number of students who were able to complete either question 

1 or question 2 without mediation.  

As with Figure 7.1, column A does not reflect the number of moments of mediation, but rather 

the number of students requiring no mediation. It is included in this way for the purposes of 

the discussion which follows after the figure. 
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Figure 7.3 Mediation provided during Subtasks 1 and 2 

 

The number of students requiring no mediation in Subtask 1 more than doubled for Subtask 2. 

In addition, the total number of moments of mediation provided in Subtask 2 was only 6 as 

opposed to the 28 required in Subtask 1. With the exception of only one moment of method-

level instruction, all moments in Subtask 2 were at an implicit level.  

Only one student, Babalwa, required mediation for both question 1 and 2. The first was a 

conceptual-level prompt [C(c)] provided as a reminder not to count the hash marks in his 

measurement of volume units for question 1. He had done the same in subtask 1, for which he 

received conceptual-level correction. In this case, a prompt was sufficient for him to realise the 

error and correct it.  

The mediation Babalwa required for question 2 was method-level instruction [E(m)]. He 

mentally calculated 0.5units/sec as the flow rate for subtask 2 and explained that he had ‘tried 

to divide’. Interestingly, he had obtained the correct answer in subtask 1, question 2, without 

the need for any mediation. 

Thandiwe was the only other student to require mediation for question 2. She had required 

conceptual-level instruction [E(c)] for question 2 of Subtask 1, and while she needed mediation 

for the same question in subtask 2, it did decrease in level to implicit mediation. 
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The remaining 3 moments of mediation for Subtask 2 were all prompts for question 1 that were 

provided to students who counted hash marks rather than volume units. These three students 

had either done this correctly in subtask 1 with no mediation (Andile) or had already received 

mediation in this regard (Ntando and Sandla) and thus only required a prompt for Subtask 2. 

7.3.5 Summary  

This section has provided details of the engagement of the students in the first half of this 

interview. It is notable that from Subtask 1, in which students encounter the concept for the 

first time, and Subtask 2, in which students work on a related flow rate problem, that there is 

such a dramatic decrease in mediation required. It is reasonable to assume that there would be 

a decrease, as Subtask 1 allows them an opportunity to engage with the concept, but the extent 

of this decrease suggests that real learning occurred as they engaged in the task. 

7.4  DATA PRESENTATION AND ANALYSIS: SUBTASKS 3 AND 4 

In Subtasks 1 and 2, students were required to measure the volume which flowed out of a bottle 

in a given time period. In Subtask 3, their attention was turned to the time it would take for a 

given volume to flow out. In each subtask, two questions were asked: 

(1) How long did it take for 4 units to flow out of the cylinder?  

(2) What is the average flow rate? 

As for Subtasks 1 and 2, data from Subtasks 3 and 4 are presented together as both were similar 

in form. First, the data from Subtask 3 will be presented and analysed, focusing on the 

predictions students offered as well their performance with reference to questions 1 and 2. 

Thereafter, the same presentation and analysis will be made for Subtask 4. 

Mediation did not occur during these two subtasks in the same way as it did in Subtasks 1 and 

2. Students made predictions and gave descriptions of the events in both of these subtasks, and 

their conceptual grasp was inferred from these. As the experiment itself was longer for Subtasks 

3 and 4 than Subtasks 1 and 2, there was more for the students to observe. The flow rate very 

obviously decreased during the time it took for the 4 units of water to flow out, and this formed 

part of what the students were required to explain. 

The analysis here is focused predominantly on the students’ verbal explanations as they 

responded to the questions posed to them during these subtasks. It also focused on how students 
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responded to either confirmation or rejection of their predictions after observing the 

experiment.  

There were moments in which it was evident that a student held a misconception regarding the 

attribute of flow rate. In the majority of such cases the misconception was resolved after 

observing the experiment and it was not the desire of the interviewer to interfere in this process. 

These moments were noted, but not addressed until the conclusion of the interview when the 

full task was reviewed with the student. 

The full transcripts for these two subtasks are included as Appendices X and Y. 

7.4.1  General summary of performance: Subtask 3  

In Subtask 3, the holes from which the water was to flow were positioned as shown in the figure 

below. Both holes were identical in diameter to the single hole in Subtask 2. The students 

observed as 4 units flowed out these holes and timed this process. 

Figure 7.4 Position of holes for Subtask 3 

                                                                

7.4.1.1 Student predictions for Subtask 3 

Student predictions were categorised in the same manner as for Subtask 2: ‘accurate’, 

‘acceptable’, and ‘incorrect’. An additional category, ‘unable’, was included as there were 4 

students who would not provide a prediction, despite encouragement to do so.  

In the ten seconds allowed for Subtask 2, one unit of water flowed out. Were a student to apply 

proportional reasoning, they would predict that if two holes were opened it would take 20 

seconds for 4 units to flow out. This answer would, however, not account for the effect of the 

decrease in pressure as the level of the water dropped. This caused the flow rate to decrease 

with time, and the time measured was therefore approximately 30 seconds.  
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For this subtask, predictions that were considered ‘acceptable’ were those that indicated a time 

period longer than that for Subtask 2. Students needed to recognise that although two holes, 

identical to the single hole in Subtask 2, were opened, the time it would take for the 4 units of 

water to flow out would be longer than ten seconds.  

The table below provides a summary of students’ responses to the interviewer’s request for a 

prediction. The categorisation of these predictions is included. 

Table 7.2 Summary of predictions: Subtask 3 

 Category: 

Prediction 

Subtask 3 

Prediction, Subtask 3 

Ntando Unable  

Mzwakhe Acceptable  ‘40 seconds for 4 units’ 

Neliswa Unable  

Nobuhle Incorrect  ‘more flow rate’ 

Aviwe Incorrect  ‘5 seconds’ 

Sisipho Incorrect  ‘about same as first [subtask 1; 10 seconds]’ 

Malusi Acceptable ‘I think it will be 20 seconds’ 

Phumzile Incorrect ‘4 seconds’ 

Sandla Acceptable ‘15 seconds’ 

Andiswa Unable  

Mkhuseli Incorrect ‘2 and a half [units]…it’s going to be the same as…[points at 

answer to subtask 1]…two holes…the same as one big 

one…[long pause]…I think it’s going to be the same 

as…[points at answer to subtask 1]…10 seconds’ 

Babalwa Incorrect ‘5 seconds’ 

Andile Acceptable ‘75 seconds’  

Sanele Incorrect ‘5 seconds’ 

Thandiwe Incorrect ‘5 seconds or less than 5’ 

Linda Incorrect Linda:      20…there’s 2 holes? 

Interviewer:  Yes 

Linda:      …then 8 

Malume Incorrect ‘2.6 seconds’ 

Lwazi Unable  

 

There were 4 students who were unable to provide a prediction. Of the remaining 14 students 

who attempted to provide one, only 4 students were able to provide an acceptable prediction, 

while 10 provided incorrect predictions that revealed misconceptions. 
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In terms of proportional reasoning, Malusi provided a perfect response. His prediction of 20 

seconds was, however, categorised as ‘acceptable’, as it had not shown awareness of the 

decreasing flow rate over time. The other students whose responses were categorised as 

‘acceptable’ were Mzwakhe, Sandla and Andile, who predicted 40 seconds, 15 seconds and 75 

seconds respectively. No students provided an accurate prediction. 

Incorrect predictions were those that indicated a time period of less than ten seconds. Four 

students chose 5 seconds as their prediction. These students halved the time allowed in subtask 

2 due to the presence of 2 holes identical to the single hole used in that subtask. This showed 

correct proportional reasoning if a single unit was to flow out, as in Subtask 2 and meant that 

their error was not conceptual in nature. Instead they had not taken into account the fact that 

four times this amount was to flow out in this subtask.  

Sisipho reasoned that it would be ‘about the same as the first [subtask]’. In other words, it 

would take 10 seconds for the 4 units to flow out. The first subtask involved a hole with double 

the diameter of the hole in Subtask 2, which therefore equalled the summed diameters of the 

holes in subtask 3. Again, assuming that she saw the question as asking how much time it 

would take for a single unit to flow out, the reasoning is proportionally sound. Mkhuseli 

provides the same prediction, but verbalised his reasoning in more detail:  

2 and a half [units]…it’s going to be the same as…[points at answer to subtask 

1]…two holes…the same as one big one…[long pause]…I think it’s going to be the 

same as…[points at answer to subtask 1]…10 seconds      

He demonstrated an awareness that the number of units is significant when he states, ‘2 and a 

half’, as this was his volume measurement in Subtask 1. He then turns his attention to the 

diameters of the holes and after recognising that the large hole’s diameter is the sum of that of 

the two small holes, ignores the volume variable to conclude that the number of seconds 

measured in Subtask 3 would be 10 seconds. 

Nobuhle was the only student not to predict a time, but rather stated, ‘more flow rate’. While 

this increase in flow rate from that in Subtask 2 would be the case if only ten seconds were 

allowed, the average flow rate for Subtask 3 was in fact lower due to the decrease in flow rate 

over time. Her response was therefore considered ‘incorrect’.  

The remaining students provided predictions lower than 10 seconds without providing verbal 

explanations. 
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7.4.1.2 Subtask 3, Question 1 

Question 1 required students to use the stopwatch provided to measure the amount of time it 

took for 4 units of water to flow out via the two horizontal holes. There were no students for 

whom this was problematic. It was their responses to probing questions subsequently posed by 

the interviewer that indicated their conceptual understanding of what had happened during that 

time. These probing questions included: 

 What did you notice? 

 Why do you think that happened? 

 Why is this measurement different to your prediction? 

Neliswa, who was unable to provide a prediction for this subtask, remained unsure of what to 

say, and again declined to provide a reason or description of what had happened, despite being 

encouraged to do so. She was, however, able to complete the calculations in this subtask 

accurately and independently.  

The remaining students mentioned a variety of factors in their responses to these questions. 

There were a number of key words that were used by students to refer to various factors. The 

use of the word ‘it’ was also analysed. At times ‘it’ was used with reference to volume, and at 

other times ‘it’ was used to refer to the flow rate. The number of such utterances is therefore 

included in Table 7.3.  

The number of utterances counted for the word ‘hole’ includes moments in which students 

pointed to the holes in their explanations as a substitute for using the word. For example, Malusi 

explains, ‘I think the pressure is not too much when you have two of them [points to holes]’. 

In the same way, one student pushed his hands together as a gesture to demonstrate this effect 

the effect of pressure, and this has been included in the count of utterances/gestures of 

‘pressure’ 
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Table 7.3 lists these words in order of frequency.  

Table 7.3 Summary of use of keywords: Subtask 3 

 Number of 

utterances/gestures 

Number of 

students 

Example 

Hole  11 8  Nobuhle: …the hole is still small 

Pressure 11 7 Andile: It had a lot of pressure and then 

is starting to stop 

Slow/slower 10 8 Mkhuseli: Water was coming out slower 

It (volume) 10 10 Sandla: it’s coming out 

It (flow rate) 8 6 Sandla: then it drops 

Fast/faster 6 6 Sisipho: It was fast and then went slow 

Stream 5 5 Sanele: …streams are same, then less 

Water 4 4 Sisipho: …it’s the water…it’s out 

Volume 4 3 Nobuhle: Because of the volume, the 

volume became less 

Flow rate 4 2 Interviewer: What did you notice? 

Lwazi: They are the same…they come 

out fast and then slow, slow…at the top 

[of the bottle]… large flow rate, in 

middle – medium flow rate, lower – 

small flow rate 

Force 2 2 Interviewer: What did you notice? 

Babalwa: Both of them went slower 

Interviewer: Why do you think that 

happened? 

Babalwa: Force! 

Stronger 1 1 Linda: The stream started out stronger 

Quickly 1 1 Phumzile: It was coming out very 

quickly 

Pushing 1 1 Andile: I think it’s because the thing was 

full and pushing 

Here (holes) 1 1 Thandiwe: when it comes here 

Full 1 1 Andile: It’s because the thing was full 

Units 1 1 Linda: …there were 4 units 

 

In this subtask the accurate terminology for the variables involved would be pressure, volume, 

flow rate and the influence of the diameter and/or positioning of the holes. The examples given 

in Table 7.3 showed some conceptual insight although the vocabulary used was at times 

misleading.  
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Speed is a rate, just as flow rate is, however the relationship between distance travelled and 

units of time (speed) and the relationship between the flow of a volume of liquid per unit of 

time (flow rate) are not the same concepts. However, it was noticed that where students were 

using speed-related terminology (e.g. fast, slow, or quick), substituting these with descriptions 

of flow rate, without changing the structure of their argument would correct the apparent 

conceptual error. As an example, Linda’s use of the word ‘stronger’, in her phrasing of the 

description, also constituted a reference to rate, as well as certain examples where the word ‘it’ 

was used. 

For example: 

Sisipho:    it was fast and then went slow 

Adjusted statement:  The flow rate was high and then decreased 

 

Phumzile:   it was coming out very quickly 

Adjusted statement: the flow rate was high 

 

Linda:   the stream started out stronger 

Adjusted statement: the flow rate was higher at the beginning 

 

Nobuhle:  it was the same  

Adjusted statement:  the flow rate from each hole was the same 

 

In the case of references to volume, the same could be done with the terms ‘water’, ‘stream’ 

and ‘units’, as well as certain examples where the word ‘it’ was used. These words were used 

by the students to indicate the amount of liquid flowing out: 

Mzwakhe:   the streams of water changed 

Adjusted statement: the volume flowing out changed 

 

Ntando:    the water was getting less 

Adjusted statement: the volume was decreasing 

 

Linda:    the holes were small…there were 4 units 

Adjusted statement: the holes were small…the volume that flowed out was 4 

units 

 

Ntando: when it was going down the pressure dropped 

Adjusted statement: as the volume decreased, the pressure dropped 
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Where students made use of the terms ‘force’, ‘stronger’ and ‘pushing’, these could similarly 

be substituted with the more accurate term ‘pressure’. For example 

Andile:    I think it’s because the thing was full and pushing 

Adjusted statement:  I think it’s because the thing was full and the volume of 

water was exerting pressure on the liquid 

 

In addition, when students mentioned ‘holes’ or pointed to the holes on the bottles as described 

their observations, they were either making reference to the size or positioning of the holes. 

Thandiwe also made use of the word ‘here’ to indicate the positioning of the holes: 

Thandiwe: when it comes here… 

Adjusted statement:  when the level of the water reaches the top hole  

Following these observations, the key words could be grouped together according to what they 

collectively referred to. The words ‘pressure’, ‘force’ and ‘pushing’, as well as the one 

student’s gesture that indicated pressure, can all be considered to refer to the influence of 

pressure on the flow rate. The words ‘volume’, ‘water’, ‘stream’ and the statement ‘the thing 

was full’ can be taken to refer to volume. The words ‘flow rate’, ‘fast/faster’, ‘slow/slower’, 

and ‘quickly’ all refer to a rate, in addition, Linda’ statement that ‘the stream started out 

stronger’ was a reference to the flow rate. Lastly, use of the word ‘hole’ and pointing to the 

holes could be considered recognition of the influence of the diameter and/or positioning of the 

holes on the flow rate. 

Figure 7.5 shows the number of utterances of these words, phrases or the use of gestures 

grouped into the categories of variables to which they refer.    
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Figure 7.5 Subtask 3: Number of utterances/gestures referring to each variable 

 

References to flow rate and volume occur the most, although with a relative lack of precision 

in the terminology. With volume being the distinguishing variable for flow rate when compared 

to other rates with which the students seemed more familiar (e.g. speed), this provides some 

evidence that they are aware of the differing nature of this measurement, although not 

necessarily yet having the precise language with which to describe it. 

7.4.1.3 Subtask 3, Question 2 

Question 2 asked the students what the average flow rate was for this subtask. The units of 

volume that flowed out were to be divided by the time in seconds that it took to do so. This is 

the same calculation that was required in Subtasks 1 and 2. In this case, however, every student 

arrived at the accurate solution without explicit mediation.  

Figure 7.6 shows the mediation provided for this calculation from Subtask 1 to Subtask 3. As 

with Figures 7.1 and 7.3, column A reflects the number of students for whom no mediation 

was required, rather than the number of moments of mediation.  
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Figure 7.6 Subtasks 1 – 3, Question 2: Mediation provided 

 

Only one moment of mediation was provided in subtask 3. Ntando looked to the interviewer 

for reassurance [B], which was provided as a head nod, and he proceeded to do the calculation 

independently and accurately. Two students started the calculation incorrectly, attempting to 

do the inverse calculation (time ÷ volume), but self-corrected their error. 

There is clear evidence that the students made progress from Subtask 1, in which only 5 

students were able to complete the calculation without mediation, to Subtask 3, in which only 

1 student required reassurance [B].  

7.4.2  General summary of performance: Subtask 4 

In Subtask 4, the holes from which the water was to flow were positioned as shown in the figure 

below. Both holes were identical in diameter to the single hole used in Subtask 2, and both of 

the holes used in Subtask 3. In contrast to subtask 3, however, the holes were positioned 

vertically relative to one another, rather than horizontally. As with Subtask 3, students observed 

as 4 units flowed out of these holes and timed this process. 
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Figure 7.7 Position of holes for Subtask 4 

                                                                

7.4.2.1 Student predictions for Subtask 4 

Student predictions were categorised in the same manner as for Subtask 3, however, only two 

categories applied: ‘acceptable’, and ‘incorrect’. There were no students who were unable to 

provide a prediction, and there was no student who provided an accurate prediction.  

During Subtask 3, students saw a clear decrease in the flow rate with time. As the level of the 

water dropped, so the flow rate decreased. They commented on this in various ways, including 

mention of ‘pressure’ in their explanations, descriptions of a change in the ‘streams of water’, 

or commenting that it ‘slowed down’.  

The more obvious contribution of the variable of pressure meant that fewer student predictions 

relied on proportional reasoning. Despite being asked to predict the amount of time that it 

would take for 4 units to flow out, many students chose to provide a detailed description of 

what they expected to see rather than provide a numerical response. These descriptions were 

made in comparative terms, with reference to Subtask 3.  

For this subtask, predictions that were considered ‘acceptable’ were those that either indicated 

a time period longer than that for Subtask 3, or correctly described what would occur during 

the experiment. Students needed to recognise that although two holes, identical to those used 

in Subtask 3, were opened, the time it would take for the 4 units of water to flow out would be 

longer than that measured in that subtask. The vertical arrangement of the holes would mean 

that once 3 units had flowed out, only one hole would remain operational, and therefore the 

required time would be increased. 

The table below provides a summary of students’ responses to the interviewer’s request for a 

prediction. The categorisation of these predictions is included. 

Table 7.4 Summary of predictions: Subtasks 3 and 4 
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Category:  

Prediction 

Subtask 3 

Category: 

Prediction 

Subtask 4 

Prediction, Subtask 4 

Ntando Unable Incorrect  ‘The flow rate will be less than this [indicates 

subtask 3], the water will be coming out of both 

holes…but sooner or later it will be coming out of 

one hole [points at bottom hole]…then it will be 

same pressure, in time it will be shorter’ 

Mzwakhe Acceptable  Incorrect ‘20 seconds’ [less than subtask 3]  

Neliswa Unable Acceptable ‘32 seconds’ [more than subtask 3] 

Nobuhle Incorrect  Acceptable ‘slower [points at answer for subtask 3]’ 

Aviwe Incorrect  Acceptable ‘40 seconds’ [more than subtask 3] 

Sisipho Incorrect  Acceptable  ‘I’m not sure…I’m not sure about the 

directions…this one [points at bottom hole] is 

going to slow down and this one [points at top 

hole] is going to stop’ 

Malusi Acceptable  Incorrect ‘22 seconds’ [less than subtask 3] 

Phumzile Incorrect Incorrect ‘20 seconds’ [less than subtask 3] 

Sandla Acceptable Incorrect ‘shorter [than subtask 3]’ 

Andiswa Unable Acceptable ‘longer, because the two holes are too far 

away…because this one is at the bottom and this 

one is higher…and this one [points at top] will go 

faster than this one [bottom]’ 

Mkhuseli Incorrect Incorrect ‘20 seconds’ [less than subtask 3] 

Babalwa Incorrect Acceptable ‘…longer…40 seconds, because when the water 

reaches this one [top hole] it will only have one 

[hole] left’ 

Andile Acceptable Acceptable ‘smaller flow rate than horizontal [holes] because 

this thing is full, when this [water] pushes down 

[gestures with one hand pushing down from top to 

bottom of bottle] through past this one [points at 

top hole] then there is one [hole]’ 

Sanele Incorrect Acceptable ‘the flow rate won’t be the same as previous one 

[subtask 3], the top one [hole] will go fast and then 

when it [water level] reaches here [points at top 

hole], this one [points at bottom hole] will come 

out and this one [points at top hole] will not come 

out’ 
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Thandiwe Incorrect Acceptable ‘the time will be longer than horizontal [subtask 3] 

because this one’s on top [points to top hole]…and 

there’s no more [gestures to indicate water and that 

the flow from the top hole would stop]’ 

Linda Incorrect Acceptable ‘it is longer than [points at answer to subtask 

3]…when it reaches here [top hole] this one’s 

going to be open and won’t go, it’s only going to 

be on this side [points to bottom hole]’ 

Malume Incorrect Acceptable ‘44 seconds’ [more than subtask 3] 

Lwazi Unable Incorrect ‘20 seconds’ [less than subtask 3] 

 

There were 11 students who provided ‘acceptable’ predictions, and 7 who were incorrect in 

their responses. 10 of these 11 students were either unable to give a prediction for subtask 3, 

or had provided an incorrect prediction. Therefore, when looking at the group as a whole, as 

well as more than half of the individual students, an improvement in conceptual work was 

evident.  

Figure 7.8 shows the change, from Subtask 3 to Subtask 4, in the number of students whose 

predictions fall into each category. There is a clear decrease in the number of incorrect 

responses, and a clear increase in the number of accurate responses. 

Figure 7.8 Comparison of student predictions: Subtasks 3 and 4 
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Malusi, Mzwakhe and Sandla, three of the four students who provided acceptable predictions 

for Subtask 3, provided incorrect predictions for Subtask 4. Each of these students predicted 

that in this case the time required for the four units of water to flow out would be shorter. 

Similarly, Phumzile, Mkhuseli, Lwazi and Ntando did not show evidence of improvement in 

their ability to predict the outcome of the experiment as they had either been unable to provide 

a prediction in Subtask 3 (Ntando and Lwazi) or had provided an incorrect prediction 

(Phumzile and Mkhuseli). 

Lwazi, Phumzile and Mkhuseli provide simple answers that did not reveal the reasoning behind 

their predictions. Ntando, however, verbalised his thinking as he arrived at his prediction. He 

correctly states that ‘the flow rate will be less than this [points to Subtask 3]’, but as he works 

further it becomes clear that there are conceptual errors in his thinking. He correctly describes 

that the flow out of the top hole will eventually stop, but then concludes that subsequent to this, 

‘it will be [the] same pressure’ and that therefore ‘in time it will be shorter’. 

Four students gave simple acceptable predictions in which they simply stated a time (Malume, 

Neliswa and Aviwe), or in one case gave just a word to indicate that the flow rate would be 

‘slower’ (Nobuhle). These did not allow insight into how they arrived at these predictions, 

however, the remaining students provided more descriptive predictions of what would happen 

and the effect this would have on the time or the flow rate. 

Babalwa, Thandiwe and Linda focused only on the time, each predicting that it would take 

‘longer’ for the four units to flow out than in Subtask 3. Their predictions did not refer to any 

change in the flow rate, but indicated that the flow would stop at the top hole after a period: 

Babalwa:  …when the water reaches this one [top hole] it will only have one [hole] 

left 

Thandiwe:  …because this one’s on top [points to top hole]…and there’s no 

more [gestures to indicate water and that the flow from the top hole would 

stop]’ 

Linda: …when it reaches here [top hole] this one’s going to be open and won’t go, 

it’s only going to be on this side [points to bottom hole]  

Andiswa makes an acceptable time prediction in his response. He states that it would take 

‘longer’ for the water to flow out, but also includes mention of a change in flow rate by making 

a distinction that the flow from one hole would ‘go faster’ than the other. Sanele makes a similar 
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prediction by indicating that the flow from one hole will go ‘fast’, and that at a later stage, 

water ‘will not come out’ of it. Both of these students, however, make what seems to be a 

conceptual error in stating that the hole which would have the higher flow rate would be the 

top hole. It is not clear, however, whether they meant to state that it will be for a shorter period 

of time that water will flow out of this hole, or whether the flow rate would be higher for this 

hole. 

Sisipho, in her prediction, shows evidence that she is aware that the flow rate will change with 

time when she states that, ‘…this one [bottom hole] is going to slow down and this one [top 

hole] is going to stop’. Andile is the student who provides the most comprehensive prediction, 

including an indication of how the pressure changes as the water level drops, and what the 

effect is on the average flow rate for the full subtask: 

Andile:  …smaller flow rate than horizontal [holes] because this thing is 

full…when this [water] pushes down [gestures with one hand pushing 

down from the top to the bottom of the bottle] through past this one 

[points at top hole] then there is one [hole] 

The predictions and reasoning of the students shows increasing sophistication and accuracy. 

7.4.2.2 Subtask 4, Question 1 

Students were first required to use the stopwatch provided to measure the amount of time it 

took for 4 units of water to flow out via the two vertical holes (Question 1). As for Subtask 3, 

there were no students for whom this was problematic and it was their responses to the probing 

questions subsequently posed by the interviewer that indicated their conceptual understanding. 

The same probing questions asked in Subtask 3 were used here in an attempt to elicit responses 

that revealed the students’ reasoning:  

 What did you notice? 

 Why do you think that happened? 

 Why is this measurement different to your prediction? 

There were a number of key words used by the students to refer to various factors. The use of 

the word ‘it’ was also analysed, as was done in Subtask 3. At times ‘it’ was used with reference 

to volume, and at other times ‘it’ was used to refer to the flow rate. The number of such 

utterances is therefore also included in Table 7.5.  
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The number of utterances counted for the word ‘hole’ includes moments in which students 

pointed to the holes in their explanations as a substitute for using the word. Three students 

pushed their hands together as a gesture to demonstrate the effect of pressure, and this was 

included in the count of utterances/gestures of ‘pressure’. Table 7.5 lists these words in order 

of frequency.  

Table 7.5 Summary of use of keywords: Subtask 4 

 Number of 

utterances/gestures 

Number of 

students 

Example 

Hole  39 13  Nobuhle: …because this one has two 

holes, one on top, one on bottom…then 

this one [points at top hole] couldn’t 

have anything coming out, but this one 

[points at bottom hole] could 

Pressure 21 8  Sanele: …since it’s going down the 

pressure is getting less 

Water 14 6 Malusi: … this one [points at bottom 

hole], was pumping out…pumping out 

the water more than that one [points at 

top hole] 

Slow/slower 6 4 Andiswa: the top one, it was going 

slower 

It (flow rate) 5 5 Phumzile: …it’s also decreasing 

Fast/faster 4 3 Ntando: the water goes out faster 

It (volume) 4 3 Lwazi: we let it out for longer 

Pump 3 2 Malusi: this one [points at bottom hole] 

was pumping out…pumping out the 

water more than this one [points at top 

hole] 

Speed 3 1 Mzwakhe: …and the speed changed… 

Flow rate 2 2 Aviwe: the pressure increases…the flow 

rate can be a little faster 

Stronger 1 1 Malume: It stopped here [points at top 

hole] after a while and then it only used 

this one [points at bottom hole] and this 

one [bottom hole] was stronger 

 

As with Subtask 3, the accurate terminology for the variables involved were pressure, volume, 

flow rate and the influence of the diameter and/or positioning of the holes. The examples given 
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in Table 7.5 showed some conceptual insight although the vocabulary used was at times 

misleading.  

In Subtask 3, there were 15 words that students used to refer to these four variables. In Subtask 

4, this decreased to 11, despite an increase in the average length of the descriptions provided 

by the students. In Subtask 3, 267 words were used by 17 students to describe what had been 

observed (average length of 16 words per student. In subtask 4, 381 words were used by 15 

students (average length of 25 words). This suggests that students were gaining accuracy in 

their use of the appropriate vocabulary.  

As argued in section 7.4.1.2, the key words could be grouped together according to what they 

collectively referred to. The words ‘flow rate’, ‘fast/faster’, ‘slow/slower’, ‘pump, ‘speed’ and 

‘stronger’, in this case, were all considered to refer to flow rate. The word ‘water’ was 

understood to be a reference to volume. The influence of pressure was described in each case 

with the appropriate term and the use of the word ‘hole’ as well as pointing to the holes was 

considered recognition of the influence of the diameter and/or positioning of the holes on the 

flow rate. 

Figure 7.9 shows the number of utterances of these words, phrases or the use of gestures 

grouped into the categories of variables to which they refer.   

Figure 7.9 Subtask 4: Number of utterances/gestures referring to each variable 
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There is a change in focus in the variables to which the students refer when describing their 

observations for Subtask 4. This indicates that they have noted the influence of the positioning 

of the holes and the resulting pressure changes in the system as the water flows out. The 

frequency of references made to volume and flow rate are relatively small.  

7.4.2.3 Subtask 4, Question 2 

Question 2 required the students to calculate the average flow rate for this subtask. The units 

of volume that flowed out were to be divided by the time in seconds that it took to do so. This 

is the same calculation that was required in all of the previous subtasks.  

One interview was terminated prematurely as student unrest lead to an evacuation of the 

campus during the interview. For the remaining 17 interviews, all of the students were able to 

arrive at the accurate solution without explicit mediation. 

Interview 3 required students to maintain focus on a novel, complex task for approximately 45 

minutes, and there were two students who showed signs of loss of concentration by this stage 

in the interview. Sandla and Babalwa required a method-level prompt [C(m)], in the form of 

the interviewer pointing at the calculation they correctly made in subtask 3, when they started 

dividing the time period by the number of units of volume. They then proceeded to correct their 

error without any further mediation, providing evidence that this was unlikely to be a 

conceptual error, but was rather a procedural one. 

7.4.3 Summary  

Student performance in Subtasks 3 and 4 show evidence of substantial development in their 

ability to work with the concept of flow rate. It can be argued that this is due to the effect of 

practice in Subtasks 1 and 2, however, the structure of the task reversed in requiring prediction 

of the amount of time it would take for a given volume to flow out. This reversal, and the 

attention paid by the researcher to the ways in which the students engaged in the tasks and 

substantiated their actions, provides evidence of deeper engagement than that which would be 

obtained by the superficial practice offered in Subtasks 1 and 2. 

7.5 STABLE AND EMERGING CONCEPTUALISATIONS 

Task 3 was designed to create a situation in which the students could be observed working with 

a new concept, previously not encountered in formal schooling, as well as a more complex, 
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non-spatial, measurement. By nature, Task 3 therefore would be expected to reveal emerging 

conceptualisations, however, certain insight was also gained regarding stable measurement 

conceptualisations. 

7.5.1 Stable conceptualisations 

For many students, speed as a rate was a stable measurement conceptualisation. Recognising 

that the quantity to be measured involved the passage of time, most began to use everyday 

terminology associated with speed when attempting to verbalise what they observed. They 

described the flow rate as being ‘slow’ or ‘fast’ rather than ‘low’ or ‘high’, showing a tendency 

to generalise this understanding to other rates. 

Most students also showed a stable conceptualisation of the method to calculate rates. Very 

few attempted to calculate the flow rate per unit volume rather than per unit time. It is possible 

that having made a link from the concept of speed to the new concept of flow rate that this 

ability to symbolically calculate a rate generalised to flow rate. The full understanding, 

however, did not generalise, as students found it challenging to compare flow rates according 

to the measured value. 

A further stable conceptualisation that became clear as the students engaged in the task, was 

an understanding of the relationship between pressure and flow rate. Students repeatedly used 

gestures demonstrating that increased pressure in the system would increase the flow rate. 

7.5.2 Emerging conceptualisations 

The power of this task was in the view it permitted of the development of a concept. Flow rate 

was not a stable concept for any of the students interviewed, yet their conceptualisation of it 

showed evidence of substantial development. The sophistication and accuracy of their 

explanations improved through the interview and gave evidence of growing stability in their 

understanding of, and ability to work with, the concept of flow rate.   

7.5.3 Additional insights 

This task was designed to assess the measurement conceptualisation of flow rate for these 

students. Because it would be a concept that they would not have met in formal schooling, four 

subtasks were included to maximise access for the interviewer to these conceptualisations. It 

was not anticipated that it would prove to be such a powerful method of formally introducing 
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the concept.  This knowledge is not assumed to yet be stable, but for the majority of the students 

there is evidence that it is much closer to stability as a result of this interview. 

7.5  SUMMARY 

The observations made in this interview have revealed the conceptualisations held by the 

students regarding flow rate. In addition, it has provided a vehicle for these conceptualisations 

to mature towards stability. This suggests that such a structuring of engagement with 

measurement activities holds power in promoting the construction of accurate and stable 

measurement conceptualisations, and, importantly, in terms of measurement more complex 

than spatial measurement. 
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CHAPTER 8 

PRESENTATION AND ANALYSIS OF DATA: INTERVIEW 4 

8.1  INTRODUCTION 

In this chapter, data from the fourth task-based interview will be presented and analysed. As 

described in Chapter 5, this task involved students collaborating to solve a practical problem 

involving the calculation of area. The chapter opens with a description of the process of 

summarising and analysing these interviews. 

Thereafter, data pertaining to the students’ performance in the interviews will be presented. 

Each interview will be described with reference to critical incidents that occurred, which 

includes the coded moments of interviewer mediation. Finally, a brief discussion will be 

presented regarding the performance of the full group of students for each of the five phases 

into which the task was divided. 

8.2  PROCESS OF SUMMARY AND ANALYSIS 

Due to contextual constraints (see section 4.4.1.3), there were insufficient students available 

from the original group of 27 to participate in pairs in this interview. For this reason, a key 

member was selected for each interview from those available of the initial group. This student 

selected a peer that had not been involved earlier in the study.  

The main focus in the analysis of the interviews was the performance of the key member. This 

focus allowed a comparison to be made between this student’s performance in Task 1 and Task 

4. In both interviews, students were required to measure and calculate area, but the dominant 

distinguishing feature of this task was the richness of the contextual information provided and 

the addition of a peer with whom to collaborate. When analysing this student’s performance 

the peer was viewed as an additional resource, or tool, for the key member. When examining 

the interviews it was possible to see how they had used this resource and to what extent it had, 

or had not, been helpful to them. 

It is recognised, however, that one cannot analyse the interview by looking solely at the key 

member’s performance. The presence of another student leads to the creation of a uniquely 

functioning unit, the dynamics of which cannot be ignored. Observations were therefore also 

made with regard to how the students functioned together in order to solve the problem posed.  
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This complexity introduced by this design decision serves the aims of the research in providing 

another type of viewpoint from which to assess each student’s measurement 

conceptualisations.  

For the purpose of analysis, the task was viewed as consisting of five phases: 

 Phase 1: measurement, calculation and interpretation of area of rectangular houses 

 Phase 2: measurement, calculation and interpretation of area of hexagonal restaurant 

 Phase 3: measurement, calculation and interpretation of area of circular restaurant 

 Phase 4: measurement, calculation and interpretation of area of hotel 

 Phase 5: combining results from Phases 1 – 4 to provide a final answer to the overall 

problem 

8.3  DATA PRESENTATION AND ANALYSIS 

This section will comprise three main parts. The first data to be presented will be a general 

comparison of the students’ performance in Task 1 and Task 4, for the key member in each 

interview, with regard to the number of moments of mediation required to complete the tasks, 

and the highest level of mediation required.  

This comparison will be followed by a summary of each interview, with a breakdown of which 

phase mediation was required in, and the levels of this mediation. While the focus of the 

observations and analysis was predominantly on the key member, observations regarding the 

functioning of the students as a unit are included in each interview summary. 

Finally, data is collated across interviews according to task phase. Each phase is summarised 

by providing a count of the number of moments of mediation per level of mediation, across all 

ten interviews, and a discussion of the general performance of the students in each phase 

follows. 

8.3.1 General comparison of performance between Tasks 1 and 4 

The table below summarises the number of moments in which mediation from the interviewer 

was required, and the highest level of mediation offered for Task 1 and Task 4. The information 

included in squared brackets pertains to the mediation from the peer during the course of the 

task, in terms of number of moments and the highest level thereof. We will first consider 
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interviewer mediation and will discuss the mediation that occurred as the pair collaborated in 

each interview summary. 

Table 8.1 Number of moments and highest level of mediation: Task 1 vs Task 4  

 Moments of 

mediation    

(Task 1) 

Moments of 

mediation 

(Task 4)        

Highest level 

of mediation      

(Task 1) 

Highest level 

of mediation     

(Task 4) 

NDILEKA 10 9 [+1] F(c) E(c) [E(m)] 

MZWAKHE 10 9 F(c) E(c) 

NOBUHLE 3 3 [+2] F(m) D(m) [E(m)] 

SISIPHO 3 8 F(c) D(c) 

NTANDO 8 7 E(m) F(c) 

NELISWA 2 11 D(c) E(c) 

AVIWE 1 12 [+ 2] D(c) F(m) [E(c)] 

SANDLA 3 12 [+1] F(c) F(c) [E(m)] 

KADEN 5 11 F(c) F(c) 

MALUSI 2 20 [+ 1] F(c) F(c) [E(c)] 

When compared to Task 1, Ndileka, Mzwakhe and Ntando required fewer moments of 

mediation in interview 4 to complete the entire task. In addition, Ndileka and Mzwakhe 

required a lower level of mediation for Task 4. Ntando, however, required a higher level of 

mediation for Task 4 than for Task 1. Nobuhle required the same number of moments of 

mediation for Task 1 and Task 4, and required a lower level of mediation for task 4 than for 

task 1. Nobuhle also dropped in terms of the highest level of mediation she required from high 

level explicit mediation [F(m)] in interview 1, to implicit mediation [D(m)] in interview 4. 

Sisipho required more moments of mediation in order to complete task 4, but similar to 

Nobuhle, improved to require only implicit mediation [D(c)] for this task. She had required the 

highest level of mediation [F(c)] in order to complete Task 1.  

Neliswa and Aviwe showed both an increase in the number of moments of mediation required 

for Task 4, as well as an increase in the level of mediation they required. Sandla, Kaden and 

Malusi required the highest level of mediation for Task 1 and Task 4, as well as increasing in 

the number of moments of mediation required for successful completion of Task 4. 
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In order to understand this data it needs to be remembered that Task 4 consists of five 

substantial task phases. When this is taken into consideration, the increase in the number of 

moments of mediation for these students in interview 4 is understandable. Only Neliswa, 

Aviwe and Malusi required close to, or more than, five times the number of moments of 

mediation for Task 1.  

In the following section, the moments of mediation are separated out into the various phases 

of the task. This allows are more nuanced picture to emerge from the otherwise amorphous 

data of precisely when students required interviewer mediation, and what form this took. When 

separated out in this way, it becomes possible to see that there were areas of strength for each 

group of students.  

8.3.2 Analysis of performance per interview 

In this section, data from each individual interview will be presented. The number of moments 

of mediation, and the level of each of these moments, have been split into the phases in which 

they were provided. This data will be presented in table form, alongside the same data from 

Task 1, in order to facilitate a comparison between the two tasks. 

Each table of data will be followed by a narrative of the critical incidents in that particular 

interview. It is through the narratives that several patterns and themes become clear. 

As the primary focus for analysis is on the key member of the pair, mediation is analysed from 

that perspective. In the course of collaborative work, there are countless moments of interaction 

that could be viewed as constituting mediation. For this research, it was the moments of explicit 

mediation in which the peer mediated for the key member that have been noted.   

8.3.2.1 Interview summary – Ndileka 

Ndileka was the student who struggled the most with Task 1(see Section 6.3.2.2). She was 

offered additional artefacts (tiles) to assist her, yet still required 3 moments of mediation at the 

highest available level. In her case, the task was abandoned as she was unable to move forward 

despite the nine mediation attempts.  

As is evident in the table below, this was not the picture that emerged for Task 4. To get started 

on the problem solving with Phase 1, this pair required only one moment of interviewer 
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mediation, and this only at an implicit level. Phases 3 and 4 required no mediation at all, and 

the only moment of explicit interviewer mediation was in Phase 5.  

Table 8.2 Summarised moments of mediation per task phase: Ndileka 

 A B C(m) C(c) P(a) D(m) D(c) E(m) E(c) F(m) F(c) 

TBI 1  1  2 1  1 1 1  3 

Phase 1       1 1    

Phase 2   1  1  1     

Phase 3            

Phase 4            

Phase 5    1 1  2  1   

 

During Phase 1, there was one example of mediation provided by Ndileka’s partner. Ndileka 

had hesitated to start engaging in the task, and her peer intervened with method-level 

instruction to facilitate her participation.  

During Phases 2 to 4, the two worked together effectively. Her partner took charge of directing 

the process, but only in implicit ways. Ndileka contributed equally to the task during these 

phases, particularly when the pair needed to recall formulae. By Phase 4 they were seamlessly 

sharing roles by taking turns to physically measure the required dimensions of the shapes and 

a lot of debate occurred between the two as they worked on this phase. Ndileka showed an 

immense amount of progress when compared to her performance in Task 1. 

The mediation provided in Phase 1 concerned the use of units in the calculation. The students 

converted the measured centimetres into metres prior to calculating the area of the houses, but 

were reporting their solution in cm2. They required simply a leading question in order to draw 

their attention to their choice of units and they then self-corrected their error.  

In Phase 2, the students attempted to recall the formula for the area of a triangle, but required 

the artefact card containing this formula to be provided. The other mediation provided in this 

phase aided the students in recognising the subdivisions of the hexagonal shape of the 

restaurant. 

Phase 3 required no mediation. The students recalled the formula very easily and calculated 

the area of the circular shape without little effort. Phase 4 was a challenge. While the students 

required no mediation from the interviewer, they took some time to work out how to approach 
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the problem, during which there was much debate between the two peers. They settled on a 

strategy before starting to measure and calculate. 

The debate and discussion between the students continued throughout this phase. They decided 

in advance how to subdivide the hotel area into rectangles, without gaps or overlaps. However, 

while measuring and calculating, an error was made in which two rectangles were overlapping. 

Through debate and discussion the students were able to successfully self-correct this error. 

Mediation in phase 5 concerned the use of the scale of the map. In Phases 2 – 4, Ndileka and 

her partner had chosen to calculate the area of the buildings using cm2. These therefore needed 

to be converted to m2 in order to arrive at the final cost of building the resort. The following 

exchange between the interviewer and Ndileka occurred: 

Interviewer: How do we convert all of these answers to m2? 

Ndileka: I think times 1000 

I:  [artefact card given: 1cm on the map  → 7 metres in reality] 

N:  times by seven! 

I:  times what by seven? 

N:  the answer? [points to the calculated area of the hexagon in cm2] 

In this exchange it is clear that the student confused metric conversions with the use of the map 

scale. In Phase 1 these students correctly multiplied by 7 in order to convert the measured 

lengths in centimetres to metres. They had not recognised that this differed from converting 

square measurements. They required instruction [E(c)] in order to realise how to do this. This 

was the only time that explicit mediation was required. 

The dramatic improvement in performance from interview 1 to interview 4 could not be 

explained by Ndileka not participating in the problem-solving process. Both students played 

an equal role in the process. The opportunity to collaborate with a peer, and the provision of a 

richer, and more realistic, context to the problem would therefore appear to have been of benefit 

to Ndileka.  

8.3.2.2 Interview summary – Mzwakhe 

Mzwakhe required a large amount of mediation for the first task, half of which was at an 

explicit level. As can be seen in the figure below, the number of moments of mediation required 

was fewer for Task 4, with only one moment being explicit.  
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Table 8.3 Summarised moments of mediation per task phase: Mzwakhe 

 A B C(m) C(c) P(a) D(m) D(c) E(m) E(c) F(m) F(c) 

TBI 1   1   3 1 1 1 1 2 

Phase 1   1         

Phase 2       1 1     

Phase 3   1      1   

Phase 4   1 1   1     

Phase 5   1         

What characterised the working of this pair was the seamless sharing of responsibilities. The 

students switched roles repeatedly by alternating who would measure, who would calculate 

and who would write the working out and solutions down. There was a lot of talk between the 

students as they solved the problem. 

Through talking to each other, the students drew on one another’s knowledge and abilities in 

order to optimally approach the problem. This was a pair who paused to strategise before 

starting the problem, and they were very methodical about following this plan. They calculated 

to m2 for each phase and decided to delay converting to a monetary value at the end. By talking 

to one another throughout, it was also observed that the students noticed errors shortly after 

they were made and were able to correct these before any mediation needed to be offered. They 

sought reassurance [B] from one another as they worked. 

The only explicit mediation that was required was regarding the conversion of centimetres 

squared to metres squared. The students had converted the linear measurements prior to 

calculating the area in phases 1 and 2, but had calculated the area of the circle in Phase 3 in 

centimetres squared. It took explicit mediation to assist them to see that the solution needed to 

be multiplied by 72, and not 7 as was previously appropriate. 

The pair made only one error that was carried forward and addressed at the conclusion of the 

interview. This was to use the measurement of a side of a triangle, rather than its perpendicular 

height, when calculating the area of the hexagonal restaurant in phase 2. This was resolved 

with a simple method-level leading question [D(m)]. 
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8.3.2.3 Interview summary – Nobuhle 

Nobuhle and her partner performed excellently in this task. She was of the students who 

required very little mediation in task 1, and this also the case for Task 4. As is evident in Table 

8.4, the total number of moments she required in task 1 matched the total number of moments 

she and her partner required for task 4, despite there being five substantial phases to Task 4. 

Three phases required no mediation at all. 

The highest level of mediation also dropped from explicit to implicit mediation. This pair made 

no errors and did not require any additional artefact cards. They required fewer moments of 

mediation than any other student group, and the highest level of mediation that they required 

was also lower than for all the other student groups.  

Table 8.4 Summarised moments of mediation per task phase: Nobuhle 

 A B C(m) C(c) P(a) D(m) D(c) E(m) E(c) F(m) F(c) 

TBI 1  1    1    1  

Phase 1            

Phase 2  1      1    

Phase 3        1    

Phase 4            

Phase 5      2      

What distinguished the work of these students was their excellent ability to collaborate and 

work as a unit. Without discussion as to who should take the lead, Nobuhle’s partner became 

the one to lead the problem-solving process. It was not that this student took over, although 

there were two moments in which she voiced what was classified as method-level instruction, 

but each student contributed equally and there was much talk between the students during all 

phases. Rather, the role that Nobuhle’s partner took was to keep them focused on their mutually 

decided strategy. 

Before starting the task, the students carefully read the question several times, and then 

examined each shape that they needed to work with. They established what the required 

formulae were and decided the order in which they would complete the phases. 

The students were very methodical, precise and neat in their working. The page on which they 

were recording the calculations was well organised, with an area set aside for each phase. They 
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checked their answers before moving on to the next phase, and were able to identify small 

calculation errors where they occurred and self-correct these without mediation. 

Nobuhle was certainly one of the better-performing students in interview 1 and it was therefore 

expected that her and her partner would be one of the better-performing pairs in this interview. 

The strength of the pair’s work did not simply arise from the ability of the individuals. Their 

excellent collaborative ability, which enabled them to remain focused and organised, can also 

be considered to have contributed to their success. 

8.3.2.4 Interview summary – Sisipho 

When comparing Sisipho’s performance in Task 1 and Task 4, it is clear by examining Table 

8.5 that there was an improvement. She required the highest available level of mediation for 

the first task, while she and her partner required only method-level instruction in Task 4. 

Another indicator of this improvement in performance is that it is only in Phase 4 that the 

students required the same number of moments of mediation as Sisipho needed for Task 1. 

Phases 1 to 3 required only one moment each, and the pair managed to complete Phase 5 

without any mediation.  

There were two small errors made (one each in Phases 2 and 4) for which mediation was 

delayed until the end of the interview. The pair also required the provision of the formula [P(a)] 

for calculating the area of a triangle as they worked on Phase 2. In Phase 3 the students used 

the length of the diameter of the circle, rather than the length of the radius, in their calculation. 

This required simply a method-level prompt to resolve. In Phase 4 the students left out one 

rectangular piece of the hotel when adding the components to find the total area. This was the 

only time explicit mediation was required for this pair.  
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Table 8.5 Summarised moments of mediation per task phase: Sisipho 

 A B C(m) C(c) P(a) D(m) D(c) E(m) E(c) F(m) F(c) 

TBI 1  1     1    1 

Phase 1   1         

Phase 2     1  1     

Phase 3    1         

Phase 4   1     1 1    

Phase 5            

 

This pair worked in a similar way to Nobuhle and partner. They were very deliberate about 

examining the problem as a whole very carefully and arriving at a complete strategy before 

starting to work. In the first two phases they referred to the artefact card containing the question 

several times to keep orienting themselves to the problem as a whole.  

There was a lot of student talk as they worked. There were moments of disagreement between 

the students in Phase 1, but no interviewer mediation was required to help them to resolve this. 

They listened to one another’s ideas and mutually decided on how to proceed, revealing 

strength in their ability to collaborate and work as a unit effectively.  

8.3.2.5 Interview summary – Ntando 

Ntando was very unsure of himself when attempting Task 1. He required a lot of reassurance 

(B) as he worked, as well as some method-level instruction [E(m)], in order to arrive at a 

solution. In Task 4, however, while the pair did require a higher level of mediation in Phase 4, 

the total number of moments of mediation dropped.  

Instead of requiring reassurance from the interviewer, Ntando and partner provided this for 

each other, thus using one another as a resource. They showed some nervousness at the 

beginning of the interview and the reassurance they were able to offer one another was 

important for them to get started. 

There was a large amount of student talk and debate as they began to decide on a strategy. They 

repeatedly referred back to the artefact card containing the question. The students discussed 

what units they will be using and which part of the problem to start with.  
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Table 8.6 Summarised moments of mediation per task phase: Ntando 

 A B C(m) C(c) P(a) D(m) D(c) E(m) E(c) F(m) F(c) 

TBI 1  4    1  3    

Phase 1            

Phase 2      1  1     

Phase 3            

Phase 4         1   2 

Phase 5        1 1   

 

There was evidence of the students sharing responsibility for the task. They were both reading 

off the length measurements on the ruler and checked that they were in agreement before 

writing anything down. 

Phases 1 and 3 required no mediation. In Phase 2, the students used the measurement of a side 

of a triangle, and not the perpendicular height, when calculating the area of the triangles. At 

the conclusion of the task it was simply a method-level leading question that was required for 

them to notice and correct the error. The pair did require the artefact card containing the 

formula to calculate the area of a triangle, but were able to independently recognise the need 

to subdivide the hexagonal area into triangles and did notice that the six triangles were 

equilateral. 

Phase 4 proved to be challenging. The students did not pause to strategise before each picked 

up a ruler to start measuring the dimensions of the hotel building. They did not communicate 

and began to work alongside, rather than together with, one another. Eventually they required 

the highest possible level of mediation [F(c)] in this phase. 

The students had chosen to calculate to cm2 for phases 1 to 4, and to delay the conversion to 

m2 until Phase 5. Here they required brief mediation at the instruction level [E] as they wanted 

to convert using metric conversions rather than the scale. They were able to quickly complete 

the phase as soon as they understood how to perform this conversion. They did not require any 

further assistance in arriving at the monetary value for building the resort, and were able to 

easily relate their result back to the original context 
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8.3.2.6 Interview summary – Neliswa 

In interview 1, Neliswa used a strategy that was very carefully thought out before she started 

working. This characterised her work with her partner in this interview. They started by each 

reading the question silently, speaking softly to themselves and looking from the question to 

the map repeatedly as they made sense of the context and problem individually. Thereafter, 

they started to discuss how they would approach the task and formed a strategy before 

beginning with Phase 1. 

While working in Phase 1, Neliswa was heard to say the following to herself: “metres squared 

is millimetre… 7 metres divide by hundred to get millimetres…R8500 for metre squared so 

millimetre”. Interestingly, however, the pair went on to correctly convert the measured 

centimetres to metres according to the scale, and correctly calculated the cost of building the 

houses, without mediation. Neliswa seemed to be confusing the algebraic simplification of mm 

to become m2, as well as referring to the metric system of conversion (“divide by hundred”), 

at the same time as trying to make sense of the scale (“7 metres”). 

It would appear that verbalising this assisted her in working out how to use the scale, as neither 

her partner, nor the interviewer, needed to respond in any way for her to spontaneously begin 

to use the scale appropriately. As is shown in Table 8.7, this pair required no interviewer 

mediation in this phase.  

Table 8.7 Summarised moments of mediation per task phase: Neliswa 

 A B C(m) C(c) P(a) D(m) D(c) E(m) E(c) F(m) F(c) 

TBI 1  1     1     

Phase 1            

Phase 2  1   1 1   1   

Phase 3  1   1   1    

Phase 4   1       1   

Phase 5       1 1    

Most of the mediation required by these students was at an implicit level, and the majority of 

this was simply reassurance. They did request assistance with recalling the formulae to 

calculate area. The artefact cards with the triangle and circle formulae needed to be provided. 
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They used the length of the diameter, rather than the radius, in the calculation of the area of the 

circular restaurant.  

They lost confidence somewhat in Phase 4, as they sought a moment of reassurance that they 

were using the correct formula to calculate the area of a rectangle. They had used this 

previously in Phase 1, and it should therefore not have required mediation. It was possible that 

the request for reassurance was about whether or not they could subdivide the shape into 

rectangles to calculate the total area.  

The students independently completed Phase 4 with the only error being that they had added 

one section twice to arrive at the solution for the whole area. This was the reason for the 

provision of one moment of instruction-level [E] mediation. 

While the students had decided to convert to rand at each phase, this was not done throughout. 

In Phase 1 the pair calculated to the final answer in rand, in Phases 2 and 3 they stopped when 

they had arrived at the area in m2, and in Phase 4 they stopped when they reached the answer 

in cm2. They had therefore already demonstrated that they could perform the cost calculation, 

and the conversion from centimetres to metres according to the scale. The mediation provided 

in Phase 5 concerned the conversion of cm2 to m2, which was necessary in order to arrive at 

the cost to build the hotel. 

When examining Table 8.7, it does appear that this pair struggled. There are nine moments of 

mediation, much more than the two that Neliswa required for Task 1. If the performance is 

examined per phase, however, there is a more positive picture. Only one phase required more 

than two moments of mediation.  

Much of the mediation was reassurance [B], and as reflected on above, there were times when 

the pair seemed to lose confidence. Mediation therefore had a large role in helping the students 

to feel more confident in their choices as they solved this problem. 

8.3.2.7 Interview summary – Aviwe 

Aviwe arrived for his interview with two peers, therefore three students worked together to 

complete this task. Aviwe started his first interview sitting back and stating “I don’t know”. 

One leading question, however, unlocked the task for him and he was able to complete it 

otherwise independently. 
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For Task 4, Aviwe and his partners required ten moments of mediation. Only two exceeded the 

highest level of mediation required by Aviwe in interview 1. The remainder of the mediation 

remained at the implicit level.  

Table 8.8 Summarised moments of mediation per task phase: Aviwe 

 A B C(m) C(c) P(a) D(m) D(c) E(m) E(c) F(m) F(c) 

TBI 1       1     

Phase 1  1      1 + 1 1   

Phase 2     1  2  1   

Phase 3     1 1      

Phase 4   2         

Phase 5  1 1         

Despite having three members in this group, which added complexity to how they organised 

themselves in relation to the problem-solving task, this group was highly organised and worked 

very well as a team. Prior to starting any work, they discussed how they would approach the 

problem. They decided to calculate the cost of each building, and not only the area, in each 

phase. This meant that Phase 5 required simply the adding of the costs already calculated. 

They paused at the beginning of each phase in order to again discuss with one another how to 

perform the calculations. There was a lot of student talk in this interview. They repeatedly 

returned to the artefact card containing the question and contextual information in order to 

check their answers in relation to the problem. This formed an important resource for them. 

This group struggled to recall the formulae that they needed to calculate all of the areas. While 

they managed to recall the formula to calculate the area of a rectangle, they needed those for 

the triangle and circle to be provided. 

A lot of the mediation that was required by these students concerned conversions. They 

required explicit mediation in order to convert cm2 to m2, as well as prompts [C] to do this. 

There was no need for interviewer mediation for any strategy decisions. For example, the group 

needed no help to realise the need to subdivide the hexagon in order to calculate its area and 

decided independently to subdivide the composite area of the hotel.  
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8.3.2.8 Interview summary – Sandla 

Sandla was one of the students who required the highest possible level of mediation for Task 

1. When working with his partner in Task 4, there was also one moment at this level, and the 

remainder of the mediation moments were at least three levels lower.  

The total number of moments of mediation was higher for Task 4 than for Task 1, but it should 

also be noted that per phase this was not the picture. Phases 1, 3 and 4 required an equal or 

lower number of moments of mediation, with Phase 5 being completed by the pair 

independently.  

Table 8.9 Summarised moments of mediation per task phase: Sandla 

 A B C(m) C(c) P(a) D(m) D(c) E(m) E(c) F(m) F(c) 

TBI 1       1  1  1 

Phase 1   1          

Phase 3  1   1 2 1    1 

Phase 2#   2         

Phase 4    2     1 + 1    

Phase 5            

# note that phase 2 and phase 3 are reversed in this table; students chose to work in this order 

This pair started work before taking time to consider the problem as a whole. They read the 

question and the contextual information, pointed to each of the relevant buildings on the map 

and then started working to calculate the area of the houses. Unlike other groups, they did not 

return repeatedly to the artefact card containing the question during the task.  

At the beginning of each phase, Sandla and his partner decided how to measure and calculate 

the areas. They formed strategies that addressed the problem in parts, without considering what 

the relevance of each part was to the whole until the final phase.  

This was different to most of the pairs already described who considered the question as a 

whole before deciding how to divide it into parts. For those pairs, there was a long period of 

student talk before phase 1, whereas for this pair there was a large amount of student talk at the 

beginning of each phase. 
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The students started Phase 1 by measuring the dimensions (length and breadth) of one of the 

houses and adding them together. This confusion between area and perimeter was possibly due 

to them not having spent as much time as others considering the question and contextual 

information provided. It was easily resolved once the students noticed their error, with this 

phase requiring only the provision of reassurance [B] from the interviewer. It was also not 

repeated in subsequent phases. 

Sandla and his partner were one of only three student groups who did not require the artefact 

card containing the formula to calculate the area of a triangle, nor did they require the card 

referring to the circle formula.  

On reaching Phase 3 (which this pair chose to do before Phase 2), Sandla immediately wrote 

the formula to calculate the area of a circle, and then paused, unsure of how to proceed. The 

following exchange occurred as the pair worked to calculate the area of the circular restaurant:  

Interviewer: What is ‘r’? [D(c)] 

Partner:  That’s just it…so we are not supposed to use our textbook? 

Sandla:  radius 

P:  [picks up ruler and examines it] 

I:  To measure it, where would you place the ruler? [D(m)] 

P:  [places ruler to measure from approximate middle of the circle] 1.5 

[Students start calculating, using the formula and their measurement of the radius] 

I:  What unit are you using? [D(m)] 

P:  Sjoe, this is hard, we haven’t done this for… 

S:  metres squared 

I:  [point to ruler] 

S:  centimetres squared 

I:  how do we convert to metres squared? 

S:  [long pause, looking to the ceiling] divide by a thousand and times a 

hundred 

P:  times seven [as multiplies by seven and records the solution] 

At this point, the interviewer mediated at the highest level to assist the students to realise that 

it was necessary to multiply by 72, and the artefact card stating this information was provided. 

The students had, in Phase 1, converted the measured centimetres into metres before calculating 

the area, and had gone on to do the cost calculation for the houses. For this phase, they had 

calculated the area in cm2 and then confused metric conversions with the use of the scale, as 

well as needing mediation to learn how to convert square units. Importantly, the students did 

not need further mediation concerning the conversion of units and use of the scale. 
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The level of mediation required by this pair decreased after the high level required for the 

circular restaurant calculation, indicating that the students were learning from the mediation as 

it was provided. There was no reason for repeated mediation on the same topic.  

8.3.2.9 Interview summary: Kaden 

In interview 1, Kaden rushed to begin without first pausing to consider the problem posed 

properly. This resulted in the need for 5 moments of mediation, 2 of which were at the highest 

level possible. 

This characterised her work in interview 4 too. The question and contextual information were 

read quickly, and without discussing the problem with her partner, they moved immediately to 

begin measuring the dimensions of the houses. Kaden took charge in the interview, making all 

the decisions, and dictating to her partner what was to be written down. Kaden did use her peer 

as a resource, but not as someone who could contribute to the solution of the problem, but 

rather as someone who could keep record of her work. 

Phase 1 began in a disorganised fashion, with the dimensions being measured in centimetres, 

being spoken of in metres and being recorded as millimetres. Interviewer mediation at the 

highest level was therefore required before the calculations had begun.  

Table 8.10 Summarised moments of mediation per task phase: Kaden 

  B C(m) C(c) P(a) D(m) D(c) E(m) E(c) F(m) F(c) 

TBI 1   2    1    2 

Phase 1   1        1 

Phase 2    1  1  1    1 

Phase 3            

Phase 4  1  1     1   

Phase 5   1      1   

Phase 2 also required high level mediation. Kaden measured one side of the hexagonal shape, 

multiplied it by six and wanted to move on to Phase 3. It was pointed out to her that this was 

perimeter. She immediately asked for the formula to calculate the area of a triangle, which was 

evidence that she did know that the shape should be subdivided and the areas of the triangles 

calculated and added.  
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When asked to try to recall the formula, she stated “length times breadth times height”, at which 

point she was provided with the relevant artefact card. Her next statement was, “how do we do 

that, if we don’t have height we must use Pythagoras?” She was reassured that this would be 

correct, but it was also acceptable to measure the height. She traced the height with her finger, 

indicating that she did know what to measure, but proceeded to measure the length of a side. 

This required simply a leading question to resolve, but her apparent desire to rush her work 

was leading to unnecessary errors, and more mediation than should have been required. 

Phase 3 was completed without any mediation. In Phase 4, there were again errors that arose 

due to the rushed nature of her working. Kaden chose to calculate the central square area of the 

hotel first, but was unsure of the formula needed to calculate the area of the square. She needed 

reassurance on this. She then chose to measure and calculate the area of the left side of the 

hotel building and double this, before adding it to the square area. This was an acceptable 

approach, but she chose to square the left area, rather than multiply it by 2. This was again an 

error that should not have been made had she slowed down. She was voicing the correct 

strategy, but was not performing the calculation in the same way. 

This pair did not function as a unit. There were moments in which Kaden’s partner attempted 

to intervene. At each of these moments, although he was correct in what he offered, his ideas 

were dismissed by Kaden and frequently a joke was passed between them at these moments 

about how he was not “good at maths”. 

In Phase 5, she returned to the question and contextual information without any need to prompt 

her to do so. The mediation provided here concerned the conversion of cm2 to m2, as was the 

case for many of the pairs already described. 

If Kaden had performed the calculations in the same way as she was narrating her process, and 

had she chosen to give consideration to her partner’s ideas, the number of moments of 

mediation, as well as their level, would have been lower. 

8.3.2.10 Interview summary – Malusi 

Malusi did not require many moments of mediation in interview 1, although he did require one 

at the highest level. In interview 4, however, he and his partner required 18 moments of 

mediation, the majority of which was explicit, and 5 of these were at the highest possible level.  
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Table 8.11 Summarised moments of mediation per task phase: Malusi 

 A B C(m) C(c) P(a) D(m) D(c) E(m) E(c) F(m) F(c) 

TBI 1       1    1 

Phase 1    1    1 1 + 1  2 

Phase 2    1 1 1  1 [1]   1 

Phase 3     1    1  1 

Phase 4     1   1  1  [1] 

Phase 5      2      

This pair read and reread the question and contextual information many times, before 

discussing with one another how to start working. When they started the work, however, they 

seemed to be working alongside one another rather than together. There was a lack of 

organisation evident, with each student measuring different lengths on different shapes and 

recording them haphazardly on the page provided.  

The students required the artefact cards containing the formulae to calculate the area of a 

triangle and a circle. They also required high level mediation to keep them focused on area 

rather than perimeter, and to keep them focused on calculating the inside area of the shapes, 

and not the area outside the hotel building, or between the houses.  

The aspect of the problem which most students required assistance with was the use of the scale 

when converting square units. Despite the challenges these students faced in solving this task, 

it is noteworthy that there was only one moment of mediation [E(c)] required to address this. 

Subsequent to this moment, the pair used the scale correctly without any mediation. 

In phase 5, this pair only required two moments of implicit mediation. This was a marked 

difference to the amount of mediation required in the previous four phases. Despite requiring 

much interviewer mediation to calculate the areas, once calculated they were able to relate 

these solutions back to the context and interpret them in relation to the question asked. 

8.3.2.11 Summary 

Each of the pairs showed slightly different ways of interacting while working on the 

measurement task, but what stands out for most is the improvement evident during the course 

of the task. When examined as an individual, with the partner as a type of resource, most 

students showed improvement on their performance from Task 1. Alternately, when viewing 
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the pair as a unit, development was apparent from the start of the task in Phase 1, to its 

conclusion in Phase 5. This is discussed further in Section 8.4. 

8.3.3 Analysis of performance per task phase 

As the summary and analysis of each interview unfolded and the themes began to emerge, it 

became clear that some phases may have been more challenging than others. For this reason, 

each phase was summarised according to the number of moments of mediation, and the 

distribution of the levels of these moments, across all ten interviews. 

8.3.3.1 Mediation in Task Phase 1 

In Phase 1, students calculated the area of the houses on the resort property. All students made 

the (correct) assumption that all 19 houses were equal in their dimensions, which simplified 

the problem to one in which only one rectangular area had to be calculated. None of the students 

checked to verify that this assumption was correct. In terms of task demands, this phase was 

the least challenging of the five. Figure 8.6 shows that the majority of mediation was provided 

at an implicit level.  

Figure 8.1 Moments of mediation and levels of mediation: Task 4, Phase 1  

 

 No mediation  Implicit mediation  Explicit mediation 

Three groups of students required no mediation in this phase (Nobuhle, Ntando and Neliswa). 

They were those who formed a strategy for solving the question as a whole prior to beginning 

any phase of the task. There were no groups of students who required the formula to calculate 

the area of a rectangle to be given to them. 
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There were six examples of explicit mediation in this phase. Only three groups of students 

required this level of mediation (Kaden, Aviwe and Malusi). In the case of Kaden and Aviwe, 

mediation was provided concerning the use of units.  

Malusi’s interview accounted for 4 of the 6 explicit mediation moments for this task. He and 

his partner began the phase before spending time arriving at a strategy for solving the problem, 

and were therefore grappling with strategising and organising themselves while at the same 

time attempting to work on the phase.  

With the exception of only Malusi and peer, the students’ body language showed that they were 

relaxed and comfortable working in this phase. It was also the phase for which the answers 

provided by the students were most accurate. 

8.3.3.2 Mediation in Task Phase 2 

In phase 2, students calculated the area of the hexagonal restaurant. Part of the challenge of 

this phase was to notice that the hexagonal shape could be subdivided into triangles. 

Calculating the area of a triangle was prior knowledge that students were expected to have 

mastered on entry to the course. Calculating the area of a hexagon was not. Much of the implicit 

mediation provided concerned students recognising this subdivision.  

Figure 8.2 Moments of mediation and levels of mediation: Task 4, Phase 2 
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Phase 2 stood out as the phase in which the most artefact cards [P(a)] were required. Seven of 

the ten student groups required the artefact card providing the formula for calculating the area 

of a triangle.  

There were 5 errors that were carried forward to later phases. All of these were regarding the 

substitution of the length of a side of a triangle rather than the perpendicular height in 

calculating the area of each triangle making up the hexagonal area.  

While the large majority of the mediation provided was at an implicit level, the total number 

of moments of mediation in this phase was notably higher than in the first phase. No student 

groups were able to do this phase of the task without some form of mediation from the 

interviewer. This was the only phase for which that was the case. 

8.3.3.3 Mediation in Task Phase 3 

Task Phase three required students to calculate the area of the circular restaurant. Student 

needed to recall the formula to calculate the area of a circle, as well as needing to measure the 

length of the radius of the circle.  

Figure 8.3 Moments of mediation and levels of mediation: Task 4, Phase 3 

 

 No mediation  Implicit mediation  Explicit mediation 
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diameter measurement in their calculations. In fact, only two student groups showed this error 

in their working. 

Four student groups managed to complete this phase with no mediation from the interviewer. 

While moments of explicit mediation were the same for task phases 2 and 3, there was a 

sizeable drop in the number of implicit mediation moments required. In total, the number of 

moments of mediation dropped from 23 in phase 2 to 13 in phase 3. This matches the 13 

moments for phase 1, and places these phases as being those requiring the least mediation. 

8.3.3.4 Mediation in Task Phase 4 

Task Phase 4 saw students calculating the area of the hotel building. This was a composite 

rectangular shape, and required students to pause and strategise before starting. There were a 

number of ways in which to subdivide the shape into rectangular areas, and students needed to 

be careful not to allow any gaps or overlaps when doing so.  

Figure 8.4 Moments of mediation and levels of mediation: Task 4, Phase 4 

 

 No mediation  Implicit mediation  Explicit mediation 
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It was anticipated that students may either overlap rectangular areas, therefore arriving at an 

answer that was too high, or would leave areas out of their calculation, therefore arriving at an 

answer that was too low. There were two examples of each of these errors, and one group of 

students did not manage to independently complete the phase (Malusi). 

There were students, however, who were very successful in this phase. Two groups required 

no mediation at all, and there were five student groups who were able to arrive at an accurate 

solution, albeit with mediation. 

8.3.3.5 Mediation in Task Phase 5 

Task Phase 5 required students to relate the solutions from Phases 1 to 4 to the problem as a 

whole. The overall question concerned the cost to build the resort, therefore the final solution 

was to be a monetary value. 

Some students showed an awareness of this final requirement throughout their working in 

earlier phases. They chose to calculate the cost of each building as they moved through the 

problem, and did not leave this until the end. 

There was no correct or incorrect way in which to approach the question as a whole, but those 

students who opted to calculate the final monetary value as they worked did seem to benefit 

from doing so. Malusi, Aviwe and Sisipho are three students who showed this strategy in their 

working, and all three required far fewer moments of mediation in this phase than the previous 

4 (see Tables 8.5, 8.8 and 8.11). Malusi’s performance in this final phase is the most 

remarkable. From requiring the most mediation of all student groups for this task, the majority 

of which were high-level, explicit mediation moments, he and his peer required only implicit 

mediation for this phase.  
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Figure 8.5 Moments of mediation and levels of mediation: Task 4, Phase 5 

 

 No mediation  Implicit mediation  Explicit mediation 
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the shape and arrived at the correct solution. This was not the case for the other shapes, 

particularly the triangle.  

The remaining conceptualisations required for this task revealed themselves to be emerging, as 

is discussed below. 

8.4.2  Emerging conceptualisations 

Students required a particularly large amount of mediation regarding the use of units, scale and 

the recall of formulae.  

Mediation was required for some when converting the centimetres measured with the ruler to 

metres according to the scale. Most pairs, however, performed this calculation without 

difficulty. What provided a challenge to many was the conversion of cm2 to m2 where they had 

calculated the area of the shape with the measured lengths. Only Aviwe and Malusi, however, 

required more than one moment of mediation regarding this. For the remainder, one 

explanation was sufficient for the group to apply what they had learned to the phases that 

followed. The use of square units, therefore, can be considered emerging, as evident in 

students’ engagement with this task. 

It was anticipated that students may require assistance regarding the formulae required to 

calculate the areas of the buildings, however, this knowledge would have been school-met for 

all students interviewed. From Grade 5 and Grade 6 level, learners start to use formulae to 

calculate the area of rectangles, squares, triangles and circles. It was therefore interesting to 

note that the recall of these formulae was as challenging as it was for them. It is perhaps because 

they are used to being provided with a formula sheet, but as is discussed in Chapter 9, this does 

not mean that they are able to identify the correct formula to use. Once provided with the 

formula, however, the students were able to swiftly and accurately calculate the desired 

measurement. This does suggest that the link between the real-world, embodied context in 

which measurement takes place, and the symbolic formal world in which measurements are 

calculated according to formulae and definitions is unstable. 

One particular shape was found to be problematics for the students: the triangle. Eight of the 

ten groups required the artefact card containing the formula for calculating the area of a 

triangle, as opposed to only three requiring the equivalent card for the circle and none requiring 

the card for rectangular areas.  
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8.4.3 Additional insights 

Several additional insights were gained through analysis of students’ engagement in Task 4. 

These are discussed in the sections that follow: 

8.4.3.1 The influence of the key member’s performance in Task 1 

In analysing the difference in performance from Task 1 to Task 4 one notices that the 

performance of the key member in Task 1 was not a predictor of the performance of this 

students’ group in Task 4. A comparison of the number of moments of mediation, and the 

highest level of mediation offered, for Task 1 and Task 4 was presented in Table 8.1. This 

revealed that for 5 key members the number of moments and/or highest level of mediation 

dropped from the first to the fourth task. This was despite Task 4 consisting of five phases in 

comparison to the equivalent one in Task 1. With the exception of Aviwe and Malusi, none of 

the students required more than 5 times the number of moments of mediation for Task 1, as 

would be reasonable to expect. 

8.4.3.2 Student talk and strategising 

There was a large amount of student talk and student debate in most interviews, but a noticeable 

amount more in the working of more successful groups. The more the students deliberated and 

discussed how to proceed, the more efficient and organised their working was. When the 

students listened to one another, and had the opportunity to state their point of view on what to 

do, they were able to identify which strategy was the most appropriate to take.  

Another observation that was made was that most groups spent a lot of time generating a 

strategy to approach the problem as a whole, before beginning to work on it in parts.  Nobuhle 

and her partner stood out in this regard. They required the least amount of mediation of all 

student groups and were the group that was seen to be most deliberate about forming a complete 

strategy before starting to solve the problem.  

8.4.3.3 The value of the contextual richness 

Task 4 differed from Task 1 in another important way: a rich and realistic context was provided 

to the problem. Most of the ten interviews saw students returned repeatedly to the card 

containing the overall question with its contextual information to reorient themselves to the 

problem. They often did so wordlessly, reading the card and examining the map carefully, 
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before resuming discussion on what step to take next, or how to resolve an issue that was 

confusing them. The contextual information was therefore used effectively as a resource.  

Phase 5 required students to return to the contextual information and relate their previous 

solutions to the original question. Even those who had required a lot of mediation in Phases 1 

to 4, most notably Malusi and Sandla, showed a vast improvement in Phase 5 (see Tables 8.9 

and 8.11). Sandla required no assistance for Phase 5, and Malusi required only two implicit 

moments of mediation. The rich and realistic context framed the problem in a comprehensible 

and relatable way, which helped these students to make sense of the final steps in the problem. 

8.4.3.4 Evidence of development 

There was a certain amount of development evident as the students worked through the task. 

As noted earlier, many pairs required mediation concerning how to use the scale of the map, 

but only two groups required more than one such moment. This suggests that there was learning 

that occurred and students gave evidence of this when they used the same information 

accurately later in the problem.  

8.5 SUMMARY 

This chapter presented the data that emerged from an analysis of task-based interview 4. Ten 

student groups participated in this interview. Students collaborated to solve a practical problem 

involving the calculation of the area of a resort. There was a rich context provided to the 

question posed in order to create a task that could be realistically expected in a workplace.  

The ten interviews were summarised according to the number of moments of mediation and 

the highest level of mediation required by the students. This was reported for the task as a 

whole as well as for each of the five phases of the task in order to provide a more nuanced view 

of the students’ performance.  

The focus of the analysis was threefold: the performance of the key member of the student 

group (the student who had participated in interview 1), the performance of the student group 

as a unit and the performance in each phase of the task across all ten interviews. 

Both stable and emerging measurement conceptualisations became evident, and several 

additional insights gained. 
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CHAPTER 9 

PRESENTATION AND ANALYSIS OF DATA: FORMAL WRITTEN TEST 

9.1  INTRODUCTION 

Students were taught about measurement in the third quarter of the year in their mathematics 

lectures. These lectures were one hour long and were held once a day for a period of two weeks. 

At the conclusion of this series of lectures, students were required to write a summative 

assessment in the form of a formal written test. Data from this test will be presented and 

analysed in this chapter.  

The test is described in Chapter 5, and is provided as Appendix Q. The chapter opens with a 

detailed description of the process of summarising and analysing the data and a presentation of 

this data will follow. 

9.2  PROCESS OF SUMMARY AND ANALYSIS 

The test was used by the college to provide a quantitative result reflecting students’ mastery of 

the measurement outcomes in the curriculum. For the purposes of this study, a qualitative 

approach was taken to the analysis of the students’ responses in order to achieve a more finely 

detailed picture of the students’ ability to work with measurement concepts and calculations 

than a single overall percentage was able to give.  

9.2.1 Initial summary and analysis 

Each test item required students to first examine the diagram or descriptive text provided in the 

question paper and then to select the appropriate formula to calculate the desired attribute of 

the shape. Thereafter, it required the substitution of the appropriate dimensions of the shape 

into this formula, and then the calculation and reporting of the final solution, including the use 

of the correct SI unit. Each student response was qualitatively examined by the researcher with 

regard to what was done in each of these steps.  

Before commencing with an analysis of the finer details of the students’ performance, the 

overall results for each student were summarised and interpreted according to the seven-level 

rating scale prescribed by the DHET (2011, p. 9) in the Assessment Guidelines (DHET, 2011). 

The scale appears as Table 9.1 below:  
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Table 9.1 Rating Scale  

Rating Code Description Percentage 

7 Outstanding 80% - 100% 

6 Meritorious 70% - 79% 

5 Substantial 60% - 69% 

4 Adequate 50% - 59% 

3 Moderate 40% - 49% 

2 Elementary 30% - 39% 

1 Not Achieved 0% - 29% 

       Source: DHET, 2011, p. 9 

The student scripts were further summarised according to the marks achieved for each item. 

They were coded as either ‘full marks’ [F], ‘partial marks’ [P], ‘zero marks’ [O] or ‘not 

attempted’ [X]. All of the items were assigned more than one mark on the question paper. 

Students were awarded some of these marks [P] if at least half of their working was correct, 

despite their final solution being incorrect.  

9.2.2 Categories of responses 

Items for which students were awarded full or partial marks were examined in order to ascertain 

how these students were arriving at their solutions. In addition, a detailed analysis of student 

errors was carried out. In order to achieve saturation (Saumure & Given, 2008) the process of 

coding and summarising the item by item analysis was repeated until no new categories of 

errors or methods emerged. This required the process to be carried out twelve times.  

Figure 9.1 provides a visual summary of how responses were finally coded and categorised. It 

is followed by a description of these categories with examples of the students’ work.  
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Figure 9.1 Emergent categories of test item responses 

 

Within the responses, where the correct formulae were used, the source of these formulae was 

differentiated. The formula had been either taken directly from the formula sheet provided, or 

generated by the student. Self-generated formulae referred to those that students had either 

memorised or derived from the formula sheet. For example, the formula to calculate the total 

surface area of a rectangular prism had not been provided directly, therefore where students 

had used 𝐴 = 2(𝑙𝑏 + 𝑙ℎ + ℎ𝑏), this was considered to be self-generated.  

9.2.2.1 Use of formulae 

First the students’ use of formulae was considered according to whether they made use of the 

formula sheet (Appendix R) or not, and whether their selection of formula was appropriate or 

Categories of 
responses

Correct formula: 
formula sheet 

No errors

Substitution error

Solution incomplete

Technical error

Correct formula: self-
generated

No errors

Substitution error

Solution incomplete

Technical error

Use of incorrect 
formula 

Incorrect shape

Incorrect attribute

Invalid formula
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not. Where the correct formula was used for the first step, the further working of the students 

was examined according to whether they achieved full marks [F], partial marks [P] or zero 

marks [O].  

Figure 9.2 shows a student’s work in which the correct formulae were selected from the formula 

sheet and they proceeded to achieve full marks for question 1.1. Figure 9.3 shows the same for 

a student who made use of a self-generated formula for 3.1(b). No formula for the calculation 

of the surface area of a rectangular prism, as required in 3.1(b), had been provided on the 

formula sheet. 

Figure 9.2 Correct use of the formula sheet (Item 1.1a)

 

Figure 9.3 Correct use of a self-generated formula (Item 3.1b) 

 

9.2.2.2 Categories emerging during analysis of work with correct formula use 

If students achieved either partial or zero marks after applying the correct formula, the 

remainder of their work was examined and coded according to what they had proceeded to do. 

The following three categories of errors emerged:  

 substitution errors  

 technical errors 

 incomplete solutions 
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The errors are not mutually exclusive. There were examples where more than one error 

occurred during the students’ work and each was coded. 

Figure 9.4 below contains an example of a student’s work containing a substitution error. The 

student substituted the length of one of the sides of the triangle instead of the perpendicular 

height as was required. 

Figure 9.4 Substitution error (Item 3.3b) 

 

In figure 9.5 an example of a technical error is given. In this example, the student has indicated 

in the formula that the radius should be squared, but when performing the calculation the value 

of 7.5 was not squared. This is also an example of a student’s work where more than one error 

occurred. The formula used to calculate the volume of the cylinder is incorrect and the value 

substituted as the radius is incorrect, as well as the technical error in the second line. 

Figure 9.5 Technical error (Item 3.4b) 

 

Figure 9.6 provides an example of a student’s work where the solution was left incomplete. 

This is the student’s full response to question 3.2(b). The calculation of the area of one face of 

the cube would be the first step in calculating the total surface area, but the student has not 

proceeded to multiply this by six as required to arrive at the final solution. 

Figure 9.6 Incomplete solution (Item 3.2b) 

 

 



244 

 

9.2.2.3 Categories emerging during analysis of work with incorrect formula use 

When the incorrect formula was selected, the tests were again analysed according to what 

formula the students were selecting. Three categories of error emerged. In the first, students 

selected a formula that was appropriate for the attribute they were asked to calculate, but was 

not correct for the shape in question. An example is given below in Figure 9.7 in which the 

student applied the formula used to calculate the volume of a cylinder, and not the formula to 

calculate the volume of a hexagonal prism, as required in question 1.1. 

Figure 9.7 Formula applied for the incorrect shape (Item 1.1a) 

 

In the second, the formula was appropriate for the shape in question, but not for the attribute 

the students were required to calculate. Figure 9.8 provides an example of such an error in 

which the student applied the formula to calculate the surface area of a cylinder rather than 

calculating the volume of the cylindrical hole in question 1.2. 

Figure 9.8 Formula applied for the incorrect attribute (Item 1.2) 

 

The third category indicated where students had attempted to apply a formula that was invalid. 

Figure 9.9 provides such an example. It represents a student’s attempt to calculate the surface 

area of the triangular prism in question 3.3. 
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Figure 9.9 Application of an invalid formula (Item 3.3b) 

 

A further level of analysis of the second category was applied. Each of the items where the 

formula for the incorrect attribute was applied was examined in order to classify which 

formulae were selected over others. For example, Figure 9.10 shows where the formula for 

volume was applied instead of one for surface area in response to question 3.3(b). Figure 9.11 

shows an example where the formula for surface area was applied instead of one for distance 

in response to question 2.2.  

Figure 9.10 Volume formula applied for an item requiring surface area (3.3b) 

 

Figure 9.11 Surface area formula applied for an item requiring distance (2.2) 

 

9.2.3  Use of SI units 

The use of units emerged as an area of concern in the analysis of the four task-based interviews, 

and appeared as one of the outcomes assessed in the test. For this reason it also formed part of 

the analysis of the students’ work in this task.  

Several students did not indicate the unit in their answer, but for those who did, the following 

three categories of responses emerged: 
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 correct unit with correct exponent 

 correct unit with incorrect exponent 

 incorrect unit and incorrect exponent 

There were no examples of items where students had used the incorrect unit with the correct 

exponent. In Figure 9.12 the solution should have the unit as cm3 (incorrect exponent), in Figure 

9.13 the solution should have the unit as cm3 (incorrect unit) and in Figure 9.14 the solution 

should have the unit as m3 (incorrect unit and incorrect exponent).  

Figure 9.14 is also an example where more than one category of error is applicable. The 

question asked for total surface area, yet the student has applied the formula to calculate the 

volume of a rectangular prism.  

Figure 9.12 Incorrect exponent (Item 3.1a) 

 

Figure 9.13 Incorrect unit (Item 3.1a) 

 

Figure 9.14 Incorrect unit and exponent (Item 2.3) 
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9.3  DATA PRESENTATION AND ANALYSIS 

In this section, the data pertaining to student performance in the test as a whole, and in each 

item in particular, is presented and analysed. The overall results are first summarised and 

described and thereafter students’ work in each item is considered. Much of the qualitative data 

is quantitised in this chapter in order to support the qualitative claims made. 

9.3.1  Overall test results 

The first step in the analysis of the students’ performance in the formal written test was to 

summarise the overall results obtained according to the seven level rating scale (DHET, 2011) 

shown in Table 9.1. This is presented in Figure 9.15 below: 

Figure 9.15 Result of formal written test 

 

It is clear that the majority of the students in this group did not achieve the outcomes assessed 

in the test. 67% of the students in this group achieved scores below 40%. This suggests that 

Preston and Thomson’s (2004) assertion that many school-going learners find measurement to 

be a challenging area of mathematics is also the case for these TVET college students.  

9.3.2  Performance per item 

After summarising the overall results for the test, each student’s work was analysed per item. 

Of the possible 432 items (16 items x 27 students), 40 were not attempted, leaving 392 items 

available for this analysis. The first step to this analysis was to capture whether students 

achieved full marks [F], partial marks [P], zero marks [O] or had not attempted the item [X]. 
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This summary is provided as Appendix Z. The items to which this appendix refers appear in 

the test paper included as Appendix Z. Appendix Z includes the coding of each item as to what 

measurement was required to be calculated and therefore provides a visual summary as to 

which types of questions were answered more successfully by the students. The students are 

ordered in the table from the lowest to the highest overall results and for the purpose of this 

discussion they will be grouped into the lower, middle or upper third of the responses analysed.  

Table 9.2, an extract from Appendix Z, provides a summary of the performance for the full 

group of students per item type. 

Table 9.2 Summary of student performance per item 

 

ITEM NUMBER 

1
.1

(a
) 

1
.1

(b
) 

1
.2

 

1
.3

 

2
.1

.1
 

2
.1

.2
 

2
.2

 

2
.3

 

3
.1

(a
) 

3
.1

(b
) 

3
.2

(a
) 

3
.2

(b
) 

3
.3

(a
) 

3
.3

(b
) 

3
.4

(a
) 

3
.4

(b
) 

[F] Full Marks  11 15 7 11 7 3 0 4 17 4 10 2 0 0 7 4 

[P] Partial Marks 3 2 6 1 2 1 7 2 1 7 1 11 0 1 4 7 

[O] Zero Marks 13 7 13 10 16 22 12 19 7 14 12 13 23 25 12 15 

[X] Left Out  0 2 1 5 2 1 8 2 2 2 4 1 4 1 4 1 

Key: Measurement to be calculated    

        

 

9.3.2.1 Volume 

The only items for which any students in the lower third achieved full marks were those 

pertaining to volume. In particular, these were items 1.1(a&b), 1.3 and 3.1(a). This pattern 

extends to the entire group as volume was the measurement with the highest number of students 

achieving full marks.  

The number of students achieving full marks for items 1.1(b) and 3.1(a) is noticeably higher 

than for the other items requiring the calculation of volume. Both of these require the 

calculation of the volume of a rectangular prism, which is the prototypical example used when 

teaching the concept of volume. It is the first to be taught in schools, and appears first in all 

measurement sections of the South African mathematics curricula at all levels (see Section  

2.7).  

The number of students who achieved full marks for 3.2(a) drops notably and the number 

achieving zero marks for their attempts increases notably. This question asked students to 

calculate the volume of a cube, which is merely a specialised form of a rectangular prism. 

LINEAR SURFACE AREA 

AREA VOLUME 
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However, rather than explicitly showing the length of three sides, as with 3.1(a), this example 

shows the length of only one side as being 8cm. The fact that the remaining sides are all equal 

is represented symbolically by a short line crossing each side. This requirement to interpret an 

additional symbolic representation would seem to have added to the challenge of this question. 

A further three volume examples stand out. Items 1.2, 3.3(a) and 3.4(a) showed a much smaller 

number of students achieving full marks than in other volume examples. In addition, a much 

larger number of students achieved zero for their attempts of these questions.  

In 3.3(a) students were required to calculate the volume of a triangular prism and all of the 23 

students attempting the question scored zero. It required students to use the perpendicular 

height of the triangular surface, which was not given but needed to be calculated. Students had 

been taught to use the Theorem of Pythagoras to do this, however, only one student showed 

evidence of having recognised that this needed to be done. This student had written the 

Pythagorean formula on the question paper and had attempted to substitute the given 

measurements but had abandoned this calculation and on their answer sheet the value of the 

given side was used.  

The remainder of the students did not show an awareness of the need to do this calculation. 

This echoed what was observed in interview 4 when Kaden asked whether she should “use 

Pythagoras” (Section 8.3.2.9) in order to calculate the height of the triangles on the resort map. 

She was the only student who recognised this as an alternative to physically measuring the 

height. 

Questions 1.2 and 3.4(a) also showed a drop in students achieving full marks. Both required 

the calculation of the volume of a cylinder. Of the 13 students who achieved either partial or 

full marks for question 1.2, only 5 achieved this for question 3.4(a). This suggests some 

instability in students’ knowledge of how to calculate the volume of cylinders. 

9.3.2.2 Area 

The number of students achieving full marks for the questions asking for the calculation of area 

was much lower than for those requiring the calculation of volume. Similarly, the number 

achieving zero for their attempts was much higher. 

For question 3.3(b), no student achieved full marks and only one achieved partial marks. This 

question required the students to calculate the total surface area of the triangular prism. Phase 
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2 of Task 4similarly showed evidence of students experiencing the calculation of the area of a 

triangle as challenging. Seven of the ten student groups required the formula for calculating 

the area of a triangle to be provided [P(a)] and no student groups were able to complete this 

phase of Task 4 independent of mediation from the interviewer (see Section 8.3.3.3).  

Students were required to calculate total surface area in questions 3.1(b), 3.2(b), 3.3(b) and 

3.4(b). There were 28 students scoring partial marks all of whom submitted incomplete 

solutions. It was not clear whether the students scoring partial marks for these questions had 

an accurate conceptual understanding of total surface area as they had calculated the area of 

only one surface of the object.  

9.3.2.3 Length 

Similar to the students’ performance in the questions requiring the calculation of area, there 

were fewer students able to achieve full marks for questions 2.1.1 and 2.2 than those able to 

achieve full marks for the volume questions.  

Question 2.1.1 required the calculation of the length of a radius, when given the height and 

volume of a cylinder. This required an understanding of the relationship between the 3-

dimensional attribute of volume and the attribute of length, as well as requiring the algebraic 

manipulation of the formula to calculate the volume of a cylinder.  

It is interesting to note that in both the middle and upper third of students, more students 

achieved full and partial marks for this question than for question 2.2. Question 2.2 required 

the conceptual understanding of perimeter and the relationship between the diameter of a circle 

and its circumference. It does not require an understanding of the relationships between 

attributes in different dimensions, nor does it require the algebraic manipulation of a formula. 

This would suggest that students should perform comparatively better in this item.  

The availability of formulae on the formula sheet may have played a role in this. The formula 

for question 2.1.1 was available on the given formula sheet. This allowed the students, who 

understood what the symbols within the formula represented, to avoid needing to use an 

understanding of the relationship between dimensions. 

There was no formula available on the formula sheet that would assist students in the 

calculation of the final solution for question 2.2. Students needed to understand the concept of 

perimeter to arrive at the correct solution. They needed to recognise that the formula for the 
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circumference of a circle was required and thereafter the outside lengths of the rectangular area 

were to be added. 

It is only in the lower third of students that performance in 2.2 is greater than that in 2.1.1. 

Students who achieved higher scores for the test as a whole therefore seem to be more 

comfortable with the technical work of manipulating algebraic formulae than they are with the 

conceptual understanding of perimeter.  

9.3.3 The use of formulae 

After student responses had been categorised according to whether they were awarded full 

marks, partial marks or zero marks, the use of formulae was analysed. Figure 9.1 outlined the 

categories that emerged from this analysis. In Figure 9.16 the results of this categorisation is 

provided. The responses were first classified according to whether the formula used was 

correct, incorrect or invalid.  

Figure 9.16 Categories of responses according to use of formulae 

Within the responses, where the correct formulae were used, the source of these formulae was 

differentiated. Where the correct formula was used for the first step, the further working of the 

students was summarised according to whether they achieved full marks [F] or whether errors 

had been present and only partial marks [P] or zero marks [O] were awarded. The nature of the 

errors was then differentiated. 
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9.3.3.1 Use of the formula sheet 

For the items where the correct formula had been applied in the first step, the responses were 

further analysed according to whether the frequency of errors was higher when formulae from 

the formula sheet were used or when self-generated formulae were used. Self-generated 

formulae were those that students had either memorised or had derived from the formula sheet.  

Figure 9.17 shows this data for the full group of 27 students, as well as split into three equal 

groups according to the final result obtained by the student: the upper, middle and lower thirds.  

Figure 9.17 Correct and incorrect responses per formula source 

 

For the 163 items where students had correctly used the formula sheet, 143 (87.7%) of the final 

solutions were incorrect. This was as opposed to the items where a self-generated formula had 

been used, for which 45.4% were incorrect. The number of correct items where self-generated 

formulae had been used was larger for the full sample and the upper and middle groups. Only 

the lower third showed a larger number of incorrect answers when a correctly self-generated 

formula had been applied. 

There were 212 examples where students had made use of the correct formula but had arrived 

at the incorrect solution. Of these, 143 (67.5%) were for examples where the formula sheet had 

been used with fewer errors occurring subsequent to the use of a self-generated formula. This 

observation was consistent for each third of the sample. 
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When examining the 103 items that were answered correctly, 83 (80.6%) showed the use of a 

self-generated formula. Again, this observation was consistent for each third of the sample. 

The results of this analysis show that where students have generated formulae for themselves, 

either by memorising the formulae, or deriving it from those given on the formula sheet, they 

have been more successful at arriving at an accurate solution 

9.3.3.2 Types of errors 

As is shown in Figure 9.16, where the correct formula had been used in the calculation, 42% 

of the items were awarded full marks and 58% received partial or zero marks. Of those 

receiving partial or zero marks, the reasons for the loss of marks was differentiated. The 

majority (58%) were substitution errors, 31% were due to incomplete solutions and 11% due 

to technical errors. 

Technical errors 

77% of the errors classified as technical were due to students indicating that a particular value 

needed to be squared, but not doing so after substitution. The remaining 23% of the technical 

errors were items where the final answer was incorrect, but all the work, including the values 

substituted, was correct until that point.  

Incomplete items 

83% of the incomplete items occurred in responses to either 3.1(b), 3.2(b), 3.3(b) or 3.4(b). 

These questions required the calculation of total surface area for various objects. The responses 

coded as incomplete were those where students had calculated the area of one surface, but had 

not calculated the area of the remaining surfaces and added them together. It was not clear 

whether this was a conceptual error, where the student had not understood the concept of total 

surface area, or whether it was a matter of the student not wanting to do the remaining work in 

those items. 

Substitution errors 

The substitution errors were more conceptual than technical. After selecting the correct 

formula, these students then substituted incorrect measurements from those provided on the 

diagram or in the text. 
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Two of the most common calculations where these errors occurred were those involving circles 

and cylinders, and those involving triangles. In particular, the incorrect radius measurement 

was often used when working with cylinders and circles and in calculations involving triangles, 

the length of one side rather than its perpendicular height was frequently used.  

Figure 9.17 and Figure 9.18 provide examples of each of these. In Figure 9.17, the student has 

substituted the length of a side of the triangular surface of the triangular prism in question 3.3, 

rather than its perpendicular height as required. This suggests that the relationship between 

length measurements of the triangle and its area is not understood.  

Figure 9.18 Substitution error (Item 3.3b) 

 

In the example provided below, the student has attempted to calculate the volume of the 

cylinder in question 3.4. The substituted value for the radius is given as 7.5cm. The radius is 

provided on the diagram as 15cm, but the student has halved this before substituting. This 

suggests a lack of understanding of the relationship between the length of a radius and the 

volume of a cylinder, or a lack of understanding of the difference between a diameter and 

radius. Students are taught that the radius is half of the length of the diameter of a circle. It is 

possible that the student incorrectly identified the radius as the diameter, but this, too, indicates 

a conceptual rather than a technical error. 

Figure 9.19 Substitution error (Item 3.4a) 

 

The example provided in Figure 9.19 is one student’s attempt to calculate the volume of the 

rectangular block in question 1.1. The student has correctly applied the formula for the 

calculation of volume: 𝑉𝑜𝑙𝑢𝑚𝑒 = 𝐴𝑟𝑒𝑎 𝑜𝑓 𝑏𝑎𝑠𝑒 × 𝑝𝑒𝑟𝑝𝑒𝑛𝑑𝑖𝑐𝑢𝑙𝑎𝑟 ℎ𝑒𝑖𝑔ℎ𝑡, however, as the 

area of the base, the student has substituted the length of the rectangular base. This suggests 

that the student has not understood the relationship between the length of a side and the area of 

a rectangular surface, or the relationship between the length of a side and the volume of a 
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rectangular prism. Aside from the errors in the units used in the second line, the numerical 

value for the height is written as 5mm rather than 50mm. This was not coded as an error, 

however, as the final answer showed that the student had used 50 in their calculation (12 × 50 

= 12 500). 

Figure 9.20 Substitution error (Item 1.1b) 

 

9.3.4  Attributes of shapes 

Where students had made use of the incorrect formula, their work was first classified according 

to whether the formula selected was appropriate for the attribute to be calculated but not the 

shape or whether it was appropriate for the shape but not the attribute. Appendix AA contains 

the results of this classification. 

The majority of the formulae were incorrect for the attribute to be measured rather than the 

shape. There were 81 examples of this error but only 11 examples where a formula for the 

incorrect shape had been applied. Figure 9.7 provided an example of a student’s work in which 

they selected the formula for the incorrect shape, and Figure 9.8 an example in which a student 

chose to use the formula for the incorrect attribute.  

A further distinction was made in order to ascertain which formulae were being selected more 

frequently over others. Figures 9.10 and 9.11 provided two such examples. Three broad 

categories emerged: the interchanging of volume, area and surface area formulae; the 

interchanging of length, area and surface area formulae and the interchanging of length and 

volume formulae. 

The majority of the errors (56) concerned the interchanging of volume, area and surface area 

formulae. Of these, the most frequent were those in which the formulae for volume were 

interchanged with the formulae for surface area (25). This reveals an important conceptual 

error. Surface area and volume are two measurable attributes of 3-dimensional objects and 

students seemed to find difficulty distinguishing between the two. There were 22 examples 
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where students had chosen to calculate the volume rather than the surface area, and 3 in which 

surface area was calculated rather than volume. 

Similarly, the formulae to calculate these attributes of 3-dimensional objects were interchanged 

with the formulae to calculate the area of a 2-dimensional surface, where this was required. 

There were 31 examples of this type of error: 13 showed the use of a surface area formula 

instead of an area formula; 15 showed the use of area formulae instead of volume, and 3 showed 

the use of volume formulae instead of area.  

Less frequent were errors in which students interchanged the use of length, area and surface 

area and those in which they interchanged volume and length formulae. 12 showed the use of 

a length formula, such as those required to calculate the perimeter of a shape, where the surface 

area or area was required. 9 showed the use of a surface area or area formula where the length 

was required and 4 showed the use of a volume formula where the length was required. This 

also revealed that some students had difficulty distinguishing between measurements 

representing 2-dimensional and 3-dimensional attributes or did not have a stable understanding 

of the relationships between these attributes. 

When examining the full scripts for the 27 students, 10 students showed errors that could be 

considered ‘bi-directional’. These students had, for example, used volume formulae to 

calculate area in one example, as well as the reverse in another example. All of these examples 

involved either surface area or volume formulae. It is possible that this was evidence of 

instability in their conceptual understanding of these attributes, or that it reflected a symbolic 

error in which the incorrect word had been taken as the naming word for a particular attribute.   

In addition to these 10 students, a further 12 students had used an incorrect formula when 

calculating a particular attribute more than once. For example, a student may have used a 

volume formula instead of a surface area formula, and later a length formula instead of surface 

area formula. Again, surface area and volume were involved in all 12 of these examples. 

9.3.5 Use of SI units 

Lastly, the students’ use of units was examined. The accurate use of SI units was listed as an 

outcome being assessed in this test and the use of units appeared as an area of concern during 

the task-based interviews. 
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17% of the students’ responses did not indicate a unit, but 83% could be analysed according to 

how students were using the units and what errors may be present. 57.1% of these examples 

were correctly reported, with the correct unit indicated, and the correct exponent used. In 35.3% 

the unit was correct but the exponent incorrect, for example, a volume measurement may have 

been reported as cm2 rather than cm3. There were not many examples in which both the unit 

and exponent were incorrect (7.6%) and no examples where the exponent was correct but the 

unit itself incorrect. 

Figure 9.21 Use of units when reporting solutions 

 

It is interesting to note that the use of units in this task was more accurate than when used in 

the embodied task-based interviews 

9.3.6 Summary 

The analysis of the test item responses from the students has revealed a detailed pattern of 

where errors are occurring and point to particular measurement conceptualisations that may be 

leading to these. It has also allowed a view of the students as they complete these tasks from 

which we can infer what stable and emerging measurement conceptualisations are present. 

9.4  STABLE AND EMERGING CONCEPTUALISATIONS 

The following sections provide an overview of the stable and emerging conceptualisations that 

were observed on analysing the students’ test scripts, as well as outlining some additional 

insights. 
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9.4.1 Stable conceptualisations 

On analysing the students’ work it was possible to see that, despite the results being so poor, 

there were stable conceptualisations that could be seen in their working. One of these was a 

general ability to manipulate algebraic expressions accurately in order to solve basic equations. 

While the values the students had substituted were frequently incorrect, the symbolic algebraic 

work was well done. 

Calculation of rectangular and circular areas, as well as the volume of rectangular prisms and 

cubes, was also generally accurate. 

9.4.2 Emerging conceptualisations 

Students frequently applied the incorrect formula to a problem, revealing an unstable 

conceptualisation of the attributes to be calculates, and of the properties of the various shapes. 

In particular, surface area and volume appear to be measurements that are commonly confused. 

This is important to note, as these are two different attributes of 3-dimensional objects, but are 

measurements that represent different dimensions themselves. The fact that this is reflected in 

interview 2, in which the majority of the students measured total surface area rather than the 

volume of the cube, further supports this observation.  

9.4.3 Additional insights 

The students’ use of the formula sheet was particularly interesting. The document is provided 

as a resource to students and yet its use seemed to not be beneficial. More solutions were 

incorrect when the formula sheet had been used than correct, whereas for students who had 

derived a formula for themselves the likelihood of their response being correct was larger. This 

raises the question of whether this is a useful resource to provide, and what the reasons might 

be for these students to have struggled to optimally use it.  

9.5 SUMMARY 

Task 5 took the form of a document analysis, therefore limited insight regarding the 

individual’s measurement conceptualisation was possible. However, it was possible to extract 

a large amount of detail from the analysis of these tests that has allowed insight into the group 

of students as a whole. 
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CHAPTER 10 

DISCUSSION AND CONCLUSION 

10.1  INTRODUCTION 

This chapter will present a discussion of the findings of this research as structured by the 

research questions. Each research question was briefly considered after presentation and 

analysis of the data pertaining to each task. What is discussed in this chapter is how these 

results can be brought together to provide a final response to these questions. This is done both 

in relation to the data and to the literature that guided the development of this research project. 

Questions 1 and 2 require a technical response related closely to task performance and how this 

relates to theory defining measurement proficiency for the specific measurement domain as 

well as the development of mathematical thinking (Tall, 2013b).  

Question 3 requires the synthesis of the findings in relation to Questions 1 and 2, as well as 

careful consideration regarding how students used their prior knowledge and how they 

responded to mediation as evident in their engagement in the measurement tasks presented to 

them. Considered together, these observations and findings have allowed a view as to where 

the break between what students need to possess as stable conceptualisations, but rather possess 

as emerging conceptualisations, might occur.  

This chapter includes a discussion of the strengths and limitations of the study, as well as an 

outline of the implications of the findings. Lastly, avenues for further research are established 

before a reflection on the process of the research. 

10.2 AN OVERVIEW OF THE INSIGHTS FROM TASKS 1 TO 5 

Students completed up to five tasks as they participated in this research. As this research is 

exploratory, these tasks were varied in their design in an attempt to capture as many facets of 

the students’ measurement conceptualisations as possible. Students’ engagement in each 

measurement task allowed insight into the stable and emerging measurement 

conceptualisations held by each student.  

In the following sections, each task will be considered for the insight they provided into these 

students’ existing measurement conceptualisations. (This discussion relates to, and expands on, 
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Sections 6.5, 7.5, 8.4 and 9.4). Where conceptualisations are referred to as ‘unstable’, the fact 

that they are emerging is implied. Students worked with the conceptualisation in some form 

during the task, however, in those cases they were not able to do so with complete accuracy.  

Following immediately after this discussion are the answers formulated for Research Questions 

1 and 2 

10.2.1 Tasks 1 and 2 

The first two tasks were decontextualised and modelled on classic measurement tasks that were 

true to the conceptual essence of the measurement of area (e.g. Barrett et al, 2011; Feikes, 

Schwingendorf & Greg, 2009) and volume (e.g. Ben-Haim, Lappam & Houang, 1985; 

Voulgaris & Evangelidou, 2004). The tasks required students to physically measure the objects, 

but without the use of standard measuring instruments. This forced an engagement with the 

concepts of area and volume by disallowing a direct reliance on any procedural knowledge. 

10.2.1.1 Task 1: Area measurement 

There were a variety of strategies used by the students to begin to measure the area of the 

surface provided, but what they had in common was a demonstration of an understanding that 

measuring area involves iterating a unit until a surface is completely covered (Cavanagh, 2008). 

This could be defined therefore as stable. 

Where the strategies differed was in their level of sophistication and efficiency. A number of 

students iterated the unit tile around the inside perimeter, leaving large gaps that they attempted 

to account for later. If Sarama and Clements’ (2009) progression is used for comparison, this 

type of strategy would be classified as “primitive covering” (p. 302). Similarly, many students 

used strategies that could be classified “area unit relater and repeater” (p. 302) and “partial row 

structurer” (p. 302) (see Section 3.4.6.1), all of which are several levels below “array 

structurer” (p. 304), which would be expected of someone who had worked with formulae to 

calculate measurements previously. This would have been the case for these students as they 

had all attended basic schooling. Those who structured arrays recognised the need to do so 

quickly, while most of those who used the more labour-intensive strategies named above took 

some time to arrive at a decision about how to proceed. This reveals a possible instability in 

the link between the pure embodied understanding of area and how to obtain a measure of it. 

Another observation was that, regardless of the relative sophistication of the coverage strategy, 
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the majority of students counted in 1s rather than applying multiplicative reasoning when 

calculating the number of whole tiles. 

In the second phase of this task, students were required to find a way to incorporate the areas 

that could not be covered with whole unit tiles. Most students elected to combine the partial 

areas by sight to form whole units, and to add these to the total area. This was done extremely 

well, and was the most successful of the strategies. Their ability to make a quick judgment 

about the magnitude of the area relative to the unit (Gooya et al., 2011) suggests a stable 

conceptualisation of estimation for these students. 

Several students opted to label the remaining areas with rational numbers expressed in fraction 

notation and attempted to add these. Every student who chose this strategy revealed an unstable 

conceptualisation of rational numbers. Whole number bias, which is a common conceptual 

error (Torbeyns et al., 2015), was found in each of their workings. Students were particularly 

responsive to mediation on this point, which indicates that the emergence of an accurate and 

stable conceptualisation of rational numbers is occurring. 

10.2.1.2 Task 2: Volume measurement 

Many students revealed a stable misconception that volume is equivalent to surface area as an 

attribute of an object. This was sufficiently stable to require the construction of the whole block 

used in the task with unit cubes and counting those cubes in 1s to convince the student that 

volume is distinct from the surface area measurement they had taken. This is a clear example 

of a met-before (Tall, 2013a) that has become problematic as it is preventing the construction 

of an accurate and stable conceptualisation of volume.  

Even for those students who did not hold onto this stable misconception, volume was a 

challenge to measure without being able to use a formula. When asked to define ‘volume’, 

most defined it by the formula for calculating the volume of a rectangular prism and were 

unclear on what the quantity refers to. Some gestured vaguely in the air to indicate an object 

with three dimensions, but many were unable to begin to respond to this question. This severe 

instability with regard to the concept of volume is interesting when considered with the fact 

that these students will have worked with volume in the context of their prior formal schooling. 

A possible explanation can be found in Outhred and Mitchelmore’s (2000) claim that “student 

difficulties in volume measurement have…been linked to an early emphasis on formulae” (p. 
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145). This is the most likely explanation considering that most of the students’ immediate 

responses were to define volume as 𝑙𝑒𝑛𝑔𝑡ℎ ×  𝑏𝑟𝑒𝑎𝑑𝑡ℎ ×  ℎ𝑒𝑖𝑔ℎ𝑡.  

10.2.2 Task 3 

Task 3 took the form of an experiment involving the measurement of flow rate. Flow rate was 

a new concept for these students, and in addition, it represented a complex measurement rather 

than the measurement of basic spatial object attributes.  

The experiment consisted of four substantial subtasks and therefore the student was engaged 

in this activity for much longer than Tasks 1 and 2. Mediation remained solely at the level of 

signs, but the nature of the task was more interactive and the student was required to verbally 

interact with the interviewer at certain points to make predictions and provide justification for 

them. 

While the concept of flow rate was still emerging, during the course of the interview it became 

evident that the concept of speed was sufficiently stable to allow the understanding of speed as 

a rate to be supportive of their acquisition of the concept of flow rate. As was shown, students 

initially used terms related to speed to describe the flow rate while they were becoming more 

familiar with the quantity. As much as ‘rate’ is an abstract construct (Thompson & Thompson, 

1994), speed is a quantity about which even young children have a form of understanding 

(Thompson, 1994). The comparative relationship between fast and slow, as an everyday 

concept, is constructed through physical experience of motion at a young age. That it was so 

immediately supportive of the beginning of the construction of a new measurement 

conceptualisation for these students was enlightening. 

A further conceptualisation that was revealed to be stable, and also supportive of the 

development of the concept of flow rate during this task, was the understanding of the influence 

of pressure on flow rate. Students demonstrated, through gestures and verbalised observations, 

that they recognised pressure as a factor influencing the flow rate in the experiment and that 

they understood the influence that a change in pressure would have on the system. 

As the task progressed, there was evidence of the emergence of conceptualisations specific to 

flow rate. Students became more accurate in their predictions of flow rate by appropriately 

applying proportional reasoning, and when asked to describe why the flow rate changed in 

different subtasks, they were increasingly able to identify the influencing factor. 
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10.2.3 Task 4 

Task 4 represented the most complex of the practical tasks. There were five phases to this task. 

It required the measurement of length dimensions in order to calculate the areas of shapes 

representing buildings on a map. Students were then required to use a scale to obtain the true 

area measurements and calculate the cost of building the holiday resort represented on the map.  

Students were provided with two rulers, paper, pencils, erasers and a basic calculator and were 

permitted to work with a peer for this task. This change in the interview situation allowed 

another perspective of the student as they engaged in measurement activity.  

All but one of the pairs of students were able to work with the rectangular shape without 

hesitation. They recalled the formula required to calculate the area, measured the correct 

dimensions and quickly arrived at an accurate solution. Rectangular area measurement 

calculation is therefore a stable concept for these students. 

Where they experienced challenges was with the other shapes, which included a circle, a 

hexagon comprising 6 triangles and a composite rectangle. Many required the formulae to be 

provided to them, but remained uncertain about what linear measurement was required in order 

to use the formula appropriately. Therefore, while for rectangular measurement students were 

able to act almost instantaneously, their conceptualisation of the area measurement and 

calculation for other shapes was not yet stable.  

The application of the use of the scale was found to be challenging. Students were able to use 

it when converting lengths, however, if they had calculated the area in cm2 and needed to 

convert to m2 all required mediation. There was also further evidence of students struggling to 

know which units applied to which answers. 

10.2.4 Task 5 

Task 5 represented a ‘static’ assessment of measurement knowledge, and was conducted 

subsequent to the Mathematics lectures in measurement.  

This written assessment required symbolic formal work in calculating measurements, in the 

absence of the objects to which the measurements referred, and for a number of items, in the 

absence of a diagram depicting the object. The students’ performance on this assessment 
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revealed substantial instability in their ability to apply formulae to the appropriate shape or for 

the measurement of the appropriate attribute of the object.  

Students were able to perform the algebraic manipulations required to solve an equation, but 

were more frequently than not substituting the incorrect dimensions and therefore obtaining an 

incorrect solution.  

Despite difficulties, students were best able to calculate the area of rectangles and circles (also 

evident in Task 4) and the volume of cubes and rectangular prisms. 

Regarding the students’ use of units, there was evidence of relative stability. More than half of 

the items analysed included the correct unit, with the correct exponent. 

10.3 STABILITY AND EMERGENCE AS EVIDENT IN STUDENTS’ 

ENGAGEMENT IN THE MEASUREMENT TASKS 

It is not as simple a task as creating a list in order to respond to Research Questions 1 and 2. 

There are subtleties that differentiate those items that should appear on such a list, and these 

need to be reflected in the response. Research Questions 1 and 2 are therefore provided their 

technical answers by Table 10.1. This table provides a summary of the basic stable and 

emerging measurement conceptualisations observed in this research, but further distinguishes 

between those aspects that are either conceptual/embodied in nature, or procedural/symbolic.  

The actions of the students as they worked allowed further insight into the way in which this 

stable and emerging knowledge influenced their task performance. The knowledge that they 

possess, whether it be stable or emerging, takes the form of discrete strands. This limited their 

ability to optimally engage in the measurement activities because their measurement 

conceptualisations had not formed a rich network of relationships that allows full conceptual 

thinking. This notion is expanded upon in Section 10.3.2. 

10.3.1 Research Questions 1 and 2 

It was noted in Section 3.4.5 that the distinction between procedural and conceptual knowledge 

is useful in working with measurement. Procedural is understood here to comprise “the formal 

language, or symbol representation system, of mathematics [and] the algorithms, or rules, for 

completing mathematical tasks” (Hiebert & Lefevre, 1986, p. 6). Conceptual knowledge is 

defined as that which is rich in relationships…, a connected web of knowledge… in which the 
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linking relationships are as prominent as the discrete pieces of information” (p. 4). As 

measurement is an activity that takes place in the real world, its conceptual form is an embodied 

one. 

In order to answer Research Questions 1 and 2, stable and emerging conceptualisations have 

been further divided into those that are conceptual/embodied and those that are 

procedural/symbolic. Research Questions 1 and 2 are answered below: 

Table 10.1 Stable and emerging conceptual/embodied and procedural/symbolic 

knowledge 

 Conceptual/Embodied Procedural/Symbolic 

Stable Conceptual understanding of area 

(coverage with no gaps or overlaps) 

Everyday conceptual understanding 

of speed 

Everyday concept of the influence 

of pressure on flow rate 

 

  

 

Coverage (by using a number of 

different strategies) of surface with 

units 

Measurement of volume requires 

determination of number of cubic units 

that could cover the surface 

[misconception problematically stable 

for many] 

Use of ‘familiar’ artefacts, e.g. ruler, 

linear scale, calculator, formulae 

(technical sense) 

Algebraic manipulation of formulae 

Procedures (area): rectangles; circles 

Procedures (volume): cube; rectangular 

prism  

Application of units in purely symbolic 

tasks [no conversion needed; Task 5] 

Estimation relative to a square unit 

Emerging Fractional units used in coverage of 

a surface  

Defining volume, including 

differentiating it from other 

Use of fractions (notation, addition) 

Accurate use of terminology when 

discussing flow rate  
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properties of 3-dimensional objects 

(e.g. total surface area; weight)  

Linking of measurements from 

artefacts to underlying concept 

Substitution of correct measurement 

into formula 

Fractional units used in coverage of 

a surface  

 

Use of multiplicative reasoning in 

measurement of area using non-

standard units (most counted in 1s) 

Applying proportional reasoning when 

predicting results from composite 

measurement [development evident as 

Task 3 progressed] 

Correctly inferring influencing factor 

after observing a dynamic system 

[developed a lot during the task] 

Use of units 

Use of scale to convert 

Recall of formulae 

Selection of the correct formula for the 

property being calculated 

Problem solving and collaboration  

Units in embodied tasks [required a 

fully blended embodied/symbolic  

understanding of units in measurement] 

Use of fractions as representation for 

measurement (notation, addition) 

Procedures: triangles (area); triangular 

prisms (volume) 

 

10.3.2 Discrete strands of knowledge and the broken link 

As the students engaged in the measurement tasks, and their measurement conceptualisations 

began to emerge, it was also noticed that the presence of a seemingly stable conceptualisation 

did not always translate into optimal or successful engagement in the task. For example, 

students who held a stable conceptualisation of area were not necessarily able to calculate the 

area of a triangle; students who had a stable notion of how to calculate the area of a circle could 

not do so in the written test; or certain students who were able to use units correctly, and 
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reliably, in the written test but were unable to do so in Task 4. This was repeatedly observed, 

and on analysing the components of the tasks and the answers to the first two Research 

Questions it became clear that a further description can be applied to these conceptualisations: 

that they represent discrete strands of knowledge for these students. 

The ability to apply the procedure for calculating the area of a rectangle or to add fractions or 

convert units did not mean that this knowledge could be applied in the measurement task. These 

strands of knowledge existed for many, but were disconnected. 

Measurement activity requires, as was indicated by Tall (2013b), a blend of symbolism and 

embodiment, and similarly a blend of conceptual and procedural knowledge (Lamon, 2008). 

These forms of knowledge need to interact in order to successfully complete measurement 

tasks. What has been observed is that there is a break in the links between these in the embodied 

subject. The students displayed an ability to work symbolically, most notable in their ability to 

manipulate algebraic expressions, but were unable to apply that to the embodied world of 

measurement when required to solve equations to calculate a measurement. The reverse was 

also true. Where there was a stable conceptual/embodied understanding of surface area, 

students did not apply this when asked to calculate surface area in the written test. This model 

is provided in Figure 10.1. 
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Figure 10.1 Broken links between the conceptual/embodied and procedural/symbolic 

 

 

 

 

 

 

 

 

 

 

 

 

Engineers need to be able to function effectively at the symbolic formal level of thought, 

however, the nature of their work, particularly with regard to measurement, requires this 

symbolic formal work to have a strong link to the embodied world. What the students displayed 

in this research was that they possess some of the conceptual embodied knowledge, and some 

of the symbolic formal knowledge, at varying levels of stability, but struggle to bring them 

together effectively. This, then, is the necessary aim for teaching and learning of measurement 

for these students, and leads to the necessity of asking the third Research Question regarding 

where this break between stability and emergence might occur. 

10.4 FACILITATING THE CONSTRUCTION OF STABLE AND ACCURATE 

MEASUREMENT CONCEPTUALISATIONS 

Through reflecting on the students’ engagement in the task-based interviews, as well as the 

written test, it is possible to put forward a set of suggestions regarding how to better facilitate 
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students’ construction of accurate and stable measurement conceptualisations. In order to 

provide a response to the third Research Question, Tall’s (2013a) model of the development of 

mathematical thinking needs to be reconsidered, with reference to how it can help us to 

understand the broken link referred to in Section 10.3.2. Thereafter, Tasks 3 and 4 will be 

discussed in light of the conceptual development that revealed itself as the tasks progressed.  

10.4.1 Tall and the broken link 

Tall’s (2013a) theory of development can assist in explaining the source of the broken link 

shown in Figure 10.1. If Tall’s (2013a) model of development is reconsidered, the first moment 

in which this break occurs can be traced. Tall (2013a) theorised that mathematical thinking, in 

relation to measurement proceeds in a diagonal direction from the embodied to the symbolic 

formal world. This is depicted below (Tall, 2013a, p. 2): 

Figure 10.2 Tall’s developmental model 

This is mirrored in the South African curriculum, where learners initially work exclusively 

with physical measuring tasks, and their work becomes increasingly symbolic and formal. In 

many subjects, the link to the embodied world is lost as the curriculum moves to focus 

exclusively on formal symbolic work. Tall’s (2013a) notion that development is a progression, 

and movement is from embodied to symbolic formal implies that the embodied world is ‘left 

behind’ once symbolic formal thought is achieved. This is evident, too, in his model, in the 

lack of overlap of the embodied with the symbolic formal. 

The measurement learning trajectory, according to South African curricula, when considered 

with Tall’s model, reveals the precise moment in the curriculum when the embodied world 

begins to blend with the symbolic. In Grade 5, learners gradually begin to encounter the use of 

formulae to calculate measurements. By Grade 6 they are completing much of their 
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measurement work with formulae, and the use of physical measurements in the embodied 

world begins to decline (see Section 2.7).  

Figure 10.3 The measurement learning trajectory in South African school curricula 

 

If the broken link shown in Figure 10.1 is to be effectively mended for these adult students, 

one would need to provide opportunities to engage in measurement activities in the manner in 

which these are approached when first encountered at school. This does not mean to say that 

adult students should be working from Grade 6 children’s texts, nor that they need spend 

excessive time working at that level. What it does mean is that activities should be carefully 

structured such that they allow the student to develop in their abstract conceptualisation of the 

concept while maintaining an embodied understanding of this concept as should be happening 

at Grade 6 level in the schooling system. This need not only be applied to the measurements 

that appear in the Grade 6 curriculum. It is the approach that is of value.  

The failure of the current approach in NC(V) Mathematics classrooms, where measurement is 

taught as the application of formulae to 2-dimensional representations of objects, is evident in 

these students’ test results. Berger (2005) highlights that even in her university mathematics 

classroom, where students are learning axiomatic formal mathematics, it is essential to allow 

the students an opportunity to work with new concepts at the heap, complex and potential 

concept (Vygotsky, 1926/1986) levels if these concepts are to become fully known. It is not 
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possible to provide formal instruction in thinking in concepts. Therein lies the value in taking 

an approach that returns the student to working with both the embodied/conceptual world while 

developing the symbolic formal thought, and ensuring that the embodied world is not left 

behind as more sophisticated thought becomes possible. 

10.4.2 Tasks 3 and 4 and the development of measurement conceptualisations 

Tasks 3 and 4, while aiming at uncovering students’ measurement conceptualisations, resulted 

in evidence of these students’ conceptual development as they worked on the tasks.  

As explored in 10.4.1, it is necessary to maintain a link between the symbolic and the embodied 

worlds when working with measurement concepts and these two tasks achieved that. Task 3 

provided a physical experience of flow rate during the practical experiment, and Task 4 

involved the students in a measurement task that could realistically be encountered in the real 

world. While working strongly in the embodied world, however, symbolic work was also 

required in both. In Task 3, students were introduced to the method of calculating flow rate and 

were then required to do so themselves. In Task 4, students needed to apply formulae to 

calculate the areas required and complete the task.  

In addition, these two tasks allowed for more interaction than Tasks 1 and 2. In Task 3 the 

student interacted continuously with the interviewer as they made predictions and explained 

their reasoning. As a result, the conceptual accuracy with which they were able to describe the 

experiment increased and showed evidence of development in their conceptualisation of this 

new concept. In Task 4 the student collaborated with a peer, and through working in this way 

each partner was able to learn from the other, and the pairs showed improved performance as 

the task proceeded. 

Another feature of these tasks was the level of their complexity. They each had substantial 

subtasks and phases. With the observation made that the students’ existing measurement 

conceptualisations frequently comprised discrete strands that were not integrated and were 

therefore ineffective in enabling the student to solve measurement tasks, this complexity is 

valuable. Instead of facilitating the creation of a weak link to replace the broken one, a complex 

task requires the integration of knowledge, which creates a stronger link between the strands, 

as well as between the conceptual/embodied and the procedural/symbolic. This is illustrated in 

the figure below: 
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Figure 10.4 The integration of knowledge strands during complex activity 

 

Importantly, Tasks 3 and 4 provide examples of how work can be structured at the level argued 

for in 10.4.1 without resorting to using the same types of tasks you would with a 12-year old. 

They successfully held in tension the embodied and symbolic world and in the case of Task 3, 

resulted in real learning in a complex domain of measurement that is not the spatial 

measurement of object attributes. 

10.5  STRENGTHS AND CONTRIBUTIONS OF THE RESEARCH 

The primary strength of this research lies in the fine-grained detail of the account of the 

students’ engagement in the measurement tasks. It has permitted insight into the structure of 

these adults’ measurement conceptualisations and in so doing contributes towards filling 

several gaps simultaneously.  

This detailed account provides a contribution towards the understanding of adult mathematical 

thought, particularly with regard to measurement. Research on measurement learning is a 

relatively small field in mathematics education and within that field, adult learning of 

mathematics for the workplace is largely overshadowed by research addressing the needs of 

primary school learners.  

In addition to contributing to measurement research by focusing on the adult, this research has 

included a focus on flow rate. The majority of the existing research focuses on measurement 

of spatial attributes of objects, however, engineers are required to work with more complex 

quantities, of which flow rate is one. A focus on the beginner’s conceptualisation of that 

concept is original. 

The findings themselves provide important contributions to the field. The identification of the 

broken link between the embodied and symbolic aspects of the measurement concepts in the 
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students’ work represents an original insight into the act of measuring. In addition, the 

identification of the precise moment in South African schooling where this link would have 

started to weaken for these students is an insight not yet gained and holds promise for the design 

of programmes that may assist students who are struggling in the same way. 

The deep insight that was gained into the prior knowledge, or existing conceptual knowledge, 

of measurement, particularly for the ten learners who participated in all five tasks, must also 

be considered an important contribution. The depth and detail in the descriptions of their 

conceptualisations of measurement and engagement in the tasks is substantial. While it cannot 

be generalised to other individuals it represents a significant contribution towards a more 

comprehensive understanding of how adults engage in measurement activities and how they 

employ both stable and emerging conceptualisations to do so. 

10.6 LIMITATIONS 

When research is exploratory, as is the case here, the aim is not to uncover definitive answers 

to research questions, but rather to open further avenues for exploration. This study has been 

successful in raising further questions, but cannot claim to have uncovered any solution to the 

challenges faced by students in learning measurement.  

A further limitation is that the small scale of this research does not allow for the results to 

generalise to other contexts, and the subjective nature of the mediation decisions in the 

interview situation similarly prevent generalisability. However, these two limitations can be 

viewed as strengths if considering that the goal of the research was to explore, in as much depth 

as possible, the students’ conceptualisations. This required intense work with a necessarily 

small group of students, and the immersion of the researcher in the process of assessment. It 

limits generalisability, but is the reason for the achievement of that goal. 

10.7 IMPLICATIONS OF THE STUDY 

The findings of the study, although not generalisable, have revealed issues that hold 

implications for curriculum design. The current approach to teaching measurement in NC(V) 

Mathematics is not facilitating the students’ construction of conceptualisations that are accurate 

and stable, and are sufficiently linked to the embodied world so as to allow for the development 

of adaptive measurement expertise.  
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The broken link identified in the findings is entrenched when strategies are used that emphasise 

formal symbolic calculations over maintaining the link between the measure and its embodied 

meaning, as is the case in the NC(V) Level 2 Mathematics curriculum (DHET, 2011). For 

engineers who need to perform complex measurements in the workplace, this leaves a gap in 

their knowledge and conceptualisation of measurement. 

10.8 AVENUES FOR FURTHER RESEARCH 

Due to the exploratory nature of this research, several avenues have been highlighted for which 

research is required.  

Most urgent are questions around the broken link identified. Research is required to answer 

questions about how this break occurs, how to prevent it, and how to assist a student who is 

experiencing it. Further research is also required to investigate whether this broken link is a 

generalisable problem.  

10.9 REFLECTION 

Having taught in a TVET college, I have witnessed many students grow disheartened as they 

struggle with Mathematics. I have experienced the frustration, as an educator, of not knowing 

how to assist these students. What I have always believed is that TVET students arrive with a 

wealth of knowledge that could be a resource to the educator who understood the structure of 

it. The detailed and nuanced view of this knowledge that was gained from engaging with the 

students in this research was rewarding in itself. The next step, that I am looking forward to 

taking, will be to explore further how the lessons learned through this project might find 

themselves enacted in the classroom, to the benefit of TVET Mathematics students. 
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APPENDIX A 

Survey of PME Measurement Research Reports 

Year Publication Name Articles 

2006 Proceedings of the 30th 

Conference of PME 

Prague, Czech Republic 

Novotná, Moraová, Krátká & 

Stehlíková (2006) 

Development of children's understanding of length, area and 

volume measurement principles (Curry, Mitchelmore & Outhred, 

2006) 

Integrating errors into developmental assessment: 'time' for ages 8-

13 (Doig, Linda, Wo & Pampaka, 2006) 

Modelling fractions with area: The salience of vertical partitioning 

(Kyriakides, 2006)  

The problem-solving element in young students’ work related to the 

concept of area (Mamona-Downs & Papadopoulos, 2006) 

2007 Proceedings of the 31st 

Conference of PME 

Seoul, Korea 

Woo, Lew, Park & Seo 

(2007) 

none 

2008 Proceedings of the 32nd 

Conference of PME 

Morelia, Mexico 

Figueras, Cortina, Alatorre, 

Rojano & Sepúlveda (2008) 

none 

2009 Proceedings of the 33rd 

Conference of PME 

Thessaloniki, Greece 

Tzekaki, Kaldrimidou, 

Sakonidis (2009) 

Counting vs. measuring: Reflections on number roots between 

epistemology and neuroscience (Iannece, Mellone & Tortora, 2009) 

 

2010 Proceedings of the 34th 

Conference of PME 

Belo Horizonte, Brazil 

Pinto & Kawasaki (2010) 

Early Multiplicative thought: A kindergarten path (Iannece, 

Mellone & Tortora, 2010) 

Strategy use indicative of an understanding of units of length. 

(Cullen & Barrett, 2010) 

2011 Proceedings of the 35th 

Conference of PME 

Ankara, Turkey  

Ubuz (2011) 

Unit eliciting task structures: A comparison (Cullen, Miller, Barrett, 

Clements & Sarama, 2011) 

2012 Proceedings of the 36th 

Conference of PME 

Taipei, Taiwan 

Tso (2012) 

An exploration of computer-based curricula for teaching children 

volume measurement concepts (Huang, 2012) 

 

2013 Proceedings of the 37th 

Conference of PME 

Kiel, Germany 

none 
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Lindmeier & Heinze (2013) 

2014 Proceedings of the 38th 

Conference of PME 

Vancouver, Canada 

Liljedahl, Nicol, Oesterle & 

Allan (2014) 

Investigating Children’s Ability to Solve Measurement Estimation 

Problems (Huang, 2014a)  

Linking Children’s Knowledge of Length Measurement to Their 

Use of Double Number Lines (Beck, Eames, Cullen, Barrett, 

Clements & Sarama, 2014) 

Young Learners’ Understandings About Mass Measurement: 

Insights from An Open-Ended Task (McDonough & Cheeseman, 

2014) 

2015 Proceedings of the 39th 

Conference of PME 

Hobart, Tasmania 

Beswick, Muir & Wells 

(2015) 

Children’s performance in estimating the measurements of daily 

objects (Huang, 2015) 

Measurement estimation in primary school: Which answer is 

adequate (Ruwisch, Heid & Weiher, 2015) 

2016 Proceedings of the 40th 

Conference of PME 

Szeged, Hungary 

Csíkos, Rausch & Szitányi 

Reciprocal relations of relative size in the instructional context of 

fractions as measures (Cortina & Visnovska, 2016) 

The effects of estimation interventions on children’s measurement 

estimation performance (Huang & Su, 2016) 
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APPENDIX B 

Survey of Measurement Research in 5 Peer-Reviewed Mathematics Education Journals 

Toerner and Arzarello (2012), in research conducted for the European Society for Research in 

Mathematics Education, consulted 91 experts, representing 42 countries to grade journals 

according to the following criteria: recognition; review process and quality; composition of the 

editorial board; and citations. Journals were graded on a scale of A* (the highest) to C. This, 

in part, guided the selection of journals for the survey. Both A*-grade journals and one A-grade 

journals were consulted in this measurement research survey. In addition, a regional (African) 

journal, as well as one South African [SA] academic mathematics education journal, were 

included in the survey.  

The selected journals were: 

A* grade Educational Studies in Mathematics (1968 – 2012) 

 Journal for the Research of Mathematics Education (1976 – 2016) 

A grade The International Journal for Mathematics Education ZDM (1997 – 2016) 

African African Journal for Research in Mathematics, Science and Technology 

Education (1997 – 2016) 

SA Pythagoras (2004 – 2016)  

Type of 

journal 

Journal Name Articles (in chronological order) 

A* Graded 

 

Educational 

Studies in 

Mathematics  

(1968 – 2012) 

1996: Student teachers’ subject matter knowledge within the 

domain of area measurement (Baturo & Nason, 1996) 

1996: Development of turn and turn measurement concepts in a 

computer-based instructional unit (Clements, Battista, Sarama & 

Swaminathan, 1996) 

2000: Development of angle concepts by progressive abstraction 

and generalisation (Mitchelmore & White, 2000) 

2000: Students’ development of strategies for turn and angle 

measure (Clements & Burns, 2000) 

2003: Advanced Mathematical thinking in a technological 

workplace (Magaina & Monaghan, 2003) 

2009: Cognitive styles, dynamic geometry and measurement 

performance (Pitta-Pantazi, & Christou, 2009) 

2010: Types of reasoning in 3D geometry thinking and their 

relation with spatial ability (Pittalis & Christou, 2010) 



 

304 

 

2010: Children’s strategies for division by fractions in the 

context of area of a rectangle (Yim, 2010) 

2011: Exploring students’ strategies in area conservation 

geometrical tasks (Kospentaris, Spyrou & Lappas, 2011) 

2011: Designing spatial visual tasks for research: The case of 

the filling task (Sinclair, Mamolo & Whiteley, 2011) 

2013: Making sense by measuring arcs: A teaching experiment 

in angle measure (Moore, 2013) 

2014: Learning to see pipes mathematically: Pre-apprentices’ 

mathematical activity in pipe trades training (LaCroix, 2014) 

2015: Schoolteacher trainees’ difficulties about the concepts of 

attribute and measurement (Passelaigue & Munier, 2015) 

2016: Turn vs. shape: teachers cope with incompatible 

perspectives on angle (Kontorovich & Zazkis, 2016) 

Journal for the 

Research of 

Mathematics 

Education  

(1976 – 2016) 

1970: Linear measurement in the primary grades: A 

comparison of Piaget’s description of the child’s spontaneous 

conceptual development and the SMSG sequence of instruction 

(Huntington, 1970) 

1972: The effect of training on length on the performance of 

kindergarten children on nonstandard but related tasks 

(Romberg & Gilbert, 1972) 

1973: The interaction of three levels of aptitude determined by 

a teach-test procedure with two treatments related to area 

(Montgomery, 1973) 

1975: Measurement concepts of first- and second-grade 

students (Carpenter, 1975) 

1975: The relationship of area conservation to area 

measurement as affected by sequence of presentation of 

Piagetian area tasks to boys and girls in Grades one through 

three (Taloumis, 1975) 

1976: The introduction of mathematics through measurement 

or through set theory: A comparison (van Wagenen, Flora & 

Walker, 1976) 

1976: The development of the concept of a standard unit of 

measure in young children (Carpenter & Lewis, 1976) 

1981: Cognitive development and learning linear measurement 

(Hiebert, 1981) 

1981: Conservation of length: An invariant: A study and a 

follow-up (Kidder & Lamb, 1981) 
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1994: Talking about rates conceptually, Part I: A teacher’s 

struggle (Thompson & Thompson, 1994) 

1996: Talking about rates conceptually, Part II: Mathematical 

knowledge for teaching (Thompson & Thompson, 1996) 

1996: Elementary students’ construction and coordination of 

units in an area setting (Reynolds & Wheatley, 1996) 

1997: Students’ development of length concepts in a logo-based 

unit on geometric paths (Clements, Battista, Sarama, 

Swaminathan & McMillen, 1997) 

1998: Students’ spatial structuring of 2D arrays of squares 

(Battista, Clements, Arnoff, Battista, Van Aucken & Borrow, 1998) 

2000: Young children’s intuitive understanding of rectangular 

area measurement (Outhred & Mitchelmore, 2000) 

2005: Children’s use of the reference point strategy for 

measurement estimation (Joram, Gabriele, Bertheau, Gelman & 

Subrahmanyam, 2005) 

2006: Students’ coordination of geometric reasoning and 

measuring strategies on a fixed perimeter task: Developing 

mathematical understanding of length measurement (Barrett, 

Clements, Klanderman, Pennisi & Polaki, 2006) 

2010: The older of two trees: Young children’s development of 

operational time (Kamii & Russell, 2010) 

2012: Elapsed time: Why is it so difficult to teach? (Kamii & 

Russell, 2012) 

2013: Young children’s understandings of length measurement: 

Evaluating a learning trajectory (Szilágyi, Clements & Sarama, 

2013) 

2013: The impact of challenging geometry and measurement 

units on the achievement of Grade 2 students (Gavin, Casa, 

Adelson & Firmender, 2013) 

A graded The International 

Journal for 

Mathematics 

Education ZDM 

(1997 – 2016) 

2011: The use, nature and purposes of measurement in 

intermediate-level occupations (Bakker, Wijers, Jonker, & 

Akkerman, 2011) 

2011: Children’s unit concepts in measurement: A teaching 

experiment spanning Grades 2 through 5 (Barrett, Cullen, 

Sarama, Clements, Klanderman, Miller & Rumsey, 2011) 

2011: Exploring US textbooks’ treatment of the estimation of 

linear measurements (Chang, Males, Mosier & Gonulates, 2011) 
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2011: Iranian students’ measurement estimation performance 

involving linear and area attributes of real-world objects 

(Gooya, Khosroshahi & Teppo, 2011) 

2011: Revealing German primary school students’ achievement 

in measurement (Hannighofer, van den Heuvel-Panhuizen, 

Weirich & Robitzsch, 2011) 

2011: Measurement in the workplace: The case of process 

improvement in manufacturing industry (Kent, Bakker, Hoyles 

& Noss, 2011) 

2011: What is different across an ocean? How Singapore and 

US elementary mathematics curricula introduce and develop 

length measurement (Lee & Smith, 2011) 

2011: Developing conceptions of statistics by designing 

measurement of distribution (Lehrer, Kim & Jones, 2011) 

2011: Evaluation of a learning trajectory for length in the early 

years (Sarama, Clements, Barrett, van Dine & McDonel, 2011) 

2011: Kindergartner’s performance in length measurement and 

the effect of picture book reading (van den Heuvel-Panhuizen & 

Elia, 2011) 

2014: Third- to fourth-grade students’ conceptions of 

multiplication and area measurement (Huang, 2014b) 

2016: The semiotic and conceptual genesis of angle (Tanguay, & 

Venant, 2016) 

2016: Comparison of perimeters: Improving students’ 

performance by increasing the salience of the relevant variable 

(Babai, Nattiy & Stavy, 2016) 

Regional 

(African) 

journal 

African Journal for 

Research in 

Mathematics, 

Science and 

Technology 

Education 

(1997 – 2016) 

2013: ‘The area of a triangle is 180°: An analysis of learners’ 

idiosyncratic geometry responses through the lenses of 

Vygotsky’s theory of concept formation (Mhlolo & Schafer, 

2013) 

2013: The concept of spatial scale in astronomy addressed by an 

informal learning environment (Lelliott, 2013) 

2014: Comparing Grade 11 Mathematics and Mathematical 

Literacy algebraic proficiency in temperature conversion 

problems (Mbonambi & Bansilal, 2014) 

Local (South 

African) 

academic 

journal 

Pythagoras  

(2004 – 2016) 

2016: The concepts of area and perimeter: Insights and 

misconceptions of Grade 10 learners (Machaba, 2016) 
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APPENDIX C 

NC(V) Engineering Programmes of Study 
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(From DHET, 2013g) 
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APPENDIX D 

NQF Level Descriptors: Levels 1 - 4 

NQF LEVEL 1 

a. Scope of knowledge, in respect of which a learner is able to demonstrate a general knowledge of one or more areas or fields of study, in addition to the 

fundamental areas of study.  

b. Knowledge literacy, in respect of which a learner is able to demonstrate an understanding that knowledge in a particular field develops over a period of 

time through the efforts of a number of people, and often through the synthesis of information from a variety of related sources and fields.  

c. Method and procedure, in respect of which a learner is able to demonstrate the ability to use key common tools and instruments, and a capacity to apply 

him/herself to a well-defined task under direct supervision.  

d. Problem solving, in respect of which a learner is able to demonstrate the ability to recognise and solve problems within a familiar, well-defined context.  

e. Ethics and professional practice, in respect of which a learner is able to demonstrate the ability to identify and develop own personal values and ethics, and 

the ability to identify ethics applicable in a specific environment.  

f. Accessing, processing and managing information, in respect of which a learner is able to demonstrate the ability to recall, collect and organise given 

information clearly and accurately, sound listening and speaking (receptive and productive language use), reading and writing skills, and basic numeracy 

skills including an understanding of symbolic systems. 

g. Producing and communicating information, in respect of which a learner is able to demonstrate the ability to report information clearly and accurately in 

spoken/signed and written form.  

h. Context and systems, in respect of which a learner is able to demonstrate an understanding of the context within which he/she operates. 

i. Management of learning, in respect of which a learner is able to demonstrate the ability to sequence and schedule learning tasks, and the ability to access 

and use a range of learning resources.  

j. Accountability, in respect of which a learner is able to demonstrate the ability to work as part of a group. 
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NQF Level 2 

a. Scope of knowledge, in respect of which a learner is able to demonstrate a basic operational knowledge of one or more areas or fields of study, in addition 

to the fundamental areas of study.  

b. Knowledge literacy, in respect of which a learner is able to demonstrate an understanding that one’s own knowledge of a particular field or system develops 

through active participation in relevant activities.  

c. Method and procedure, in respect of which a learner is able to demonstrate the ability to use a variety of common tools and instruments, and a capacity to 

work in a disciplined manner in a well-structured and supervised environment.  

d. Problem solving, in respect of which a learner is able to demonstrate the ability to use own knowledge to select and apply known solutions to well-defined 

routine problems.  

e. Ethics and professional practice, in respect of which a learner is able to demonstrate the ability to apply personal values and ethics in a specific environment.  

f. Accessing, processing and managing information, in respect of which a learner is able to demonstrate the ability to apply literacy and numeracy skills to a 

range of different but familiar contexts.  

g. Producing and communicating information, in respect of which a learner is able to demonstrate the basic ability to collect, organise and report information 

clearly and accurately, and the ability to express an opinion on given information clearly in spoken/signed and written form.  

h. Context and systems, in respect of which a learner is able to demonstrate an understanding of the environment within which he/she operates in a wider 

context.  

i. Management of learning, in respect of which a learner is able to demonstrate the capacity to learn in a disciplined manner in a well-structured and supervised 

environment. 

j. Accountability, in respect of which a learner is able to demonstrate the ability to manage own time effectively, the ability to develop sound working 

relationships, and the ability to work effectively as part of a group. 
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NQF Level 3 

a. Scope of knowledge, in respect of which a learner is able to demonstrate a basic understanding of the key concepts and knowledge of one or more fields 

or disciplines, in addition to the fundamental areas of study.  

b. Knowledge literacy, in respect of which a learner is able to demonstrate an understanding that knowledge in a field can only be applied if the knowledge, 

as well as its relationship to other relevant information in related fields, is understood. 

c. Method and procedure, in respect of which a learner is able to demonstrate operational literacy, the capacity to operate within clearly defined contexts, and 

the ability to work within a managed environment.  

d. Problem solving, in respect of which a learner is able to demonstrate the ability to use own knowledge to select appropriate procedures to solve problems 

within given parameters.  

e. Ethics and professional practice, in respect of which a learner is able to demonstrate the ability to comply with organisational ethics.  

f. Accessing, processing and managing information, in respect of which a learner is able to demonstrate the basic ability to summarise and interpret 

information relevant to the context from a range of sources, and the ability to take a position on available information, discuss the issues and reach a resolution.  

g. Producing and communicating information, in respect of which a learner is able to produce a coherent presentation and report, providing explanations for 

positions taken.  

h. Context and systems, in respect of which a learner is able to demonstrate an understanding of the organisation or operating environment as a system, and 

application of skills in measuring the environment using key instruments and equipment.  

i. Management of learning, in respect of which a learner is able to demonstrate the ability to learn within a managed environment.  

j. Accountability, in respect of which a learner is able to demonstrate the capacity to actively contribute to team effectiveness. 

  



 

314 

 

NQF Level 4 

a. Scope of knowledge, in respect of which a learner is able to demonstrate a fundamental knowledge base of the most important areas of one or more fields 

or disciplines, in addition to the fundamental areas of study, and a fundamental understanding of the key terms, rules, concepts, established principles and 

theories in one or more fields or disciplines.  

b. Knowledge literacy, in respect of which a learner is able to demonstrate an understanding that knowledge in one field can be applied to related fields.  

c. Method and procedure, in respect of which a learner is able to demonstrate the ability to apply essential methods, procedures and techniques of the field or 

discipline to a given familiar context, and the ability to motivate a change using relevant evidence.  

d. Problem solving, in respect of which a learner is able to demonstrate the ability to use own knowledge to solve common problems within a familiar context, 

and the ability to adjust an application of a common solution within relevant parameters to meet the needs of small changes in the problem or operating 

context with an understanding of the consequences of related actions. 

e. Ethics and professional practice, in respect of which a learner is able to demonstrate the ability to adhere to organisational ethics and a code of conduct, 

and the ability to understand societal values and ethics.  

f. Accessing, processing and managing information, in respect of which a learner is able to demonstrate a basic ability in gathering relevant information, 

analysis and evaluation skills, and the ability to apply and carry out actions by interpreting information from text and operational symbols or representations.  

g. Producing and communicating information, in respect of which a learner is able to demonstrate the ability to communicate and present information reliably 

and accurately in written and in oral or signed form. 

h. Context and systems, in respect of which a learner is able to demonstrate an understanding of the organisation or operating environment as a system within 

a wider context.  

i. Management of learning, in respect of which a learner is able to demonstrate the capacity to take responsibility for own learning within a supervised 

environment, and the capacity to evaluate own performance against given criteria.  

j. Accountability, in respect of which a learner is able to demonstrate the capacity to take decisions about and responsibility for actions, and the capacity to 

take the initiative to address any shortcomings found. 

(From SAQA, 2012, p. 5 – 8) 
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APPENDIX E 

General Descriptions of Measurement Learning for Intermediate Phase, Senior Phase & ABET L4 

GRADE 4  GRADE 5 GRADE 6 GRADE 7 GRADE 8 GRADE 9 ABET L4  

The main progression in measurement across the 

grades is achieved by: 

- the introduction of new measuring units, 

particularly in grades 4 and 6 

- the increase in number range and complexity of 

calculations that learners are able to do in each 

grade 

Practical measuring using measuring instruments 

is central to measurement in this phase 

The main progression in measurement across the 

grades is achieved by the selection of shapes 

and objects in each grade for which the 

formulae for finding area, perimeter, surface 

area and volume become more complex 

The use of formulae in this phase provides a 

useful context to practice solving equations 

The introduction of the Theorem of Pythagoras 

is a way of introducing a formula to calculate 

the lengths of sides in right-angled triangles. 

Hence the Theorem of Pythagoras becomes a 

useful tool when learners solve geometric 

problems involving right-angled triangles 

ABET Level 4 is a qualification at NQF Level1, 

(equivalent to Grade 9) 

Students choose to complete either Mathematical 

Literacy Unit Standards OR Mathematics and 

Mathematical Sciences Unit Standards 

In Mathematical Literacy there is a dual focus on 

the use of formulae to calculate measurements 

and the use of appropriate practical measuring 

instruments to measure quantities 

In Mathematics and Mathematical Sciences there 

is a specific, singular focus on use of formulae 

to calculate quantities 

 

Learners should be exposed to a variety of 

measurement activities 

Learners should be introduced to the use of 

standardised units of measurement and 

appropriate instruments for measuring. They 

should be able to estimate and verify results 

through accurate measurement 

 

Learners should be using formulae to calculate 

area, perimeter, surface area and volume of 

geometric figures and solids 

Students should be able to calculate the area of 

polygons by decomposition into triangles and 

rectangles 

Measurement in Mathematical Literacy: 

Students should be using formulae to calculate 

area, perimeter and volume  

Students should be able to calculate the area of 

polygons by decomposition into triangles and 

rectangles 

Students should be selecting and converting 

between appropriate SI units of measurement 
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Learners should be able to select and convert 

between appropriate units of measurement 

Measurement should also enable the learner to: 

- informally measure angles, area, perimeter and 

volume/capacity 

Measurement provides a context for learners to 

use common fractions and decimal fractions 

Learners should be selecting and converting 

between appropriate units of measurement 

Learners should be using the Theorem of 

Pythagoras to solve problems involving right-

angled triangles 

Students should be using formulae and SI units to 

show the relationships and differences between 

different measurements 

Students should use measuring instruments to 

measure and calculate quantities in a variety of 

contexts 

Measurement in Mathematics and Mathematical 

Sciences 

Students should be using the Theorem of 

Pythagoras to solve problems involving right-

angled  

Students should select the correct formulae to 

solve problems  

Units should be used correctly and students 

should be able to convert SI units 

Adapted from DBE (2011b); DBE (2011c); DHET (2013a); DHET (2013b) & SAQA (2015) 
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APPENDIX F 

Curriculum Progression of Measurement Learning (Intermediate Phase & Senior Phase) 

LENGTH 

GRADE 4 GRADE 5 GRADE 6 GRADE 7 GRADE 8 GRADE 9 

Practical measuring of 2-D shapes and 3-D objects by: 

Estimating; measuring; recording; comparing and ordering 

 

Measuring instruments: 

Rulers; metre sticks; tape measures; trundle wheels 

Units: 

Millimetres (mm); centimetres (cm); metres (m); kilometres (km) 

Solve problems in contexts involving length 

Not a distinct strand in Senior Phase 

Conversions include 

converting between 

- mm and cm 

- cm and m 

- m and km 

Conversions include converting between any of 

the following:  

- mm; cm; m; km 
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Conversions limited to whole numbers and 

common fractions 

Conversions should 

include common 

fractions and decimal 

fractions to 2 

decimal places 

Adapted from DBE (2011b) and DBE (2011c) 
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PERIMETER AND AREA OF 2D SHAPES 

GRADE 4  GRADE 5 GRADE 6 GRADE 7 GRADE 8 GRADE 9 

Measure perimeter using rulers or measuring tapes Use appropriate 

formulae to calculate 

perimeter and area 

of: 

Squares; rectangles; 

triangles 

Use appropriate 

formulae to calculate 

perimeter and area of: 

Squares; rectangles; 

triangles and circles 

Use appropriate 

formulae and 

conversions between 

SI units to solve 

problems and 

calculate the 

perimeter of: 

Polygons and circles 

Find areas of regular and irregular shapes by counting squares on grids in 

order to develop an understanding of square units 

NO WORK WITH GENERAL 

RULES/FORMULAE FOR CALCULATION 

OF AREA 

Develop rules for 

calculating the areas 

of squares and 

rectangles 

Investigate the 

relationship between 

perimeter and area of 

rectangles and squares 

 Calculate the areas of 

polygons, to at least 2 

decimal places, by 

decomposing them 

into triangles and/or 

rectangles 

Use and describe the 

relationship between 

the radius, diameter 

Investigate how 

doubling any or all of 

the dimensions of a 

2D figure affects its 

perimeter and its area 
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and circumference of 

a circle in calculations 

Use and describe the 

relationship between 

the radius and area of 

a circle in calculations 

 Calculations and 

solving problems: 

Solve problems 

involving the 

perimeter and area of 

polygons (to at least 

1 decimal place)  

Use and convert 

between appropriate 

SI units: mm2 and 

cm2 and between cm2 

and m2 

Calculations and solving problems: 

Solve problems involving the perimeter and area 

of polygons and circles (to at least 2 decimal 

places)  

Use and convert between appropriate SI units: 

mm2, cm2 , m2 and km2 

Use and describe the meaning of the irrational 

number Pi (𝜋) in calculations involving circles 

Adapted from DBE (2011b) and DBE (2011c) 
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SURFACE AREA AND VOLUME 

GRADE 4  GRADE 5 GRADE 6 GRADE 7 GRADE 8 GRADE 9 

Find volume/capacity of objects by packing or filling them in order to 

develop an understanding of cubic units 

 

 Develop an 

understanding of why 

the volume of 

rectangular prisms is 

given by the length 

multiplied by the 

width multiplied by 

height 

 

Use appropriate 

formulae to calculate 

the surface area, 

volume and capacity 

of: 

- Cubes 

- Rectangular prisms 

Use appropriate 

formulae to calculate 

the surface area, 

volume and capacity 

of: 

- Cubes 

- Rectangular prisms 

and triangular prisms 

Use appropriate 

formulae to calculate 

the surface area, 

volume and capacity 

of: 

- Cubes 

- Rectangular prisms 

- Triangular prisms 

- Cylinders 

Investigate the 

relationship between 

surface area and 

volume of rectangular 

prisms 

Describe the relationship between surface area 

and volume of the objects mentioned above 

Investigate how 

doubling any or all of 

the dimensions of 

right prisms and 

cylinders affects their 

volume 

Adapted from DBE (2011b) and DBE (2011c) 
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APPENDIX G 

Curriculum Progression of Measurement Learning (FET Phase Maths, Math Lit & Technical Maths) 

MATHEMATICS MATHEMATICAL LITERACY TECHNICAL 

MATHEMATICS 

GRADE 10  GRADE 11 GRADE 12 GRADE 10 GRADE 11 GRADE 12 GRADE 10 - 12 

Measurement disappears as a separate topic in the FET phase, 

and becomes part of the study of Geometry and 

Trigonometry  

A separate topic weighted at 15 – 25% in terms of teaching 

time allocation and mark allocation in summative 

assessments 

A separate topic 

weighted at 10% 

- Revise the volume 

and surface areas 

of right-prisms and 

cylinders 

- Study the effect on 

volume and 

surface area when 

multiplying any 

dimension by a 

constant factor k 

- Calculate the 

volume and 

surface areas of 

spheres, right 

pyramids & cones 

Revise Grade 10 

work 

Applied in: 

trigonometry, 

analytical 

geometry, 

Euclidean 

geometry 

Revise Grade 10 

work 

Applied in: 

trigonometry, 

analytical 

geometry, 

Euclidean 

geometry as well 

as practical 

problems 

involving 

optimisation and 

rates of change in 

differential 

calculus 

Simple tasks in the 

familiar context 

of the household, 

involving: 

Conversions 

Measuring length 

Measuring weight 

Measuring volume 

Temperature 

Calculating 

perimeter, area 

and volume 

Time 

Larger projects in 

familiar contexts 

of the household, 

school and wider 

community 

involving: 

Conversions 

Measuring length 

Measuring weight 

Measuring volume 

Temperature 

Calculating 

perimeter, area 

and volume 

Time 

Complex projects 

in familiar and 

unfamiliar 

contexts, 

involving: 

Conversions 

Measuring length 

Measuring weight 

Measuring volume 

Temperature 

Calculating 

perimeter, area 

and volume 

Time 

 

GRADE 10: 

Conversion of units, 

square units and cubic 

units 

GRADE 11: 

Solve problems 

involving volume and 

surface area of solids 

studies in earlier 

grades (i.e. Grade 9) 

and combinations of 

those objects 

GRADE 12: 

Revise Grade 10 & 11 

work 

adapted from DBE (2011a; 2011d; 2014b)  
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APPENDIX H 

Curriculum Progression of Measurement Learning (FET Phase Math Lit) 

MATHEMATICAL LITERACY 

GRADE 10 GRADE 11 GRADE 12 

CONVERSIONS 

Convert units of measurement from memory for:  

- SI units 

- time  

Convert units of measurement using given conversion factors and/or tables for cooking conversions 

(e.g. cup – ml) 

As for Grades 10 & 11 and: 

Convert between different systems 

- metric to imperial 

- solid to liquid 

- Celsius to Fahrenheit  

Express measurement values and quantities in units appropriate to the context 
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LENGTH/DISTANCE 

Determine length/distance using appropriate measuring instruments, including: 

- rulers; measuring tapes; trundle wheels; odometers; maps; scales 

Estimate lengths 

Calculate values using formulae involving length (e.g. perimeter, area and volume) 

Calculate actual length and distance when map and/or plan measurements are known 

Estimate distances using measurement and a given scale 

 Calculate the time taken to complete a journey 

Calculate speed 

Calculate map and/or plan measurements when actual lengths and distances are known using a given 

scale to inform the drawing of 2-dimensional plans and the construction of 3-dimensional models 
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MATHEMATICAL LITERACY 

GRADE 10 GRADE 11 GRADE 12 

AREA AND PERIMETER 

Calculate/measure the perimeter and area (including surface area) by: 

- direct measurement using, e.g. rulers, grids etc.  

- calculation for: rectangles, triangles and circles (quarter, semi and three quarter) using known 

formulae 

As for Grade 10 and 11 and: 

Calculation for objects that can be decomposed 

into rectangles, triangles and circles (quarter, 

semi and three quarter) using known formulae 

Focus is on working with 2-dimensional shapes 

and calculations of perimeter and area of such 

shapes 

As for Grade 10, but now includes 3-dimensional shapes, with calculations of perimeter and surface 

area 

When working with plans, determine quantities of materials required by using perimeter and area calculations 

adapted from DBE (2011a) 
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MATHEMATICAL LITERACY 

GRADE 10 GRADE 11 GRADE 12 

VOLUME 

Determine volume using appropriate measuring instruments, including: 

- measuring spoons/cups/jugs/bottles/buckets/wheelbarrows  

Measure out quantities to complete a task 

Grade 10 learners are NOT expected to have to 

perform calculations of volume using 

appropriate formulae, emphasis must be placed 

on understanding the concept of volume 

Calculate volume using known formulae for rectangular prisms and cylinders 

Calculate values using a formula involving volume 

When working with plans, determine quantities of materials required by using volume calculations 

Investigate packaging arrangements using actual 

cans and actual boxes to determine optimal use 

of space 

Make and use 3-dimensional scale models of packaging containers and 2-dimensional diagrams of 3-

dimensional models of packaging containers in order to: 

- determine optimal use of space 

- estimate quantities of materials required  

 Make and use 3-dimensional scale models of 

buildings and 2-dimensional scale diagrams of 

appropriate views of buildings in order to: 

- critique aspects of the layout and/or design 

- estimate quantities of materials required 

adapted from DBE (2011a) 
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APPENDIX I  

Measurement Learning in NC(V) Mathematics Level 2 And NC(V) Engineering Technology Level 2 

MEASUREMENT LEARNING IN NC(V) LEVEL 2 ENGINEERING PROGRAMMES 

NC(V) L2 MATHEMATICS NC(V) L2 ENGINEERING TECHNOLOGY 

TOPIC 3: MEASUREMENT 

Subject Outcome 3.1: Measure physical quantities 

Students are able to: 

- read scales on measuring instruments correctly. Instruments include rulers 

and protractors 

TOPIC 4: ENGINEERING PRECISION MEASURING EQUIPMENT 

Subject Outcome 4.2: Use precision measuring equipment 

Students are able to: 

- demonstrate the use of engineering precision measuring equipment 

Students are able to: 

- use symbols and SI units as appropriate to the situation 

TOPIC 5: SI UNITS OF MEASUREMENT 

Subject Outcome 5.1: Demonstrate knowledge of basic SI units of 

measurement 

Students are able to: 

- identify basic units of measurement used in science engineering 

- define the physical quantities that are measured by the SI units 

Subject Outcome 5.2: Convert between SI units 

- perform conversions according to relevant digital values 

- derive new units from the relationship between the SI units (i.e. the 

quantities they measure) 
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APPLICATION OF MEASUREMENT LEARNING 

Subject Outcome 3.2: Calculate perimeter, surface area and volume in two 

and three dimensional geometric shapes  

 

Students are able to: 

- Calculate the perimeter and surface area of the following laminae: 

     Square; rectangle; circle; triangle; parallelogram; trapezium; hexagons 

- Calculate the volume and surface area of the following objects: 

     Cubes; rectangular prisms; cylinders; triangular prisms; hexagonal 

prisms 

- Investigate the effect on area of laminae where one or more dimensions are 

multiplied by a constant factor k  

- Investigate the effect on the volume and surface area of right prisms where 

one or more dimensions are multiplied by a constant factor k 

Measurement learning is applied: 

 

- When using precision measuring equipment (Subject Outcome 4.2), 

including deciding on the best precision measuring equipment for the task 

(Subject Outcome 4.1) 

- When using engineering marking off equipment (Subject Outcome 6.2) 

- When interpreting and understanding basic engineering drawings (Subject 

Outcome 7.1); applying basic engineering drawing practices (Subject 

Outcome 7.2); and producing drawings in two-dimensional views (Subject 

Outcome 7.3) 

 

*In addition, measurement is used in practicals in Automotive Repair and 

Maintenance (DHET, 2013d); Fitting and Turning (DHET, 2013e); and 

Welding (2013f). 

adapted from DHET (2011) and DHET (2012b) 
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APPENDIX J 

Mediated measurement interaction model 
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APPENDIX K 

Summary of Research Approach 

Research position Interpretivism 

“[A]n umbrella term used to describe studies that endeavour 

to understand a community in terms of the actions and 

interactions of the participants” (Tobin, 2000, p. 487) 

Paradigm 

 

 

 

 

 

 

 

 

 

 

 

 

Constructivism 

“[T]he learner is not a passive recipient of knowledge but 

that knowledge is constructed by the learner in some way” 

(Rowlands & Carson, 2001, p. 1) 

 

 Individual psychology 

The research is concerned with “how the individual learner 

constructs knowledge in his/her own cognitive apparatus” 

(Phillips, 1995, p. 7). 

 Individual cognition 

The activity of knowledge construction is “described in 

terms of individual cognition” (Phillips, 1995, p. 8) 

 Knowledge as human creation 

The construction of knowledge is a process that is 

“influenced…by the minds or creative intelligence of the 

knower or knowers” (Phillips, 1995, p. 7). 

Ontology Realism 

The realist ontological view that there is a real world does 

not preclude the claim that knowledge is constructed 

(Maton, 2014) 

Epistemology Constructivist 

“[E]ach individual mentally constructs the world of 

experience through cognitive processes…the world cannot 

be known directly, but rather by the construction imposed on 

it by the mind” (Young & Collin, 2004, p. 375) 
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Methodology Interpretivist 

Interpretivist methodologies “focus on the meanings 

attributed to events, places, behaviours and interactions, 

people, and artefacts” (Schensul, 2008, p. 517). 

Approach Qualitative 

Qualitative research is “a situated activity that locates the 

observer in the world. It consists of a set of interpretive, 

material practices that make the world visible” (Denzin and 

Lincoln, 2005, p. 3). 

Nature Exploratory 

Exploratory research is designed to take an “open, flexible 

and inductive approach” (Durrheim, 2006, p. 41) in 

attempting to maximise the discovery of new insight. 

Method Collective case study 

“Multiple cases are described and compared to provide 

insight” (Cresswell, 2011, p. 465) 

Position of the researcher Participant/observer 

Non-participant observation 
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APPENDIX L 

Basic Student Demographic Information  

Name 

Male/ 

Female  

Year of 

Birth 

Highest Grade Passed 

(including subject) Type of School/School Quintile* 

Sam  F 1994 Grade 12 (2012) – Math  Q3 

Errol  M  1995  Grade 12 (2013) – MLit  Q3 

Sanele  F  1990  Grade 12 (2010) – MLit Q4 

Phumzile F  1994  Grade 12 (2012) – Math  Q2 

Siphelele  M  1991  Grade 12 (2009) – Math  Q3 

Andile  M  1997  Grade 9 (2013) – Math  Independent School (Q4) 

Thandiwe  F  1994 NC(V) Level 2 (2013) – MLit  

 TVET College – Urban area (equivalent to Q3 

– no fee) 

Mbulelo  M  1994 Grade 12 (2012) – Math  Q3 

Ntando  M  1996 

 Grade 10 (2013) – Technical 

Mathematics 

Q3 - Special Needs School [Mild and 

Moderately Handicapped] 

Tshawe  M  1994  Grade 12 (2013) – MLit Q3 

Kaden  F  1993  Grade 12 (2012) – MLit  Q3 - Special Needs School [Behavioural] 

Luvuyo  M  1994  Grade 12 (2013) – MLit  Q2 

Malume  M  1981  Grade 11 (1997) – Math  Q2 

Andiswa  F  1994 Grade 12 (2012) – MLit   Q2 

Lwazi M  1992  Grade 12 (2010) – Math Q3 

Neliswa  F  1989  Grade 12 (2007) – Math  Q3 

Zukisa  F  1995  Grade 9 (2012) – Math  Q2 

Mzwakhe  M  1989 

 ABET Level 4 (2013) – 

Mathematics & Mathematical 

Sciences 

Q1 (school); Adult centre for physically 

disabled and disadvantaged impoverished 

persons (ABET Level 4; Q1) 

Siyabulela  M  1992  Grade 11 (2011) – Math  Q3 

Mkhuseli  M  1986  Grade 12 (2004) – Math  Q3 

Babalwa  F  1993 Grade 12 (2011) – MLit   Q3 

Linda  F  1992  Grade 12 (2010) – MLit Q3 

Aviwe  M  1995  Grade 12 (2013) – Math  Q3 

Bonelwa  F  1994  Grade 12 (2012) – Math  Q3 

Lindiwe  F  1996  Grade 12 (2013) – Math  Q3 

Mthobeli  M  1993  Grade 12(2009) – Math  Q3 

Samkelo  M  1994  Grade 12 (2011) – MLit  Q3 

Nobuhle  F  1995  Grade 12 (2013) – Math  Q3 

Liana  F  1995  Grade 12 (2013) – Math  Q3 

Sisipho  F  1992 Grade 12 (2010) – MLit   Q3 

Lumko  F  1991  Grade 12 (2009) – Math  Q3 

Langa  M  1994  Grade 11 (2011) – Math  Q3 

Ndileka  F  1994  Grade 9 (2010) – Math  Q3 

Mandisa  F  1994  Grade 11 (2012) – Math  Q3 

Malusi  M  1992 Grade 11 (2009) – Math   Q2 

Anathi  M  1991 Grade 10 (2007) – Math   Q3 
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Nomsa  F  1993 Grade 11 (2010) – Math   Q2 

Sandla  M  1994  Grade 11 (2011) – Math   Q3 

Sandile  M  1991 Grade 10 (2007) – Math   Q3 

*School quintile rankings have been extracted from the latest available rankings published by the DBE (2015a; 2015b) 
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APPENDIX M 

Tasks completed by each student  

Name Task 1 Task 2 Task 3 Task 4 Task 5 

Sam           

Errol           

Sanele           

Phumzile           

Siphelele           

Andile           

Thandiwe           

Mbulelo           

Ntando       

  

  

Tshawe         

Kaden       

  

  

Luvuyo         

Malume           

Andiswa           

Lwazi          

Neliswa       

  

  

Zukisa         

Mzwakhe       

  

  

Siyabulela         

Mkhuseli           

Babalwa           

Linda           

Aviwe       

  

  

Bonelwa         

Lindiwe         

Mthobeli           

Samkelo           

Nobuhle       

  

  

Liana         

Sisipho       

  

  

Lumko         

Langa           

Ndileka       

  

  

Mandisa         

Malusi       

  

  

Anathi         

Nomsa           

Sandla       

  

  

Sandile         

*each grey block indicates a task completed 
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APPENDIX N 

Levels  of Mediation 

none Implicit mediation Explicit mediation 

*(m) – method; (c) – concept; (a) – artefact 

These codes refer to the following: 

A: no mediation 

B: reassurance 

 e.g. ‘go on…’ 

C(m):  prompt (method) 

 e.g. ‘and the value is…’ at the end of Task 4 to prompt students to realise they 

were to calculate the cost of building and not only the area 

C(c):  prompt (conceptual) 

 e.g. stating ‘perpendicular’ during Task 4 when struggling to decide where to 

place their ruler to measure the height of the triangle 

P(a): provision of an additional artefact 

 e.g. providing an extra unit tile or unit cube [Tasks 1 & 2] 

D(m): leading question (method) 

 e.g. how do you calculate the area of a triangle? [Task 4] 

D(p):  leading question (process) 

 e.g. Asking ‘what do you need to do next to get the area of the whole shape?’ 

when students did not know how to proceed after finding the areas of regions of 

a composite rectangle [Task 4] 

D(c): leading question (conceptual) 

 e.g. Asking ‘what shapes combine to form this hexagon?’ [Task 4] 

R(a): reference made to artefact 

 e.g. wordlessly pointing to the line whose measurement is required in order to 

calculate the area of a shape [Task 4] 

E(m): instruction (method) 

 e.g. providing the required formula if a student cannot recall it 

E(c): instruction (conceptual) 

 e.g. explaining the concept of volume during a task requiring the measurement 

or calculation of volume [Task 1] 

F(m): correction (method) 

 e.g. providing assistance in correcting a calculation error made when calculating 

area 

F(c): correction (conceptual) 

 e.g. providing assistance when an error has been made as a result of inaccurate 

or as yet emerging conceptualisation of measurement domain 

A B  - C(m)  - C(c)  - P(a) - D(m)  - D(p) - D(c) - R(a) E(m)  - E(c)  - F(m)  - F(c)
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APPENDIX O 

Consent Document 

 

You are invited to participate in a research study conducted by Pamela Vale, from the 

Department of Education at Rhodes University. I hope to learn about what knowledge Level 2 

Engineering students have regarding measurement when they enter the Engineering 

courses.  You were selected as a possible participant in this study. 

Any information that is obtained in connection with this study and that can be identified with 

you will remain confidential and will be disclosed only with your permission.  Your identity 

will be kept confidential. To begin with I will be storing your information according to your 

student number and not your name. Because it is possible to look up your name if I have your 

student number, as soon as we have completed the interviews I will assign you a code that will 

only be known to me. The data will be stored securely and will not be accessible to anyone 

except myself. You will be completely anonymous in any reports made of the data.  

Your participation is voluntary.  Your decision whether or not to participate will not affect your 

relationship with XXXX TVET College, Rhodes University, your college lecturers or 

myself.  If you decide to participate, you are free to withdraw your consent and discontinue 

participation at any time without penalty. 

Your signature indicates that you have read and understand the information provided above 

and willingly agree to participate. 

Name: __________________________________________________    

_____________________ 

Signature  

Date: ________________ 

My signature below indicates that I, Pamela Vale, commit to uphold all of the conditions 

outlined in the invitation letter above. 

___________________ 

Signature 

___________________ 
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APPENDIX P 

Map of Holiday Resort 
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APPENDIX Q 

Formal Written Test 

[Note: The text contained in this appendix is reproduced exactly as it appeared in the formal 

written test.] 

QUESTION 1 

Marc, a scientific officer designed an apparatus for an experiment. This apparatus has a 

rectangular block as a base with a regular hexagonal prism mounted on top of the rectangular 

block. A hole with a diameter of 20mm is drilled through both the hexagonal prism and the 

rectangular block. 

1.1 Determine the volume of (a) the hexagonal prism and the volume of (b) the rectangular 

block before the hole is drilled. 

1.2  Determine the volume of the hole (cutting). 

1.3  Determine the volume of the apparatus. 

 

QUESTION 2 

2.1  The manufacturing company you work for has a contract to make coffee tins for a new 

coffee supply. The tin is in the shape of a cylinder with a perpendicular height of 24cm 

and a volume of 2000cm3. You are the IT technician responsible for programming the 

laser cutter, which will cut circular sheets for each tin base. 
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2.1.1 Calculate the radius. 

2.1.2  The base area of the cylinder, to three decimal places. 

 

2.2 An athletics track consists of two semi-circular bends of diameter 45 metres each and 

two straight sides of 180 metres each. 

 Calculate the total distance that an athlete will cover on this track. 

 

2.3  A farmer wants to cover a rectangular stack of hay 6m wide, 20m long and 11m high 

with plastic. 

 Calculate the total surface area of the haystack to determine the minimum amount of 

plastic needed (NB, the whole stack including the base, must be covered). 

 

QUESTION 3 

Calculate (a) the volume and (b) the total surface area for shapes 3.1, 3.2, 3.3 and 3.4 below: 

3.1 
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3.2 

 

3.3 

 

3.4 
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APPENDIX R 

Formula Sheet 
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APPENDIX S 

Scans of work from Task 1 

1. NTANDO      2. KADEN 

                                     

 

3. MZWAKHE      4. NELISWA 
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5. NOBUHLE      6. AVIWE 

                 

 

 

7. SISIPHO        8. MALUSI 
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9. NDILEKA      10. SANDLA 

 

                         

 

 

11. ERROL      12. PHUMZILE 
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13. ANDISWA      14. MKHUSELI 

                           

 

 

 15. BABALWA      16. SAMKELO 
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17. ANDILE      18. SANELE 

                      

 

19. THANDIWE       20. LINDA 
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21. MALUME       22. SAM 

                        

 

23. MTHOBELI       24. SIPHELELE 
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25. MBULELO      26. LANGA 

                            

 

27. NOMSA 
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APPENDIX T 

Summary of performance on Task 1 

 

 

STUDENT 

PHASE 1 PHASE 2 

PHASE 3 STRATEGY MEDIATION STRATEGY MEDIATION 

Ntando RA 

 

B LR E(m); C(m); B; 

D(m); B; B 

E(m); E(m) 

Kaden IP F(c); C(m) CW* D(p) C(m); F(c) 

Mzwakhe RD 

 

C(m) LR D(p); D(m); F(m); 

F(c); E(c)*; 

D(m)*; D(m)* 

E(m)*; F(c) 

Neliswa IR A CW D(p); B A 

Nobuhle RA D(m); B EA→CW A F(m) 

Aviwe RA D(c)  EA→LD A A 

Sisipho IR B PW D(p); F(c)* F(c) 

Malusi IR A PW D(p); F(c)* F(c)* 

Ndileka 

 

RA 

 

B; C(c); D(c); 

E(m); E(c); 

P(a); C(c) 

none F(c); F(c)* Abandoned 

Sandla IR A LR D(p); F(c)*; F(c)* A 

Errol RA A EA→LR D(c) C(m); E(m)*  

Phumzile IR A CW* D(m); D(c); 

E(m)* 

A 

Andiswa IR A  CW* D(p)  A 

Mkhuseli  RA A EA→CW D(p)  A 

Babalwa RA A EA→CW E(m) E(m)* 

Samkelo IR A EA→CW* D(p) A 

Andile IP D(m) LR D(p); D(c); D(c) Incomplete 

Sanele IR B  EA→CW D(p) A 

Thandiwe IR D(c); B LR D(p); E(c)* E(m)* 

Linda RA A CW D(p)  A 

Malume RD C(m); D(c)  RD→LR D(p); C(m); F(c)* A 

Sam RA B LR D(p); B; B; F(c)*  F(c)* 

Mthobeli RA D(c) CW D(p) A 

Siphelele Other D(c); E(m)  EA→LD D(p)  Incomplete 

Mbulelo RA A EA→CW A A 

Langa IR A CW* D(p); C(m)* A 

Nomsa IR E(m)  CW* F(c) F(c) 
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APPENDIX U 

Summary of performance on Task 2 

 

 

 

 

 

 

 

STUDENT PHASE 1 PHASE 2 ANSWER 

Ntando D(c) P(a); B Correct 

Kaden B P(a); F(c)[to correct] Surface Area =  96 

Mzwakhe F(m) P(a); E(m)[to correct] Volume = 48 

Neliswa A P(a); F(c)[to correct] Surface Area =  64 

Nobuhle A P(a); F(c)[to correct] Surface Area =  64 

Aviwe A A Correct 

Sisipho A P(a); F(c)[to correct] Surface Area =  64 

Malusi E(c); E(c) F(c) P(a); F(c)[to correct] Completed together 

Ndileka A P(a); E(c); F(c)[to correct] Completed together 

Sandla A  P(a) Correct 

Errol B; B P(a); F(c)[to correct] Surface Area =  96 

Phumzile A P(a); F(c)[to correct] Surface Area =  64 

Andiswa D(c) P(a); D(c); F(c)[to correct] Surface Area =  64 

Mkhuseli  A P(a)  Correct 

Babalwa A P(a); D(c); F(c)[to correct] Surface Area =  64 

Samkelo D(c) P(a)  Correct 

Andile B P(a); F(c)[to correct] Surface Area =  64 

Thandiwe B P(a); D(c); F(c)[to correct] Surface Area =  64 

Linda F(c) P(a); D(c) Correct 

Malume B A Correct 

Sam F(c) P(a); F(c); D(c); F(c)[to correct] Surface Area =  64 

Mthobeli A A Correct 

Siphelele A  P(a); F(c)[to correct] Surface Area =  64 

Mbulelo A A Correct 

Langa A P(a); F(c)[to correct] Surface Area =  64 

Nomsa F(c) P(a); E(m)[to correct] Volume = 48 
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APPENDIX V 

Detailed Summary - Task 3, Subtask 1  

S – Student 

I - Interviewer 

 Q1 – What volume flowed out in 10 

seconds? 

Q2 – What is the flow rate? 

Ntando S: you said we had six? So we can say 

it's 1, 2, 3, [counting hash marks] and 

maybe let's say 4 quarters or 3 quarters 

I: F(c) – was counting hash marks 

S: two and…oh…3 quarters…and one 

third' [help to write correctly, was 

writing 1/3 instead of ¾] 

S: I'll have…let's say…um…it's 

less…is it 2.4 or 2.3? 

I: E(c) and E(m) 

S: 0.275units/sec  

Kaden A 

S: 2 units (in 5 seconds) 

A 

S: 0.4units/sec 

Mzwakhe S: [counts units of volume from the 

bottom and gets 3.5] 

I: D(c) – are we measuring the 

amount that flowed out or the amount 

that remained?   

S: 2.5units 

S: we divide [10] by…60 

I: C(m) – look what you have 

written [point at 2.5units] 

S: 0.25units/sec 

Neliswa A 

S: 2…2 and a half  

A  

S: 0.25units/sec 

Nobuhle S: 3 and a half [counted hash marks] 

I: F(c) 

S: 2.5 

A 

S: 0.25units/sec 

Aviwe A 

S: [unhesitant] 2.5 

A 

S: I would say… 0.5 

I: D(m) – how did you do to get 

that? 
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S: we are using the time and then 

took the… passed the… units and 

tried to get the lower amount 

possible... 

I: F(c) – showed on bottle what 

his answer means 

S: [now does the correct 

calculation on calculator] 

0.25units/sec 

Sisipho S: 3 and a half [counted hash marks] 

I: F(c) 

S: 2.5 

A 

S: 0.25units/sec  

Malusi A 

S: 3 units 

S: [long pause; keys in 3 - 10 on 

the calculator; then keys in 10÷3 

to get 3.3] 

I: F(c) – show on the bottle how 

this is impossible 

S: keys in 3÷10 to get 0.3units/sec 

Phumzile S: 3.4 or 3.5 [reading volume units from 

bottom] 

I: D(c) – are we measuring the 

amount that flowed out or the amount 

that remained?  

S: 2.5 units 

S: 1 divided by 2.5...so since I 

want for 1 second, 2.5 is the one 

that came out, so I'm going to 

divide one by this 2.5 

I: D(c) – what about the 10 

seconds? 

S: okay! So I'm going to divide 

this 10 second... and write: 10 

divided by 2.5 = 4 seconds 

I: F(c)  

S: 0.25units/sec 

Sandla S: 3.5 [reading volume units from 

bottom] 

A 

S: 0.25units/sec 
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I: D(c) – are we measuring the 

amount that flowed out or the amount 

that remained?  

S: 2.5 units 

Andiswa A 

S: two and a half…2.8 

S: 10 divided by 2.8 

I: E(c) 

S: 0.28units/sec 

Mkhuseli A 

S: 2 and a half [counted a few times to 

check] 

S: for five it's going to be ... 1 and 

a quarter 

I: D(m) – and for 1 second? 

S: …an eighth… half of a quarter 

[calculating mentally] 

I: C(m) – give calculator 

S: 0.25units/sec 

Babalwa S: 3 and a half [counted hash marks] 

I: F(c) 

S: 2 and a half 

A 

S: 0.25units/sec 

Samkelo A 

S: 2 and a half 

A 

S: 0.25units/sec 

Andile A 

S: 2 and a half  

S: I'm thinking 'times'... 2.5 x 10 

I: F(c) – show what it means 

S: 0.25units/sec 

Sanele A 

S: 2 and a half  

S: [10 divided by 2.5] 4 

I: F(c) – show what it meant 

S: [still unable to realise the error] 

I: E(c) – had to work together to 

get 0.25units/sec 

Thandiwe A S: I have no idea 
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S: 2 I: E(c) – had to work together to 

get 0.25units/sec 

Linda S: 3 and a half [reading volume units 

from bottom] 

I: D(c) – are we measuring the 

amount that flowed out or the amount 

that remained?  

S: 3 and a half [counted hash marks] 

I: F(c)  

S: 2 and a half 

S: [10 divided by 2.5] 4 

I: F(c) – show what it meant 

S: 0.25units/sec 

 

 

Malume *problem with stopwatch (3 sec) 

S: 1.8 (correctly read) 

S: [first did 1.8 x 3, then tried 1.8 

divided by 3 to get 0.6 but unsure]  

I: F(c) – show what it meant 

S: 0.6units/sec [now sure] 

Lwazi S: 3 and a half [counted hash marks] 

I: F(c)  

S: 2 and a half 

S: [calculates mentally] ½ in 2 

seconds [now stuck] 

I: B 

S: [calculates mentally] ¼ 

units/sec  
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APPENDIX W 

Detailed Summary - Task 3, Subtask 2 

S – Student 

I - Interviewer 

 PREDICT Q1 – what is the volume 

that flows out in 10 

seconds? 

Q2 – what is the flow 

rate? 

Ntando S: …um…the hole is a 

little bit smaller…I think 

it would be…um… I 

think it would be 2 

[units] 

REASONABLE 

S: it was 2…2 quarters 

[counted hash marks 

again] 

I: C(c) – reminder 

S: so it's 1…1 and a half 

 

 

A 

S: so there [points at 

subtask 1] we said 2 

comma something, so 

here it is 1 comma fifty 

S: 0.15units/sec 

Kaden S: more than one (in 5 

seconds) 

REASONABLE 

A 

S: one 

A 

S: 0.2units/sec 

Mzwakhe S: 1 unit 

PERFECT 

A 

S: 1  

A 

S: 0.1units/sec 

Neliswa S: I think…1…1 unit 

PERFECT 

A 

S: yes! It's one! 

A 

S: 0.1units/sec 

Nobuhle S: I think it will be 4 or 

5 

TOO HIGH 

A 

S: one, because this [the 

hole] is a smaller size 

A 

S: 0.1units/sec 

 

Aviwe S: 0.5 

REASONABLE (less 

than ST1) 

A 

S: 1 unit 

A 

S: [whispers] a decimal 

[out loud] 0.1units/sec 

Sisipho S: 1 'cos it's a smaller 

hole and there isn't very 

much that is going to 

come out 

PERFECT 

A 

S: 1 

A 

S: [first did 1 x 10 

then 1 divided by 10] 

0.1units/sec 

 

Malusi S: 1 

PERFECT 

A 

S: 1 

A 

S: 0.1units/sec 

Phumzile S: [did 2.5 divided by 2 

= 1.25 on calculator] I 

think 1.25 because this 

hole is half of that one 

[points to bottle from 

subtask 1]  

REASONABLE 

A 

S: 1 

 

A 

S: 0.1units/sec 
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Sandla S: maybe…0.5 

REASONABLE (less 

than ST1) 

S: 1.9 [counted hash 

marks] 

I: C(c) – reminder (had 

done this correctly 

previously) 

S: 1 

A 

S: 0.1units/sec 

Andiswa S: the hole is going to be 

smaller?  

I: yes  

S: less 

CORRECT 

A 

S: 1.2 

A 

S: 1.2 divided by 10 = 

0.12units/sec 

Mkhuseli S: 1 and a half… or 1 

PERFECT 

A 

S: 1 

A 

S: [calculated mentally] 

0.1units/sec 

Babalwa S: 1 and a half 

REASONABLE (less 

than ST1) 

S: 2 [counted hash 

marks] 

I: C(c) – reminder 

S: 1 

S: 0.5 [calculated 

mentally]... I tried to 

divide 

I: F(c) 

S: 0.1units/sec 

Samkelo S: About 1 

PERFECT 

A 

S: 1 

A 

S: 0.1 units/sec 

Andile S: flow rate will be less 

CORRECT 

S: one and three quarters 

[counted hash marks] 

I: C(m) [had done it 

correctly previously] 

S: 3 quarters 

A 

S: 0.075units/sec  

Sanele S: 5 units 

TOO HIGH 

A 

S: 1 unit  

A 

S: 0.1units/sec 

Thandiwe S: 1 or something 

CORRECT 

A 

S: 1 unit 

S: is it 10 divided by 2? 

I: C(c) – but there is no 

2 

S: 0.1units/sec 

Linda S: 0.23 units 

TOO LOW 

A 

S: 1 

A 

S: 0.1units/sec 

Malume *problem with 

stopwatch (3 sec) 

S: less  

CORRECT 

A 

S: 0.6 

A 

S: 0.2units/sec 

Lwazi S: 1 and a half 

REASONABLE 

A 

S: 1 

A 

S: [calculated mentally] 

0.1units/sec 
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APPENDIX X 

Detailed Summary - Task 3, Subtask 3 

S – Student 

I – Interviewer  

 PREDICT (ST3) Q1 – How long did it take 

for 4 units to flow out? 

Q2 – What is the flow 

rate? 

Ntando unable A 

S: 27 seconds for 4 units 

I: what did you notice? 

S: the first time [at the start] 

we had a little bit of 

pressure, when it was going 

down the pressure dropped  

I: Why do you think? 

S: the water was getting less 

and there was less pressure 

[gestures with both hands 

pushing together to indicate 

pressure] 

A 

S: [presses 4 and ÷] how 

do you calculate again? 

I: B 

S: 4 divided by…27! 

[writes 0.148] 

 

Kaden S: 0.2 units/sec 

 

CLOSE 

A 

S: 50 secs for 5 units 

S: [as watching, pointing at 

stream] it slows down. 

I: why? 

S: because the water 

inside…it's…less [gestures 

with both hands pushing 

together to indicate 

pressure] 

A 

S: 0.1units/sec because 

there are 2 holes…it had 

not a lot of pressure 

 

 

Mzwakhe S: 40 seconds for 4 

units 

 

REASONABLE 

(was 10 seconds for 

1 unit) 

A 

S: 30 seconds 

I: What did you notice? 

S: the streams of water 

changed 

I: Why do you think it 

changed? 

S: the pressure…too much 

pressure 

A 

S: 0.13units/sec 

Neliswa unable A 

S: 31 seconds 
A 

S: 0.13units/sec 

Nobuhle S: more flow 

rate...10 seconds 

 

INCORRECT; 

FLOW RATE 

PREDICTION 

CORRECT FOR 

THOSE 10 SECS 

A 

S: 5 units in 45 seconds 

I: Why is this different to 

your prediction? 

S: because the hole is still 

small 

I: what happened? 

A 

0.11units/sec 
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 S: It was the same [stream 

out each hole] and then it 

changed…when it became 

very low then the two holes 

couldn't be very fast 

I: Why? 

S: because of the volume, 

the volume became less 

Aviwe S: [looks very 

closely!] 5 seconds  

TOO LOW 

(TAKING HOLES 

INTO 

CONSIDERATION 

NOT NUMBER OF 

UNITS 

A 

S: 30 seconds 

I: Why was it so different 

to the prediction? 

S: [long pause] the size of 

the hole…the volume of the 

… [long pause]…that's it 

A 

S: 0.13units/sec 

Sisipho S: rate should be 

about same as the 

first [subtask 

(0.25units/sec)] ...[ 

on calculator, 

presses 4 x 0.25] 

 

REASONABLE IF 

ONLY 10 SECS 

A 

S: 30 sec, it slowed down 

I: What did you notice? 

S: It was fast and then went 

slow…it's the water...it's out 

A 

S: it's 4 divided by 30 = 

0.13units/sec 

 

Malusi 

 

 

 

S: [a long pause] I 

think it will be 20 

seconds 

 

DOUBLE TIME 

FOR ST2 (2 

HOLES) 

A 

S: 37 seconds for 5 units 

I: Why do you think it was 

more than you predicted? 

S: I think the pressure is not 

too much when you have 

two of them [holes] 

A 

S: 0.14units/sec 

 

 

 

Phumzile 

 

S: 4 seconds 

 

TOO LOW 

A 

S: 29 seconds 

I: What did you notice? 

S: It was coming out very 

quickly 

I: Did you notice a 

change?  

S: it slowed down 

A 

S: 0.14units/sec 

Sandla S: 15 seconds 

 

TOO LOW (longer 

than ST2) 

S: 4 units, 30 seconds 

I: Describe what happened 

S: it's coming out fast…then 

it drops 

I: why is it different to 

your prediction? 

S:…two holes? 

I: E(c)  

A 

S: 0.13units/sec 

Andiswa unable A A 

S: 0.13units/sec 
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S: 31 secs...there are two 

holes but they are too slow 

Mkhuseli 

 

 

 

S: 2 and a half…it's 

going to be the same 

as … [points at 

answer to subtask 

1first one]...two 

holes same as 1 big 

one 

 

Changes his mind... 

 

S: I think it's going 

to be the same as… 

[points at answer to 

subtask 1], 10 secs 

 

FOCUS ON HOLES 

NOT VOLUME 

A 

S: 27 secs 

I: What did you notice? 

S: Water was coming out 

slower 

I: Why?  

S: It was closer to the hole 

A 

S: [uses calculator … 

27 ÷ 4 × … and then… 

4÷27 =] 0.148units/sec 

 

Babalwa 5 sec 

 

TOO LOW; 

HALVED TIME 

FOR DOUBLE 

HOLES 

A 

S: 32 sec 

I: What did you notice? 

S: Both of them went slower 

I: Why do you think that 

happened? 

S: Force! 

S: [tries 32 ÷ 4, but self-

corrects to 4 ÷ 32] 

0.125units/sec 

 

 

 

 

Samkelo S: [looks very 

closely at bottle 

pointing at and 

counting stripes hash 

marks and gap] 8 

units…wait, 

wait!...[thinking]… I 

think it will be 

20seconds 

 

TOO LOW; 

DOUBLED TIME 

FOR 2 HOLES 

A 

S: 30 seconds 

I: What did you notice? 

S: The flow rate lowers 

I: What do you think 

causes that?  

S: It’s the pressure 

A 

S: 0.13units/sec 

I: Why do you think 

this answer is so close to 

the flow rate of subtask 

2 

S: because we changed 

the volume let out 

 

 

Andile S: 75 secs 

 

TOO HIGH 

A 

S: 31 sec 

I: What did you notice? 

S: it had a lot of pressure 

and then is starting to stop" 

I: Why do you think it 

changed? 

S: I think it's because the 

thing was full and pushing 

A 

S: 0.13units/sec 

 

Sanele S: 5 sec 

 
A A 

S: 0.13units/sec 
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TOO LOW; 

HALVED TIME 

FOR TWO HOLES 

S: 30 sec...streams are same, 

then less 

I: Why?  

S: [long pause] because it 

was faster and then slow, as 

it was coming down there 

was less pressure 

Thandiwe S: 5 seconds, or less 

than 5 

 

TOO LOW; 

HALVED TIME 

FOR TWO HOLES 

 

A 

S: 45 seconds [5 units], the 

stream decreases 

I: Why? 

S: because when it starts 

here… [points at top of 

bottle] it's coming out faster 

and then when it comes here 

[points at bottom of bottle] 

it's slower 

I: Why? 

S: because of the force 

A 

S: 0.1units/sec 

Linda S: 20 … there's 2 

holes?  

I: yes  

S: then 8 

 

TOO LOW; 

DECREASED 

TIME FOR TWO 

HOLES 

A 

S: 32 seconds 

I: Why do you think it was 

longer than predicted? 

S: the holes are 

small…there were 4 units 

I: What happened? 

S: The stream started out 

stronger 

A 

S: 0.125units/sec 

Malume S: 2.6 seconds 

 

TOO LOW 

A 

S: 32 seconds 

I: Why is this so different 

from your prediction? 

S: I don't know why...I 

think…it's…uh…pressure 

A 

S: 0.125units/sec 

Lwazi unable A 

S: 30 seconds 

I: What did you notice? 

S: they are the same… they 

come out fast and then slow, 

slow… at the top [of the 

bottle] – large flow rate; in 

middle – medium; lower – 

small  

A 

S: 0.13units/sec 
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APPENDIX Y 

Detailed Summary - Task 3, Subtask 4 

S – Student 

I - Interviewer 

 PREDICT Q1 - How long did it take 

for 4 units to flow out? 

Q2 – what is the flow 

rate? 

Ntando S: The flow rate will be 

less than this [indicates 

subtask 3] the water 

will be coming out of 

both holes… but sooner 

or later it will be 

coming out of one hole 

[points at bottom 

hole]… then it will be 

same pressure, in time 

it will be shorter 

 

PERFECT 

PREDICTION; 

CONCEPTUAL 

ERROR IN 

REASONING 

THOUGH 

 

A 

S: 50 seconds 

I: What did you notice? 

S: it's dropping pressure 

[points at top hole], but the 

pressure is still going on in 

the one on the bottom … 

pressure's out [pointing at 

top hole]… it's dropping 

pressure [pointing at 

bottom hole] 

I: we predicted shorter 

than the previous 27 

seconds you predicted 

last time, why do you 

think it takes longer? 

S: I would say, because of 

the direction of the [points 

at holes] if it would be the 

same direction as these 

holes [previous example] it 

would be the same… but 

then it's the direction…..It 

first dropped pressure in 

the one on top and then the 

water was taking long to 

come out the other one 

A 

S: 0.08units/sec 

I: Why is this flow rate 

lower than for number 

[subtask] 3? 

S: are the holes the 

same?...isn't it because 

the pressure…because 

here you get [points at 

bottom hole]…the water 

goes out faster…and 

then this side [points at 

top hole] it's a little 

slower 

Kaden S: the flow's going to 

come out more [than 

subtask 3], but when it 

comes here [points at 

top hole] it's going to 

come out slower…but 

then it's going to go 

down [traces down 

bottle to below top 

hole]… then it's going 

to put pressure [points 

at bottom hole] 

 

CORRECT 

DESCRIPTION BUT 

A 

S: 4 units in 50 seconds 

 

 

 

 

A 

S: 0.08units/sec 
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NO PREDICTION OF 

TIME 

Mzwakhe S: 20 seconds 

 

INCORRECT, 

SHOULD BE MORE 

TIME THAN ST3 

S: 51 seconds [looks very 

surprised] 

I: Why do you think it is 

so much more than you 

predicted? 

S: because this one 

[bottom hole] had to wait 

for this one [top hole], and 

the water arrived earlier 

than this one [bottom]… 

there was the movement of 

… and the speed 

changed… the pressure 

was not the same…was not 

enough...at the bottom the 

pressure was still 

pumping… 

A 

S: 0.08units/sec 

S: Here [subtask 3]… 

water comes out same 

time, same speed… this 

one, there's this gap… 

the pressure was not the 

same. Here [top hole] not 

so much… the speed of 

the water... 

 

Neliswa S: 32 seconds 

 

CONCEPTUALLY 

OK, BECAUSE 1 SEC 

LONGER THAN SHE 

HAD FOR ST3, BUT 

TOO LOW 

S: wow! It's 50 seconds  

I: Why is it more than 

you predicted? 

S: because only this one's 

[bottomhole] working 

more than this one [top 

hole]; [gestures with both 

hands pushing together to 

indicate pressure] 

 

A 

S: 0.08units/sec 

S: so… the higher the 

pressure, the higher the 

flow rate … the lower 

the flow rate the lower 

the pressure 

 

Nobuhle S: slower 

 

OK 

A 

S: 54 seconds 

S: because this one has two 

holes, one on top, one on 

bottom… then this one 

(top) couldn't have 

anything coming out, but 

this one (bottom) could 

A 

S: 0.07units/sec 

 

 

Aviwe S: 40 seconds 

 

REASONABLE: 

LONGER THAN ST3 

A 

S: 53seconds 

I: Why is it more than 

you predicted? 

S: because of the distance 

of the holes… should the 

liquid go here [points at 

top hole] there will be one 

hole 

A 

S: 0.08units/sec 

S: it's the pressure of the 

thing [gestures with both 

hands pushing together 

to indicate pressure], as 

the pressure increases the 

flow rate can be a little 

faster 

Sisipho S: I'm not sure… I'm 

not sure about the 

directions… this one 

[points at bottom hole] 

A 

S: 58 seconds 

S: I should have guessed! 

 

A 

S: 0.07units/sec 
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is going to slow down 

and this one [points at 

top hole] is going to 

stop 

 

EXPLANATION 

SOUND, NO 

PREDICTION 

THOUGH 

Malusi S: 22 seconds 

 

INCORRECT, 

PREDICTED LESS 

THAN ST 3 

A 

S: 41 seconds 

I: What did you notice? 

S: that this one [bottom 

hole] was pumping out... 

pumping out the  water 

more than that one [top] 

and this one [top] was 

slower… and then this one 

[top] had no water;  

when we started there were 

2 and then the water was in 

middle so only one 

A 

S: 0.08units/sec 

 

Phumzile S: 20 seconds 

 

INCORRECT, LESS 

THAN FOR ST3 

A 

S: 54 seconds 

I: Why do you think it 

took so much longer than 

you predicted? 

S: the first hole is on top 

therefore the second is on 

bottom therefore the 

pressure of the water... 

when the water… cos the 

pressure was increased 

when at top… as the water 

gets closer to this [top] 

hole the pressure is 

decreasing, and the hole at 

the bottom it's also 

decreasing 

A 

S: 0.07units/sec 

 

Sandla S: shorter [than subtask 

3] 

 

INCORRECT, LESS 

THAN ST 3 

A 

S: 47 seconds 

I: Why did it take longer 

than for the previous 

question? 

S: because of this one 

[points at bottom hole], 

because it gets less 

[gestures to indicate a 

stream]… and the top one, 

it stopped 

S: [uses calculator … 

47 ÷ 4] 

I: C(m) [had done this 

correctly previously]  
S: 0.09units  

S: these ones [horizontal 

holes in subtask 3] are 

side by side… and this 

one [subtask 4] is up and 

one is down. 
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I: What do you think the 

reason is for the change? 

S: the pressure [gestures 

with both hands pushing 

together to indicate 

pressure] 

I: And so what 

happened? 

S: [points at top hole] 

started to flow so fast, as 

the  water drops it slows 

and stops, doesn't 

function… here [subtask 

3] both holes function 

Andiswa S: longer, because the 

two holes are too far 

away… because this 

one is at the bottom and 

this one is higher… and 

this one [top] will go 

faster than this one 

[bottom] 

(INCORRECT) 

 

PREDICTION 

CORRECT 

A 

S: 48 seconds 

I: What did you notice? 

S: the top one, it was going 

slower and then the top 

one, neh? The top one was 

going fast and it was 

slowing down and the 

bottom one was going fast 

I: and by the end? 

S: it [bottom hole] was 

going slower 

A 

S: 0.08units/sec 

 

Mkhuseli S: 20 seconds 

 

INCORRECT, 

SHORTER THAN ST3 

A 

S: 54 secs 

I: What was happening? 

S: the top part is coming 

slow… it stopped… 

I: why? 

S: because the holes were 

drilled in different 

positions 

A 

S: 0.07units/sec 

VIDEO STOPPED 

Babalwa S: … longer… 40 

seconds, because when 

the water reaches this 

one [top hole] it will 

only have one [hole] 

left 

 

CORRECT 

A 

S: 60 secs 

S: [uses calculator … 

60 ÷ 4, then pauses] 

I: C(m) [had done this 

correctly previously]  
S: 0.07units/sec  

 

Samkelo S: [long pause] it will 

be… 50 

I: Why did you guess 

50? 

S: when it was there 

[points at horizontal 

holes from subtask 3] 

both of them still 

switched on… so now 

[subtask 4] with the 

pressure...flow...flow 

rate [pointing at the top 

hole] is dropping, so 

A 

S: 56 sec 

I: What did you notice? 

S: flow rate was not the 

same, this is one [top] 

stops first 

 

 

A 

S: [uses calculator … 

56 ÷ 4 = 14, then 

pauses; self-corrects to 

do 4 ÷ 56 = 0.07] 

0.07units/sec 

 

 



 

373 

 

when it's here [top hole] 

then it [bottom hole] 

will be the one that 

pumps 

 

CORRECT 

Andile S: smaller [flow rate] 

than horizontal [subtask 

3] because this thing is 

full, when this pushes 

down through past this 

one [top hole] then 

there is one [hole] 

 

CORRECT 

A 

S: 56 seconds 

 

 

 

 

INTERVIEW 

TERMINATED: 

STUDENT UNREST 

(EVACUATED) 

Sanele S: the flow rate won't 

be the same as previous 

one, the top one [hole] 

will go fast and then 

when it reaches here 

[points at top hole] this 

one [bottom hole] will 

come out and this one 

[top] will not come out 

 

CORRECT BUT NO 

TIME PREDICTION 

A 

S: 60 seconds, since it's 

going down the pressure 

getting less 

 

 

A 

S: 0.07units/sec 

 

Thandiwe S: the time will be 

longer than horizontal 

[subtask 3] 

because this one's on 

top [points to top hole 

in relation to bottom 

hole]… and there's no 

more [gestures to 

indicate no more water] 

 

CORRECT 

A 

S: 60 seconds 

 

 

A 

S: 0.07units/sec 

 

 

Linda S: it is longer than 

horizontal [subtask 3] 

when it reaches here 

[top hole] this one's 

going to be open and 

won't go, it's only going 

to be on this side 

[points at bottom hole] 

CORRECT 

A 

S: 51 seconds 

I: What did you notice? 

S: This amount here 

[points at top hole] it didn't 

come out so much… it's 

only this one [points at 

bottom hole] 

A 

S: 0.08units/sec 

 

 

 

 

Malume S: 44 seconds 

 
A 

S: 53 seconds 

I: What did you notice? 

A 

S: 0.08units/sec 

 



 

374 

 

REASONABLE, 

MORE THAN ST3 

S: It stopped here [top 

hole] after a while and then 

it only used this one 

[bottom hole] and this one 

[bottom] was stronger 

Lwazi 20 seconds 

 

INCORRECT, LESS 

THAN ST3 

A 

S: 49 seconds 

I: What did you notice? 

S: they come pressured 

water [point at top hole] 

and when we go here [top 

hole] this one goes down… 

they [bottom hole] don't 

get enough pressure of 

water...here [indicates 

subtask 2] we had a lot of 

pressure of water but not 

here [indicates subtasks 3 

and 4] 

I: why do you think this 

flow rate is the lowest? 

S: we let it out for longer 

A 

S: 0.08units/sec 
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APPENDIX Z 

Performance per test item 

 

Key: Measurement to be calculated   Key: Symbols used 

       [F] – Full marks 

[P] – Partial marks 

[O] – Zero marks 

[X] – Not attempted  

STUDENT 

ITEM NUMBER 

1
.1

 (
a

) 

1
.1

 (
b

) 

1
.2

 

1
.3

 

2
.1

.1
 

2
.1

.2
 

2
.2

 

2
.3

 

3
.1

(a
) 

3
.1

(b
) 

3
.2

(a
) 

3
.2

(b
) 

3
.3

(a
) 

3
.3

(b
) 

3
.4

(a
) 

3
.4

(b
) 

ANDISWA O X O O O O O O O O O O O O O O 

SANELE O O O O O O O O X P X O X O X O 

NTANDO O X O O O O O O P X P X O X O X 

SANDILE P O O X O O X O O O O O O O O O 

KADEN O F O X O O P O O O O O O O O P 

MALUSI O O O F O O P P O O O O O O O O 

SAMKELO F O P X O O P O X O X O X O X O 

ERROL O X O O O O P O F P O P O O P O 

SANDLA O O P X O P X O O P O P O O O O 

LIANA O O F O P O X X F P X O X P O O 

MZWAKHE O F P O F O X O F O X P O O P O 

THANDIWE F P F F X O X X O P O P O O O O 

BONELWA O F P O P O O O F O F F O O O O 

ANDILE P F O O X X X P O O F P O O F O 

BABALWA P F O F F O X O F O O P O O P O 

NOBUHLE F F F F O O O O F F O O O O O P 

PHUMZILE O O X X O O O F F F F P O O X F 

SISIPHO F F O F O O O O F F O O O O O F 

NDILEKA F F F F O O O O F X O O O O F P 

TSHAWE O F P F O F P O F P F P O O O P 

ANATHI F F O F O F O O F O F O O O F O 

LINDIWE F F O F O O P F F O F O O O P P 

NELISWA F F O F F O O O F O F P O O F P 

SIYABULELA F F F O F F X O F P F P O O X P 

LUMKO F F F O F O O O F O F F X O F F 

AVIWE F P P P F O P F F F O O O O F F 

MTHOBELI O F F F F O O F F O F P O O F O 

[F] Full Marks  11 15 7 11 7 3 0 4 17 4 10 2 0 0 7 4 

[P] Partial 

Marks 3 2 6 1 2 1 7 2 1 7 1 11 0 1 4 7 

[O] Zero Marks 13 7 13 10 16 22 12 19 7 14 12 13 23 25 12 15 

[X] Left Out  0 2 1 5 2 1 8 2 2 2 4 1 4 1 4 1 

 

LINEAR SURFACE AREA 

AREA VOLUME 
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APPENDIX AA 

Detailed summary of use of incorrect formulae 

 

Attributes of shapes 
incorrectly identified 

(81)

Volume/Area/Surface Area 

(56)

Surface Area formula used 
instead of  Area (13)

Volume formula used 
instead of Area

(3)

Area formula used instead of 
Volume

(15)

Volume formula used 
instead of Surface Area

(22)

Surface Area formula used 
instead of  Volume

(3)

Length/Area/Surface 
Area 

(21)

Length formula used instead 
of  Surface Area

(7)

Surface Area formula used 
instead of  Length

(2)

Length formula used instead 
of Area

(5)

Area formula used instead of 
Length

(7)

Volume/Length (4)

Volume formula used instead 
of Length

(4)

Incorrect shape 

(11)
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379 

 

GLOSSARY OF ABBREVIATIONS AND ACRONYMS 

(in order of appearance) 

 

TVET Technical and Vocational Education and Training 

ECSA Engineering Council of South Africa 

DHET  Department of Higher Education and Training 

FET Further Education and Training 

PME  International Group for the Psychology of Mathematics Education 

ICME International Congress on Mathematics Education 

SA South Africa 

NC(V) National Certificate (Vocational) 

NSDSIII National Skills Development Strategy III 

RSA Republic of South Africa 

NDP National Development Plan 

NPC National Planning Commission 

HRDCSA Human Resource Development Council of South Africa 

StatsSA Statistics South Africa 

NEET  Not in Education, Employment or Training 

NSC National Senior Certificate 

NQF  National Qualifications Framework 

SAQA South African Qualifications Authority 

ABET  Adult Basic Education and Training 

RPL Recognition of Prior Learning 

UNESCO United Nations Educational, Scientific and Cultural Organisation 

NADSC National Artisan Development Support Centre 

SETA Sector Education Training Authorities 

LoLT Language of Learning and Teaching 

TIMSS Trends in Mathematics and Science Studies 

PIRLS Progress in International Reading Study 

SACMEQ Southern and Eastern African Consortium for Monitoring Educational Quality 

ANA Annual National Assessments 

UNEVOC International Centre for Technical and Vocational Education and Training 

CIP Colleges Improvement Project 

JET Joint Education Trust 

DBE Department of Basic Education 
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EC  Eastern Cape 

GT Gauteng 

WC Western Cape 

FS Free State 

KZ KwaZulu Natal 

LP Limpopo 

MP Mpumalanga 

NC Northern Cape 

NW North West 

IP  Intermediate Phase 

SP Senior Phase 

FP Foundation Phase 

SI Système International  

ZPD Zone of Proximal Development 

3D Three-dimensional 

LPCAT Learning Potential Computerised Adaptive Test 

GPAM Graduated Prompting Assessment Module 

A No mediation 

B Reassurance 

C Prompt 

D Leading Question 

E Instruction 

F Correction 

(m) method  

(c) concept 

Sn: Student Action/Utterance 

Mn: Interviewer Mediation 

On: Informal Observation 

A: No mediation 

B: Reassurance 

C(m):  Prompt (method) 

C(c):  Prompt (conceptual) 

P(a): Provision of an additional artefact 

D(m): Leading question (method) 

D(p):  Leading question (process) 
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D(c): Leading question (conceptual) 

R(a): Reference made to artefact 

E(m): Instruction (method) 

E(c): Instruction (conceptual) 

F(m): Correction (method) 

F(c): Correction (conceptual) 

RA Rectangular array 

RD Drawing rectangles of decreasing size 

IR Iterating in rows 

IP Iteration around inside perimeter 

EA Extends into irregular area 

LR Label with rational number  

LD Label with decimal 

CW Combine mentally  

PW Partial unit added as whole 

F Full marks 

P Partial marks 

O Zero marks 

X Not attempted 
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